11 |
Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung / Development of a 3D MRI-System for Earth Field MRI and the Combination MRI-MPILother, Steffen Reiner January 2013 (has links) (PDF)
Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die benötigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle nötigen Komponenten für ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalitäten (MRT/MPI) in einer einzigen Apparatur gezeigt.
Auf diesem Entwicklungsweg sind zusätzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Präpolarisationssystems, mit dem das Präpolarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierfür wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier präsentierten Theorie und den Simulationsergebnissen übereinstimmend verglichen werden.
MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden können. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochauflösenden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht möglich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgeführt und die empfindliche Lokalisation von Kontrastmittel mit der Überlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zukünftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes Stück näher. / Developement of an 3D MRI System for Earth Field MRI and the Kombination with MPI
|
12 |
Ce M4,5 XAS and XMCD as Local Probes for Kondo and Heavy Fermion Materials - A Study of CePt5/Pt(111) Surface Intermetallics - / Ce M4,5 XAS und XMCD als Lokale Sonden Für Kondo- und Schwere-Fermionen-Materialien - Eine Studie an intermetallischen CePt5/Pt(111) Oberflächenverbindungen -Praetorius, Christian Michael January 2015 (has links) (PDF)
The aim of the present thesis is to explore the potential of X-ray magnetic circular dichroism(XMCD) experiments on gaining new insights into Kondo and heavy fermion materials. XMCD, which is derived from X-ray absorption spectroscopy (XAS), allows probing magnetic polarization specific to the different elements in a material and to their atomic orbitals. In particular, at the Ce M4,5 edges the method is sensitive to the localized 4f level, which provides the magnetic impurity moment responsible for Kondo physics in Ce compounds. Hence, Ce M4,5 XMCD is ideally suited to investigate local magnetism in the presence of interaction of impurity and conduction electrons in such materials.
As a model material, CePt5/Pt(111) surface intermetallics were chosen for the present study. This thin-film material can be prepared by well-defined procedures involving molecular beam epitaxy. Crystalline Ordered samples are obtained by exploiting the single-crystallinity of the Pt(111) substrate. The surface character of thin films ideally matches the probing depth of soft X-ray spectroscopy in the total electron yield mode.
The XMCD and XAS experiments, taking into account dependence on temperature, angle of incidence, sample thickness and external magnetic field, revealed the presence of four relevant energy scales that influence the magnetic response:
1. The 4f level in CePt5/Pt(111) is subject to significant crystal field (CF) splitting, which leads to reorganization of the six j = 5/2 sublevels. The hexagonal symmetry of the crystal structure conserves mj as a good quantum number. The proposed CF scheme, which is derived from measurements of the paramagnetic susceptibility by XMCD as well as linear dichroism in XAS, consists of nearly degenerate |1/2> and |3/2> doublets with the |5/2> doublet excited by E5/2 = 15 ... 25 meV.
2. Single impurity Kondo interaction significantly couples the magnetic moments of the impurity and conduction electrons. A signature thereof is the f0 -> f1 contribution to Ce M4,5 XAS, the strength of which can be tuned by control of the sample thickness. This finding is in line with the observation of reduced effective 4f moments as detected by XMCD.
3. Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction induces ferromagnetic correlations on the impurity lattice, which induces a positive Curie-Weiss temperature in the temperature-dependent inverse susceptibility.
4. Indications for the transition to a coherent heavy fermion state are found in the inverse susceptibility at T ~ 20 K; the ferromagnetic ground state is not observed. The fielddependence of the magnetic moment in the coherent state can be interpreted in terms of a metamagnetic transition. This allows studying basic characteristics of the renormalized band structure of a heavy fermion system by XMCD.
The disentanglement of these different contributions to the 4f magnetism not only required extensive Ce M4,5 XAS and XMCD data, but also a thorough structural characterization of the material, a fundamental study of the Ce M4,5 line shape in relation to the degree of 4f hybridization and the development of a model for the paramagnetic susceptibility.
The unit cell dimensions and sample morphology of CePt5/Pt(111) intermetallics were studied by low-energy electron diffraction (LEED) and scanning transmission electron microscopy (STEM). These experiments showed that well-defined intermetallic films form on top of the substrate. This lead to introduction of the film thickness t, measured in unit cells (u.c.), as a key feature to characterize the samples.
Systematic LEED measurements in the thickness range t ~ 1 ... 15 u.c. allowed identification of six different phases, which could be interpreted as resulting from the same crystal structure with different rotational alignments and lattice constants. An accurate determination of the surface lattice constant at t ~ 3 u.c. could be achieved by interpretation of additional superstructure spots as arising from a well-defined combination of substrate and film lattices. The thicknessdependence of the lateral lattice constant could be explained in terms of lattice relaxation.
Confirmation of the CePt5 stoichiometry and structure was performed by use of thicknessdependent XAS and a representative LEED-IV study. The results of this study indicate that the intermetallic films exhibit hexagonal CaCu5 structure over the entire range of thicknesses that were studied. The terminating layer consists purely of Pt with one additional Pt atom per unit cell compared to the bulk structure.
The line shape of Ce M4,5 spectra was analyzed with the help of full multiplet calculations.
Experimentally, characteristic variations of the line shape were observed with increasing f0 -> f1 contribution. The calculations show that these variations are not due to an admixture of j = 7/2 character to the ground state, as often stated in the literature. As alternatives, this observation can be explained by either considering an additional contribution to the spectrum or by assumption of an asymmetric lifetime profile.
The model that was developed for the inverse paramagnetic susceptibility contains the hexagonal crystal field, magnetic coupling of the impurity moments in a mean field scheme and Kondo screening. The latter is included phenomenologically by screening factors for the effective moment. Assumption of doublet-specific screening factors, which means that the degree of Kondo interaction depends on the mj character of the 4f sublevels, allows satisfactory reproduction of the experimental data. / Das Ziel der vorliegenden Arbeit ist die Untersuchung der Frage, welche neuen Einsichten in Kondo- und schwere Fermionen-Materialien mittels Röntgenzirkulardichroismus-Experimenten (XMCD) gewonnen werden können. Die Methode XMCD, die sich aus der Röntgenabsorption (XAS) ableitet, detektiert die magnetischen Polarisation gezielt für die verschiedenen Elemente in einem Material und für deren Atomorbitale. Insbesondere an den Ce M4,5 Absorptionskanten bietet die Methode Zugang zum lokalisierten 4f Niveau und damit zum magnetische Störstellenmoment in Ce-Verbindungen, welches eine Voraussetzung für Kondo-Physik ist. Ce M4,5 XMCD ist daher bestens geeignet, um lokalen Magnetismus in Gegenwart von Wechselwirkung zwischen Störstellen- und Leitungselektronen zu studieren.
Als Modellmaterial wurde für diese Arbeit CePt5/Pt(111), eine oberflächennahe intermetallische Verbindung, gewählt. Die Präparation dieses Dünnfilmmaterials mithilfe von Molekularstrahlepitaxie kann bestens kontrolliert werden. Die Ausnutzung des einkristallinen Pt(111) Substrats liefert kristallin geordnete Proben. Der Oberflächencharakter der Filme ist gut auf die Informationstiefe von Absorptionsspektroskopie im weichen Röntgenbereich abgestimmt, wenn im Modus totaler Elektronenausbeute gemessen wird.
Die XAS- und XMCD-Experimente unter Variation von Temperatur, Einfallswinkel, Probendicke
und Magnetfeld lassen die Gegenwart von vier relevanten Energieskalen für das magnetische
Verhalten erkennen:
1. Das 4f Niveau in CePt5/Pt(111) ist einer deutlichen Kristallfeldaufspaltung unterworfen, welche eine Neuordnung der sechs j = 5/2 Unterniveaus bewirkt. Dabei erhält die hexagonale Symmetrie der Kristallstruktur mj als gute Quantenzahl. Basierend auf Messungen der paramagnetischen Suszeptibilität mit XMCD und des Lineardichroismus in XAS wird ein Niveauschema vorgeschlagen, das aus beinahe entarteten |1/2> und |3/2 > Dubletts besteht, das |5/2> Dublett folgt bei einer höheren Energie von E5/2 = 15 ... 25 meV.
2. Einzelstörstellen-Kondowechselwirkung bewirkt eine signifikante Kopplung der magnetischen Momente von Störstellen und Leitungszuständen. Dies ist anhand der f0 -> f1-Anteile in Ce M4,5 XAS ersichtlich, deren Stärke über die Probendicke kontrolliert werden kann. In Übereinstimmung damit werden reduzierte effektive 4f-Momente mit XMCD beobachtet.
3. Ruderman-Kittel-Kasuya-Yosida (RKKY) Wechselwirkung erzeugt ferromagnetische Kopplung auf dem Störstellengitter, was zu einer positiven Curie-Weiss-Temperatur in der temperaturabhängigen inversen Suszeptibilität führt.
4. Die inverse Suszeptibilität erlaubt Rückschlüsse auf einen Übergang in den kohärenten schwere-Fermionen-Zustand bei T ~ 20 K. Ein ferromagnetischer Zustand wurde nicht beobachtet. Die Magnetfeldabhängigkeit des magnetischen Moments in diesem Bereich kann im Sinne eines metamagnetischen Übergangs interpretiert werden. Dies eröffnet die Möglichkeit, grundlegende Charakteristika der renormalisierten Bandstruktur eines schweren Fermionen-Systems mittels XMCD zu erforschen.
Die Entschlüsselung dieser unterschiedlichen Beiträge zum 4f-Magnetismus erforderte nicht nur umfangreiche Ce M4,5 XAS und XMCD Experimente, sondern auch eine gründliche strukturelle Charakterisierung des Materials, eine grundlegende Studie der spektralen Linienform in Abhängigkeit vom Grad der 4f-Hybridisierung sowie die Entwicklung eines Modells für die paramagnetische Suszeptibilität.
Die Abmessungen der Einheitszelle sowie die Filmmorphologie wurden mit niederenergetischer Elektronenbeugung (LEED) und Rastertransmissionselektronenmikroskopie (STEM) analysiert, wobei sich zeigte, dass die intermetallische Verbindung wohldefinierte Filme auf dem Substrat bildet. Daher wird die Filmdicke t, gemessen in Einheitszellen (u.c.), als Hauptmerkmal zur Charakterisierung der Proben eingeführt.
Mittels systematische LEED-Messungen im Dickenbereich t ~ 1 ... 15 u.c. wurden sechs verschiedene Phasen identifiziert, welche auf eine gemeinsame Kristallstruktur mit unterschiedlichem Drehwinkel zum Substrat und unterschiedlichen Gitterkonstanten zurückgeführt werden. Bei einer Dicke von t ~ 3 u.c. konnte eine genaue Bestimmung der Oberflächengitterkonstante durchgeführt werden, indem zusätzliche Überstrukturreflexe als Ergebnis von kombinierter Streuung an Substrat- und Filmgitter gedeutet wurden. Die Dickenabhängigkeit der Gitterkonstante kann als abnehmende Gitterverspannung erklärt werden.
Die angenommene Stöchiometrie CePt5 und die zugehörige Kristallstruktur konnten mithilfe von dickenabhängigen XAS-Experimenten und einer repräsentativen LEED-IV Studie bestätigt werden. Die Ergebnisse der Letzteren weisen darauf hin dass die Filme im gesamten untersuchten Dickenbereich die CaCu5-Struktur aufweisen. Die Oberflächenabschlusslage besteht rein aus Pt und besitzt im Vergleich zum Volumengitter ein zusätzliches Pt-Atom pro Einheitszelle.
Die Linienform von Ce M4,5 Spektren wurde mittels Gesamtmultiplett-Rechnungen analysiert. Die experimentellen Daten zeigen charakteristische Variationen der Linienform in Abhängigkeit des f0 -> f1-Gewichts. Mit Rechnungen konnte gezeigt werden, dass diese Variationen nicht durch eine signifikante Beimischung von j = 7/2-Charakter zum Grundzustand erklärt werden können, was in der Literatur häufig angeführt wird. Zwei Alternativen wurden als mögliche Erklärungen für die Beobachtungen entwickelt: Die Linienformänderungen können entweder durch einen zusätzlichen Beitrag zum Spektrum oder durch asymmetrische Linienprofile erzeugt werden.
Das Modell für die inverse paramagnetische Suszeptibilität beinhaltet das hexagonale Kristallfeld, magnetische Kopplung auf dem Strörstellengitter in Molekularfeldnäherung und Kondoabschirmung. Letztere ist phänomenologisch durch Abschirmfaktoren für das effektive Moment berücksichtigt. Eine zufriedenstellende Widergabe der experimentellen Daten konnte durch die Einführung von Dublett-spezifischen Abschirmfaktoren erreicht werden, was darauf hindeutet, dass das Ausmaß der Kondowechselwirkung vom mj-Charakter der 4f Unterniveaus abhängt.
|
13 |
Quantum magnetism in three dimensions: Exploring phase diagrams and real materials using Functional Renormalization / Quantenmagnetismus in drei Dimensionen: Erforschung von Phasendigrammen und realen Materialien mittels funktionaler RenormierungMüller, Tobias Leo Christian January 2023 (has links) (PDF)
Magnetism is a phenomenon ubiquitously found in everyday life. Yet, together with superconductivity and superfluidity, it is among the few macroscopically realized quantum states. Although well-understood on a quasi-classical level, its microscopic description is still far from being solved. The interplay of strong interactions present in magnetic condensed-matter systems and the non-trivial commutator structure governing the underlying spin algebra prevents most conventional approaches in solid-state theory to be applied.
On the other hand, the quantum limit of magnetic systems is fertile land for the development of exotic phases of matter called spin-liquids. In these states, quantum fluctuations inhibit the formation of magnetic long-range order down to the lowest temperatures. From a theoretical point of view, spin-liquids open up the possibility to study their exotic properties, such as fractionalized excitations and emergent gauge fields. However, despite huge theoretical and experimental efforts, no material realizing spin-liquid properties has been unambiguously identified with a three-dimensional crystal structure. The search for such a realization is hindered by the inherent difficulty even for model calculations. As most numerical techniques are not applicable due to the interaction structure and dimensionality of these systems, a methodological gap has to be filled.
In this thesis, to fill this void, we employ the pseudo-fermion functional renormalization group (PFFRG), which provides a scheme to investigate ground state properties of quantum magnetic systems even in three spatial dimensions.
We report the status quo of this established method and extend it by alleviating some of its inherent approximations. To this end, we develop a multi-loop formulation of PFFRG, including hitherto neglected terms in the underlying flow equations consistently, rendering the outcome equivalent to a parquet approximation. As a necessary prerequisite, we also significantly improve the numerical accuracy of our implementation of the method by switching to a formulation respecting the asymptotic behavior of the vertex functions as well as employing state-of-the-art numerical algorithms tailored towards PFFRG. The resulting codebase was made publicly accessible in the open-source code PFFRGSolver.jl.
We subsequently apply the technique to both model systems and real materials. Augmented by a classical analysis of the respective models, we scan the phase diagram of the three-dimensional body-centered cubic lattice up to third-nearest neighbor coupling and the Pyrochlore lattice up to second-nearest neighbor. In both systems, we uncover in addition to the classically ordered phases, an extended parameter regime, where a quantum paramagnetic phase appears, giving rise to the possibility of a quantum spin liquid.
Additionally, we also use the nearest-neighbor antiferromagnet on the Pyrochlore lattice as well as the simple cubic lattice with first- and third-nearest neighbor couplings as a testbed for multi-loop PFFRG, demonstrating, that the inclusion of higher loop orders has quantitative effects in paramagnetic regimes and that the onset of order can be signaled by a lack of loop convergence.
Turning towards material realizations, we investigate the diamond lattice compound MnSc\(_2\)S\(_4\), explaining on grounds of ab initio couplings the emergence of a spiral spin liquid at low temperatures, but above the ordering transition.
In the Pyrochlore compound Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\), which is known to not magnetically order down to lowest temperatures, we predict a spin liquid state displaying a characteristic gearwheel pattern in the spin structure factor. / Das Phänomen des Magnetismus ist allgegenwärtig im täglichen Leben und doch ist es, zusammen mit der Supraleitung und -fluidität, eines der wenigen makroskopisch realisierten Quantenphänomene. Auf quasi-klassischer Ebene ist Magnetismus gut verstanden, doch seine mikroskopische Beschreibung ist noch weit davon entfernt, als gelöst bezeichnet zu werden. Das Zusammenspiel von starken Wechselwirkungen, die in magnetischer kondensierte Materie am Werke sind, und der nicht-trivialen Kommutatorstruktur, die die zugrunde liegende Spin-Algebra bestimmt, verhindert, dass konventionelle Herangehensweisen der Festkörpertheorie angewendet werden können.
Andererseits ist der quantenmechanische Grenzfall magnetischer Systeme ein fruchtbarer Boden für die Herausbildung exotischer Phasen der Materie, die als Spin-Flüssigkeiten bezeichnet werden. In diesen Zuständen verhindern Quantenfluktuationen die Ausbildung einer langreichweitigen magnetischen Ordnung auch bei niedrigsten Temperaturen. Aus theoretischer Sicht eröffnen Spinflüssigkeiten die Möglichkeit, exotische Eigenschaften, wie fraktionalisierte Anregungen und emergente Eichfelder, zu studieren. Großen theoretischen und experimentellen Anstrengungen zum Trotz wurde jedoch bisher kein Material mit dreidimensionaler Kristallstruktur identifiziert, das unzweifelhaft die Eigenschaften von Spinflüssigkeiten aufweist. Die Suche nach einer solchen Realisierung wird von der Komplexität behindert, die sogar einfachen Modellrechnungen inhärent ist. Da die meisten numerischen Verfahren aufgrund der Wechselwirkungsstruktur und Dimensionalität der Systeme nicht anwendbar sind, bleibt eine methodische Lücke bestehen.
In dieser Arbeit benutzen wir die pseudo-fermionische funktionale Renormierungsgruppe (PFFRG), um diese zu füllen. Mit ihr realisieren wir ein Verfahren, um die Grundzustandseigenschaften von quantenmagnetischen Systemen in drei Raumdimensionen zu studieren,
Wir fassen den Status quo dieser bereits etablierten Methode zusammen und erweitern sie, indem wir einige ihrer inhärenten Näherungen abmildern. Dafür entwickeln wir eine Mehrschleifen-Formulierung der PFFRG, die bisher vernachlässigte Terme der zugrunde liegenden Flussgleichungen konsistent berücksichtigt und damit die PFFRG äquivalent zur Parquet-Näherung macht. Um dies zu erreichen, verbessern wir außerdem die numerische Genauigkeit der Methode signifikant, indem wir einerseits zu einer Formulierung wechseln, welche die Asymptotiken der Vertex-Funktionen explizit berücksichtigt und andererseits moderne Algorithmen, maßgeschneidert für die PFFRG, nutzt. Der daraus resultierenden Computercode wurde im Open-Source Paket PFFRGSolver.jl öffentlich zugänglich gemacht.
Im Anschluss wenden wir die Methode sowohl auf Modellsysteme, als auch echte Materialien an. Vor dem Hintergrund klassischer Analysen scannen wir die Phasendiagramme des dreidimensionalen raumzentrierten kubischen und des Pyrochlorgitters, wobei wir Wechselwirkungen bis zu drittnächsten beziehungsweise übernächsten Nachbarn berücksichtigen. In beiden Systemen finden wir, neben den klassisch geordneten Phasen, einen ausgedehnten Parameterraum, in dem eine quantenparamagnetische Phase im Phasendiagramm erscheint, welche die Möglichkeit einer Quantenspinflüssigkeitsphase eröffnet.
Wir nutzen außerdem den Nächstnachbarantiferromagnet auf dem Pyrochlorgitter und das kubische Gitter mit Nächst- und Drittnächstnachbarwechselwirkung als einen Prüfstand für die Vielschleifen-PFFRG, indem wir zeigen, dass die Berücksichtigung höherer Schleifenordnungen quantitative Auswirkungen in den paramagnetischen Regimen hat und außerdem magnetische Ordnung durch ein Fehlen der Schleifenkonvergenz signalisiert werden kann.
Abschließend wenden wir uns den echten Materialien zu und untersuchen MnSc\(_2\)S\(_4\), welches eine Diamantgitterstruktur aufweist. Basierend auf ab intio Kopplungsstärken erklären wir das Auftreten einer Spiralspinflüssigkeit bei niedrigen Temperaturen, aber oberhalb des Ordnungsübergangs.
Zudem sagen wir im Pyrochlormaterial Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\), welches in Experimenten auch bei niedrigsten Temperaturen nicht magnetisch ordnet, einen Spinflüssigkeitszustand voraus, der sich durch ein charakteristisches Zahnradmuster im Spinstrukturfaktor auszeichnet.
|
14 |
Lattice dynamics and spin-phonon coupling in the multiferroic oxides Eu(1-x)Ho(x)MnO3 and ACrO2 / Gitterdynamik und Spin-Phonon Kopplung in den multiferroischen Oxiden Eu(1-x)Ho(x)MnO3 und ACrO2Elsässer, Sebastian January 2019 (has links) (PDF)
The focus of this thesis is the investigation of the lattice dynamics and the coupling of magnetism and phonons in two different multiferroic model systems. The first system, which constitutes the main part in this work is the system of multiferroic manganites RMnO$_{3}$, in particular Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ with $0 \le x \le 0.5$. Its cycloidal spin arrangement leads to the emergence of the ferroelectric polarization via the inverse Dzyaloshinskii-Moriya interaction. This system is special among RMnO$_{3}$ as with increasing Ho content $x$, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ does not only become multiferroic, but due to the exchange interaction with the magnetic Ho-ion, the spin cycloid (and with it the electric polarization) is also flipped for higher Ho contents. This makes it one of the first compounds, where the cycloidal reorientation happens spontaneously, rather than with the application of external fields.
On the other hand, there is the delafossite ACrO$_{2}$ system. Here, due to symmetry reasons, the spin-spiral pattern can not induce the polarization according to the inverse Dzyaloshinskii-Moriya interaction mechanism. Instead, it is thought that another way of magnetoelectric coupling is involved, which affects the charge distribution in the $d-p$ hybridized orbitals of the bonds.
The lattice vibrations as well as the quasi-particle of the multiferroic phase, the electromagnon, are studied by Raman spectroscopy. Lattice vibrations like the B$_{3g}$(1) mode, which involves vibrations of the Mn-O-Mn bonds modulate the exchange interaction and serve as a powerful tool for the investigation of magnetic correlations effects with high frequency accuracy. Raman spectroscopy acts as a local probe as even local magnetic correlations directly affect the phonon vibration frequency, revealing coupling effects onto the lattice dynamics even in the absence of global magnetic order. By varying the temperature, the coupling is investigated and unveils a renormalization of the phonon frequency as the magnetic order develops. For Eu$_{1-x}$Ho$_{x}$MnO$_{3}$, the analysis of this spin-induced phonon frequency renormalization enables the quantitative determination of the in-plane spin-phonon coupling strengths. This formalism, introduced by Granado et al., is extended here to evaluate the out-of-plane coupling strengths, which is enabled by the identification of a previously elusive feature as a vibrational mode. The complete picture is obtained by studying the lattice- and electromagnon dynamics in the magnetic field.
Further emphasis is put towards the development of the cycloidal spin structure and correlations with temperature. A new model of describing the temperature-dependent behavior of said spin correlations is proposed and can consistently explain ordering phenomena which were until now unaddressed. The results are underscored with Monte Carlo based simulations of the spin dynamics with varying temperature.
Furthermore, a novel effect of a tentative violation of the Raman selection rules in Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ was discovered. While the phonon modes can be separated and identified by their symmetry by choosing appropriate polarization configurations, in a very narrow temperature range, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ shows an increase of phonon intensities in polarization configurations where they should be forbidden. This is interpreted as a sign of local disorder, caused by 90° domain walls and could be explained within the model framework.
This course of action is followed with the material system of delafossites ACrO$_{2}$. Being a relatively new class of multiferroic materials, the investigations on ACrO$_{2}$ are also of characterizing nature. For this, shell model calculations are performed as a reference to compare the vibrational frequencies obtained by the Raman experiments to. A renormalization of the vibrational frequencies is observed in this system as well and systematically analyzed across the sample series of \textit{A}=Cu, Pd and Ag. Eventually, the effect of applying an external magnetic field is studied. A particularly interesting feature specific for CuCrO$_{2}$ is a satellite peak which appears at lower temperatures. It is presumably related to a deformation of the lattice and therefore going to be discussed in further detail. / Mit der Entdeckung des Riesenmagnetoelektischen Effekts (Giant Magnetoelectric Effect) in TbMnO$_{3}$ durch Kimura et al., im Jahre 2003, erlebte das Forschungsgebiet der multiferroischen Seltenerdmanganate RMnO$_{3}$ einen neuen Aufschwung durch die neuen Möglichkeiten, die sich durch diese Entdeckung offenbarten. \cite{Kimura2003} Der Effekt besteht darin, dass sich durch ein bestimmtes Muster der magnetischen Ordnung eine direkt an dieses Muster gekoppelte ferroelektrische Polarisation ergibt. Die Kopplung von magnetischer und ferroelektrischer Ordnung bewirkt, dass stets beide Parameter simultan beeinflusst werden, wenn ein externes elektrisches oder magnetisches Feld angelegt wird: Wird das Magnetisierungsmuster durch ein externes Magnetfeld beeinflusst, wirkt sich dies direkt auf die elektrische Polarisation aus. Umgekehrt, wenn die Polarisation durch ein elektrisches Feld beeinflusst wird, ist die magnetische Ordnung entsprechend betroffen. Dies erlaubt die vollständige Umordnung der elektrischen Polarisation durch ein magnetisches Feld oder der magnetischen Ordnung durch ein elektrisches Feld. Materialien, die mindestens zwei ferroische Eigenschaften, in diesem Fall eine spontane Magnetisierung und spontane elektrische Polarisation, in der gleichen Phase aufweisen, werden als Multiferroika bezeichnet. Diese allgemeine Klassifikation ist noch zu unterteilen in Typ-I und Typ-II Multiferroika. Zu Typ-I Multiferroika zählen Systeme wie BiFeO$_{3}$, bei denen die ferroelektrische und die magnetische Ordnung weitestgehend unabhängig voneinander und daher bei verschiedenen Temperaturen einsetzen ($T_{C} = 1100$~K für die ferroelektrische, $T_{N}=$ 643~K für die magnetische Ordnung \cite{Khomskii2009}). Dementsprechend sind Magnetisierung und Polarisation in diesem System kaum miteinander gekoppelt. Demgegenüber stehen die hier betrachteten Systeme der orthorhombischen RMnO$_{3}$ Seltenerdmanganate und der ACrO$_{2}$ Delafossite, die der Gruppe der Typ-II Multiferroika angehören. Hier ist die magnetische Ordnung die direkte Ursache der ferroelektrischen Polarisation, d.h. beide Phänomene treten simultan ab der gleichen Ordnungstemperatur auf.
Das Ziel von Forschungsbemühungen auf diesem Gebiet der Multiferroika ist zum Einen, neue Materialien zu finden, die solcherlei Kopplungseffekte zeigen. Zum Anderen gilt es, den Effekt besser nutzbar zu machen, sei es durch eine größere Kopplungsstärke oder durch höhere mögliche Ordnungstemperaturen.
Um dies zu erreichen ist es von essentieller Bedeutung die zu Grunde liegenden mikroskopischen Mechanismen zu ergründen, diese zu studieren und schließlich ein besseres Verständnis der multiferroischen Kopplungsmechanismen zu erlangen.
In dieser Dissertation liegt der Fokus auf der systematischen Untersuchung von Kopplungseffekten zwischen der magnetischen Ordnung und der Dynamik des Kristallgitters mittels Ramanspektroskopie. Insbesondere werden Renormalisierungseffekte der Frequenzen der Gitterschwingungen untersucht, die sich durch die Ausbildung der magnetischen Ordnung und Kopplung derselben an die Gitterdynamik ergeben, die sogenannte Spin-Phonon Kopplung (SPC). Zu diesem Zweck werden die spektroskopischen Experimente mit Augenmerk auf die Polarisations-, Temperatur- und Magnetfeldabhängigkeit der ramanaktiven Moden durchgeführt. Dabei werden Serien von Proben zweier Materialsysteme untersucht, bei denen sich die multiferroische Phase durch unterschiedliche Mechanismen ausbildet: Zum Einen das System Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ ( $0 \le x \le 0.5$), welches zu den orthorhombischen RMnO$_{3}$ Systemen zählt und sowohl multiferroische als auch nicht-multiferroische Proben umfasst. Hierbei beruht der magnetoelektrische Effekt auf der inversen Dzyaloshinskii-Moriya Wechselwirkung. Im Vergleich dazu wird außerdem das System der ACrO$_{2}$ Delafossite mit A= Cu, Ag, Pd untersucht. Dieses System ist im Kontext der Multiferroika noch als relativ neu anzusehen. Hier kann die inverse Dzyaloshinskii-Moriya Wechselwirkung aus Symmetriegründen ausgeschlossen werden, sodass ein neuartiger magnetoelektrischer Kopplungsmechanismus vorliegt. Durch die Spin-Bahn Kopplung verschiebt sich die Gewichtung der Ladungsverteilung der Bindungen und führt dadurch zur Entstehung der elektrischen Polarisation.
Im Vergleich der beiden Systeme, werden die Unterschiede der Spin-Phonon Kopplungsstärken und der Einfluss von lokalen Ordnungseffekten diskutiert.
|
15 |
Spinstrukturen in Manganoberflächen auf bcc- und fcc-Einkristallen aus 5d-Elementen, untersucht mittels spinpolarisierter Rastertunnelmikroskopie: Mn-W(001) und MnO\(_x\)-Ir(001) / Spin structures in manganese surfaces on bcc and fcc single-crystals of 5d elements studied by spinpolarised scanning tunneling microscopy: Mn-W(001) and MnO\(_x\)-Ir(001)Weber, Paula Martika January 2024 (has links) (PDF)
Die Entstehung kollinearer und nicht-kollinearer Spinstrukturen wird auf verschiedene magnetische Wechselwirkungen zurückgeführt. Für Anwendungen in der Medizin und in der Datenspeicherung ist es notwendig zu verstehen, unter welchen Parametern Frustrationen auftreten, um diese entweder zu vermeiden oder zu nutzen. In dieser Arbeit werden kollineare und nicht-kollineare Spinstrukturen auf zwei verschiedenen Materialsystemen untersucht. Das erste Materialsystem besteht aus drei atomaren Lagen Mangan auf einer (001) Oberfläche eines Wolfram-Einkristalls und das zweite Materialsystem enthält Mangan, welches verbunden mit Sauerstoff kettenförmig auf einer (001) Oberfläche eines Iridium-Einkristalls vorliegt.
Spinpolarisierte Rastertunnelmikroskopie (SP-RTM)-Messungen und -Simulationen der
dreilagigen, pseudomorphen Manganoberfläche ergeben eine nicht-kollineare Spinstruktur. Dichtefunktionaltheorie (DFT)-Berechnungen legen eine kollineare ↑↓↓-
Spinkonstellation nahe. Unter Berücksichtigung der chiralen biquadratischen Paarwechselwirkung befinden sich konische Spinspiralen mit kleinem Öffnungswinkel nah an dem energetisch niedrigsten Zustand. Spinaufgelöste DFT-Berechnungen sind abhängig von der genäherten, geometrischen Relaxation der atomaren Struktur. Kombinierte SP-RTM-Methoden weisen auf einem dreilagigen Materialsystem Spinspiralen nach und zufolge der DFT ist der kollineare bzw. nicht-kollineare Zustand des Systems durch den Abstand seiner Lagen bedingt.
SP-RTM-Messungen auf den Manganoxidketten weisen je nach Präparation eine kollineare antiferromagnetische (AFM) oder eine nicht-kollineare Spinstruktur nach. Zudem wird präsentiert, dass sich diese Spinstrukturen durch zwei verschiedene Sauerstoffdrücke und die Zufuhr von Wärme während der Präparation ineinander umschalten lassen. Durch niederenergetische Elektronenbeugung mit variabler Spannung werden zwei atomare Strukturen bestimmt, welche sich durch ihren Oxidationsgrad unterscheiden. Die nicht-kollineare Spinstruktur ist bereits in der Fachliteratur als 120° chirale Spinspirale, verursacht durch die Dzyaloshinskii-Moriya-verstärkte Ruderman-Kittel-Kasuya-Yosida (RKKY)-Wechselwirkung, bekannt. Nach aktuellen, kollinearen DFT-Berechnungen ist die kollineare Spinstruktur als AFM entlang der Ketten und als ferromagnetische Kopplung zwischen den Ketten ermittelt. Aufgrund des Nachweises eines höheren Oxidationsgrades wird eine stärkere RKKY-Austauschwechselwirkung auf der Basis der Heisenberg-Austauschwechselwirkung vermutet. Hier korreliert die Entstehung kollinearer oder nicht-kollinearer Spinstrukturen mit dem Oxidationsgrad. / The formation of collinear and non-collinear spin structures is attributed to various
magnetic interactions. For applications in medicine and data storage, it is necessary to understand under which parameters frustrations form in order to either avoid or use them. In this work, collinear and non-collinear spin structures on two different material
systems are investigated. The first material system is composed of three atomic layers of manganese on a (001) surface of a tungsten single crystal and the second material system contains manganese combined with oxygen in a chain on a (001) surface of an iridium single crystal.
Spin polarised scanning tunnelling microscopy (SP-STM) measurements and simulations
of the three-layer pseudomorphic surface of manganese reveal a non-collinear spin structure. Density functional theory (DFT) calculations suggest a collinear ↑↓↓ spin
constellation. Considering the chiral biquadratic pair interaction, conical spin spirals with a small opening angle are close to the energetically lowest state. Spin-resolved DFT calculations show a dependence on the approximated geometric relaxation of the atomic structure. Combined SP-RTM methods identify spin spirals on a three-layer material system and, according to DFT, the collinear or non-collinear state of the system depends on the spacing of its layers.
Depending on the preparation, a collinear antiferromagnetic (AFM) or a non-collinear
spin structure is revealed on the manganese oxide chains using SP-STM. Furthermore,
it is presented that these spin structures can be switched into each other during the preparation by two different oxygen pressures and the supply of heat. Using intensity-voltage dependent low energy electron diffraction, two atomic structures are determined,
which differ in their degree of oxidation. The non-collinear spin structure is already known in the literature as a 120° chiral spin spiral caused by the Dzyaloshinskii-Moriya-enhanced
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. According to present collinear DFT calculations, the collinear spin structure is calculated as AFM along the chains and ferromagnetic coupling between the chains. Based on the evidence of a higher degree of oxidation, a stronger RKKY interaction based on the Heisenberg exchange interaction is suspected. In this case, the formation of collinear or non-collinear
spin structures correlates with the degree of oxidation.
|
16 |
High Sensitivity Nuclear Magnetic Resonance at Extreme PressuresMeier, Thomas 10 May 2016 (has links)
Moderne Hochdruckforschung entwickelt sich rasant zu einer der vielfältigsten und
überraschensten Disziplinen der Festkörperphysik. Unter Benutzung von Diamantstempelzellen
können Drücke erreicht werden, die den Bedingungen im Inneren unserer Erde
ähneln.
Eine Anwendung von Kernmagnetischen Resonanzexperimenten (NMR) in Diamantstempelzellen
galt jedoch für lange Zeit als unmöglich. In der vorliegenden Arbeit
wird ein neuartiger Ansatz weiterentwickelt, der Radiofrequenz-(RF)-Mikrospulen benutzt,
die direkt zwischen den Diamantstempeln platziert werden, und somit zu einer
signifikanten Sensitivitätssteigerung führen.
Es ist gelungen, Hochdruckzellen zu entwickeln, die für die speziellen Anforderungen
der NMR zugeschnitten sind. Des Weiteren konnte eine nicht metallische, nicht
magnetische Dichtung entwickelt werden, die zudem zu einer signfifikanten Stabilisierung
des Probenvolumens führt. Eine breit angelegte Analyse der Leistungsfähigkeit dieser
neuartigen NMR-Hochdruckprobenköpfe zeigt deren Leistungsfähigkeit mit sehr hohen
Empfifindlichkeiten sowie einer exzellenten RF Anregung und Zeitauflösung.
Drei Anwendungsbeispiele, die das Potenzial dieses Ansatzes in dieser Arbeit
unterstreichen, werden vorgestellt. Bei Drücken von bis zu 4 GPa werden die elektronischen
und dynamischen Eigenschaften von elementarem Gallium untersucht. Unter
höheren Drücken ist es gelungen, einen druckinduzierten Isolator-Metall-Übergang in
dem ternären Chalkogenid AgInTe2 zu beobachten. Schlussendlich ist es gelungen, die
strukturellen und elektronischen Eigenschaften von Rubin bei Drücken von bis zu 30.5
GPa zu untersuchen, was einer Verdreifachung des bisher zugänglichen experimentellen
Druckbereiches entspricht und die NMR für moderne Hochdruckanwendungen möglich
macht.
|
17 |
Experimental characterization of four-magnon scattering processes in ferromagnetic conduitsHula, Tobias 07 August 2024 (has links)
Spin waves and their quanta, magnons, are the wave-like excitations of a magnetically ordered medium. The technological prospect of utilizing them as low-loss information carriers has driven various research efforts in the field of magnonics. Spin waves arise further interest due to their inherently strong nonlinear behavior which results from their interaction with the surrounding magnetic texture. Hence, magnons are subject to a variety of nonlinear effects and allow for extensive studies of such phenomena. In this work, the propagating spin-waves in micro structured Co25Fe75 conduits have been investigated by means of micro focused Brillouin light scattering spectroscopy. Due to the low intrinsic damping of this metallic compound, spin-wave decay lengths in the order of 20 μm can be observed which have not been reported elsewhere for other ferromagnet thin film materials. Furthermore, nonlinear four-magnon scattering processes can be observed when increasing the spin-wave amplitudes applying a sufficiently strong microwave excitation. This phenomenon introduces additional losses for propagating waves as it diverts energy into the parametric generation of secondary states. It is shown that the reduction of the spin-wave decay lengths reaches up to 50 %. In the second part, a novel approach for the utilization of four-magnon scattering is presented. It is shown that an additional driving signal at a secondary driving frequency can steer the nonlinear process in such a way, that a set of secondary parametric states with a well-defined frequency spacing is populated. This process is referred to as stimulated four-magnon scattering, as it enhances specific nonlinear scattering events. As a result, frequency combs with multiple equidistant modes are observed, which exhibit frequency spacings of 400 MHz up to 2 GHz. These complex spin-wave spectra can actively be tuned in various ways using external parameters such as the driving signals. These results advance the understanding of nonlinear spin waves in general and expands the range of possible technological applications of magnons.:List of Figures
List of Tables
List of Abbreviations and Acronyms
List of Symbols
1 Introduction
2 Theoretical background
2.1 Interactions in microstructured thin film ferromagnets
2.1.1 Exchange interaction
2.1.2 Dipolar interaction and demagnetizing fields
2.2 Magnetization dynamics in ferromagnetic thin films
2.2.1 The Landau-Lifshitz and Gilbert equation
2.2.2 Spin waves
2.3 Nonlinear phenomena
2.3.1 Four-magnon scattering
3 Materials and Methods
3.1 Materials and sample fabrication
3.1.1 The low damping alloy Co25Fe75
3.1.2 Patterning: electron beam and optical lithography
3.1.3 Microwave antenna structures
3.2 Brillouin light scattering
3.2.1 Magnon-photon interaction
3.2.2 The Tandem Fabry Pérot interferometer
3.2.3 BLS microscopy (μBLS)
3.2.4 Phase-resolved BLS (PR-μBLS)
3.2.5 Temporal resolution (TR-μBLS)
3.3 Micromagnetic simulations in MuMax3
3.3.1 Mesh and material parameters
3.3.2 Simulation of magnetization dynamics
4 Results
4.1 Magnon transport in Co25Fe75 micro-conduits
4.1.1 Low external fields and magnetic groundstate
4.1.2 Magnon transport at low driving powers
4.1.3 Impact of nonlinear four-magnon scattering on magnon transport
4.2 Magnon frequency combs
4.2.1 Introduction on stimulated four-magnon scattering
4.2.2 Experimental realization
4.2.3 Amplitude-dependent observations
4.2.4 Tunability of spin-wave frequency combs
4.2.5 Variations of the excitation geometry
5 Summary and outlook
Own publications
Bibliography 109 Acknowledgement
A Appendix
A.1 Fabrication of Co25Fe75 microstructures
A.2 Atomic Force Microscopy measurement on a 5 μm wide conduit
A.3 BLS measurement of spin-wave decay lengths in a 5 μm wide conduit
A.4 Calculations: Temporal profile of stimulated four-magnon scattering
A.5 Power dependent frequency comb formation measured at positions II & III
A.6 Averaged frequency comb mode numbers at reversed magnetic field polarity
|
18 |
Magnetization Reversal Processes of Nanostructure ArraysKrone, Philipp 05 September 2011 (has links) (PDF)
In the thesis at hand, different concepts of magnetic recording were investigated both from an experimental and theoretical point of view. On the one hand, micromagnetic simulations of bit patterned media were performed examining the influence of magnetic and geometrical parameters on the magnetization reversal mechanism of the bit array. In this regard, the recording concept called exchange coupled composite (ECC) media was applied in combination with bit patterned media (BPM). It was demonstrated that ECC/BPM is superior in terms of narrowing the SFD which is vital for the implementation of BPM as a recording scheme in magnetic data storage deviced. Moreover, the stability of the magnetic state was calculated for single nanomagnets using the nudged elastic band algorithm. It was found out that the magnetic and geometrical properties have a severe influence on both, the energy barrier for magnetization reversal and the magnetization reversal process of the single nanomagnets. On the other hand, experimental studies of granular CoCrPt:SiO2 films deposited on self-assembled arrays of SiO2 nanoparticles with a size from 10 nm to 330 nm have been carried out, showing a distinct size-dependence of the coercive field and remanent magnetization with changing nanoparticle size. Moreover, these films have been irradiated with Co+ ions with different fluences, resulting in a change of the magnetic properties of the films due to both a change of the intergranular exchange coupling of the film and a degredation of the magnetic layers at higher irradiation fluences.
|
19 |
Vernetzungsgrad unter der Lupe : Zerstörungsfreie Prüfung mit unilateraler NMR / Application of single-sided NMR for the non-destructive testing of the degree of cross-linking of adhesives and cross-linked plastic partsHalmen, Norbert January 2021 (has links) (PDF)
Der Vernetzungsgrad von Klebstoffen und strahlenvernetzter Kunststoffformteile beeinflusst zahlreiche Materialeigenschaften und ist von essenzieller Bedeutung für die Funktionalität von Klebeverbindungen und die Beständigkeit medizinischer Implantate.
Die zerstörungsfreie Prüfung dieser Qualitätsgröße ist von großem industriellem Interesse, aber noch nicht Stand der Technik. Die unilaterale Kernspinresonanz (uNMR) ist ein vielversprechendes Verfahren zur Lösung dieser Problematik.
In diesem Buch wird die nicht-invasive Vernetzungsgradprüfung von strahlenvernetztem UHMWPE und verschiedenen Klebstoffen mittels uNMR demonstriert. Auf Basis der guten Korrelation mit praxisrelevanten Referenzmethoden (thermisch, rheologisch, dielektrisch) wurden Vergleichsmodelle entwickelt, welche Anwendern von Klebstoffen und vernetzten Kunststoffformteilen den Einsatz der uNMR zur zerstörungsfreien Qualitätssicherung ermöglichen. / The degree of curing is a central quality feature of adhesives, which influences numerous material properties and is therefore of crucial importance for adhesive bonds. The same applies to the degree of cross-linking of radiation-cross-linked plastic components as used in the field of medical implants. The non-destructive testing of this property is still of great interest, both from the industrial and research perspective, but not possible yet.
With unilateral or single-sided nuclear magnetic resonance (uNMR) a method that has the potential to solve this problem has been available for several years. However, this method has not been implemented on an industrial scale up to now. Reasons for this may be the lack of application-specific knowledge or the reluctance to use an allegedly complicated technology.
Within the scope of this work the application of this measuring technique for non-destructive testing of the degree of cross-linking and curing on different material systems was evaluated. Besides radiation-cross-linked polyethylene with ultra-high molecular weight (UHMWPE-Xc) a selection of different adhesives with various reaction mechanisms and their adhesive bonds were investigated.
The results of the uNMR measurements were compared to a variety of reference methods commonly used in practice to characterize cross-linked plastics, adhesives and bonded joints and evaluated with regard to their informative value.
Temperature monitoring for the magnets and the test specimens was integrated into the uNMR system in order to monitor the temperature effects of various standard measuring sequences and the employed reactive materials as well as the influence of the ambient temperature.
For the evaluation of the uNMR measurements, different methods were compared to one another. On the one hand, multi-component fits were employed to determine the characteristic relaxation times, taking into account different material phases. On the other hand, echo-based methods (binning, echo sums, weighting) were used.
It could be demonstrated that normalized echo sums are very well suited for quantifying the curing of adhesives – directly in the bond – and for characterizing the degree of cross-linking of UHMWPE-Xc. Material components with specific T2eff relaxation times can also be described in a targeted manner, by also considering the echo sum ratios.
The uNMR results showed a good correlation with the applied reference methods (differential scanning calorimetry, dielectric analysis, rheological investigations in plate/plate rheometer). On this basis corresponding comparison models could be developed. These illustrate the potential applications of uNMR for non-destructive quality assurance to users of adhesives and cross-linked plastic components. / Der Aushärtegrad von Klebstoffen ist ein zentrales Qualitätsmerkmal, welches zahlreiche Materialeigenschaften beeinflusst und daher auch für die Klebeverbindungen von entscheidender Bedeutung ist. Gleiches gilt für den Vernetzungsgrad von strahlenvernetzten Kunststoffformteilen, wie sie im Implantatbereich eingesetzt werden. Die zerstörungsfreie Prüfung (ZfP) dieser Kenngrößen ist nach wie vor von großem Interesse, sowohl von industrieller als auch Forschungsseite, allerdings bisher nicht Stand der Technik.
Mit der unilateralen oder einseitigen Kernspinresonanz (uNMR, engl. unilateral nuclear magnetic resonance oder oft auch single-sided NMR genannt) steht seit einigen Jahren ein Verfahren zur Verfügung, welches das Potenzial hat, die genannte Problematik zu lösen. Eine industrielle Umsetzung erfolgte bis dato jedoch nicht. Gründe hierfür können das Fehlen von anwendungsspezifischem Basiswissen oder die Scheu vor dem Einsatz einer vermeintlich komplizierten Technik sein.
Im Rahmen dieser Arbeit wurde der Einsatz dieses Messverfahrens zur ZfP des Vernetzungs- und Aushärtegrades an verschiedenen Materialsystemen evaluiert. Neben strahlenvernetztem Polyethylen mit ultrahohem Molekulargewicht (UHMWPE-Xc) wurden eine Auswahl an verschiedenen Klebstoffen mit unterschiedlichen Reaktionsmechanismen und deren Klebeverbindungen untersucht.
Die Ergebnisse der uNMR-Messungen wurden mit verschiedenen praxisrelevanten Referenzmethoden zur Charakterisierung vernetzter Kunststoffe, Klebstoffe und Klebeverbindungen verglichen und hinsichtlich ihrer Aussagekraft bewertet.
In das verwendete uNMR-System wurde eine Temperaturüberwachung für die Magnete und die untersuchten Probekörper integriert. Damit wurden die Temperatureffekte verschiedener Standard-Messsequenzen und der eingesetzten reaktiven Materialien sowie der Einfluss der Umgebungstemperatur betrachtet.
Für die Auswertung der uNMR-Messungen wurden unterschiedliche Auswerteverfahren verglichen. Einerseits wurden Multiparameter-Fits zur Bestimmung der charakteristischen Relaxationszeiten unter Berücksichtigung verschiedener Materialphasen verwendet. Andererseits kamen echobasierte Methoden (Gruppierung, Echosummen, Gewichtung) zum Einsatz.
Anhand der Resultate konnte demonstriert werden, dass sich normierte Echosummen sehr gut zur Quantifizierung der Aushärtung von Klebstoffen – direkt in der Klebeverbindung – und zur Charakterisierung des Vernetzungszustands von UHMWPEXc eignen. Durch die zusätzliche Betrachtung der Echosummenverhältnisse konnten auch gezielt Materialkomponenten mit bestimmten T2eff -Relaxationszeiten beschrieben werden.
Die uNMR-Ergebnisse zeigten gute Korrelationen mit den verwendeten Referenzverfahren (Dynamische Differenzkalorimetrie, Dielektrische Analyse, rheologische Untersuchungen im Platte/Platte-Rheometer). Darauf basierend konnten entsprechende Vergleichsmodelle entwickelt werden. Die Resultate verdeutlichen Anwendern von Klebstoffen und vernetzten Kunststoffformteilen die Einsatzmöglichkeiten der uNMR zur zerstörungsfreien Qualitätssicherung.
|
20 |
Magnetic Tunnel Junctions based on spinel ZnxFe3-xO4: Magnetic Tunnel Junctions based onspinel ZnxFe3-xO4Bonholzer, Michael 16 September 2016 (has links)
Die vorliegende Arbeit befasst sich mit magnetischen Tunnelkontakten (magnetic tunnel junctions, MTJs) auf Basis des Oxids Zinkferrit (ZnxFe3-xO4).
Dabei soll das Potential dieses Materials durch die Demonstration des Tunnelmagnetowiderstandes (tunnel magnetoresistance, TMR) in zinkferritbasierten Tunnelkontakten gezeigt werden. Dazu wurde ein Probendesign für MTJs auf Basis der „pseudo spin valve“-Geometrie entwickelt. Die Basis für dieseStrukturen ist ein Dünnfilmstapel aus MgO (Substrat) / TiN / ZnxFe3-xO4 / MgO / Co. Dieser ist mittels gepulster Laserabscheidung (pulsed laser deposition, PLD) hergestellt. Im Rahmen dieser Arbeit wurden die strukturellen, elektrischen und magnetischen Eigenschaften der Dünnfilme untersucht. Des weiteren wurden die fertig prozessierten MTJ-Bauelemente an einem im Rahmen
dieser Arbeit entwickeltem und aufgebautem TMR-Messplatz vermessen. Dabei ist es gelungen einen TMR-Effekt von 0.5% in ZnxFe3-xO4-basierten MTJs nachzuweisen.
Das erste Kapitel der Arbeit gibt eine Einführung in die spintronischen Effekte Riesenmagnetowiderstand (giant magnetoresistance, GMR) und Tunnelmagnetowiderstand (TMR). Deren technologische Anwendungen sowie die grundlegenden physikalischen Effekte und Modelle werden diskutiert. Das zweite Kapitel gibt eine Übersicht über die Materialklasse der spinellartigen Ferrite. Der Fokus liegt auf den Materialien Magnetit (Fe3O4) sowie Zinkferrit (ZnxFe3-xO4). Die physikalischen Modelle zur Beschreibung der strukturellen, magnetischen und elektrischen Eigenschaften dieser Materialien werden dargelegt sowie ein Literaturüberblick über experimentelle und theoretische Arbeiten gegeben. Im dritten Kapitel werden die im Rahmen dieser Arbeit verwendeten Probenpräparations- und Charakterisierungsmethoden vorgestellt und technische Details sowie physikalische Grundlagen erläutert. Die Entwicklung eines neuen Probendesigns zum Nachweis des TMR-Effekts in ZnxFe3-xO4-basierten MTJs ist Gegenstand des vierten Kapitels. Die Entwicklung des Probenaufbaus sowie die daraus resultierende Probenprozessierung werden beschrieben. Die beiden letzten Kapitel befassen sich mit der strukturellen, elektrischen und magnetischen Charakterisierung der mittels PLD abgeschiedenen Dünnfilme sowie der Tunnelkontaktstrukturen.
|
Page generated in 0.0236 seconds