• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 58
  • 55
  • 26
  • 19
  • 19
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Electron Energy-Loss Spectroscopy on Underdoped Cuprates and Transition-Metal Dichalcogenides

Schuster, Roman 24 February 2010 (has links)
Die vorliegende Arbeit befasst sich mit Elektronenenergieverlustspektroskopie an unterdotierten Kupratsupraleitern und Übergangsmetalldichalcogeniden. Nach einem kurzen Abriss über die der experimentellen Methode zugrundeliegenden theoretischen Tatsachen folgen zwei experimentelle Kapitel. Für das prototypische Kupratsystem Ca2-xNaxCuO2Cl2 wird für verschiedene Dotierungskonzentrationen zunächst die Entwicklung der Ladungstransferanregungen untersucht. Man findet eine substanzielle Umverteilung des spektralen Gewichtes, verbunden mit einem starken Einbruch der Dispersion dieser Anregungen. Beides wird im Rahmen der Wechselwirkung mit Spinfreiheitsgraden innerhalb der Kupfer-Sauerstoff-Ebene diskutiert. Anschliessend erfolgt die Diskussion einer ausschließlich für zehnprozentige Dotierung auftretenden Symmetriebrechung der optischen Antwortfunktion, für die verschiedene mögliche Szenarien vorgeschlagen werden. Im Kapitel über die Dichalcogenide liegt der Fokus auf dem Verhalten des Ladungsträgerplasmons, das für alle Substanzen dieser Gruppe mit Ladungsordnung eine negative Dispersion aufweist. Dieses Verhalten läßt sich durch in-situ Interkalation zusätzlicher Ladungstraeger umkehren, so dass man eine dotierungsabhängige Plasmonendispersion erhält. Es werden verschiedene Szenarien für dieses Verhalten diskutiert. / The present thesis describes electron energy-loss spectroscopy on underdoped cuprate superconductors and transition-metal dichalcogenides. After a brief introduction into the experimental method there are two experimental chapters. For the prototype cuprate system Ca2-xNaxCuO2Cl2 the behavior of the charge-transfer excitations is investigated as a function of doping. The observed substantial redistribution of spectral weight and the accompanying breakdown of their dispersion is discussed in terms of a coupling to the spin degrees of freedom within the copper-oxygen plane. For x=0.1 there is a pronounced symmetry breaking in the optical response function which is discussed in terms of different possible scenarios. The chapter on the dichalcogenides focuses on the properties of the charge-carrier plasmon which shows a negative dispersion for all representatives of this family exhibiting a charge-density wave instability. This behavior can be influenced by in-situ intercalation of additional charges, the result being a doping dependent plasmon dispersion. Several approaches to reconcile these findings are considered.
62

Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers

Park, Juhong 05 1900 (has links)
This thesis describes the fabrication and characterization of two-dimensional transition dichalcogenides (2D TMDs) nanolayers for various applications in electronic and opto-electronic devices applications. In Chapter 1, crystal and optical structure of TMDs materials are introduced. Many TMDs materials reveal three structure polytypes (1T, 2H, and 3R). The important electronic properties are determined by the crystal structure of TMDs; thus, the information of crystal structure is explained. In addition, the detailed information of photon vibration and optical band gap structure from single-layer to bulk TMDs materials are introduced in this chapter. In Chapter 2, detailed information of physical properties and synthesis techniques for molybdenum disulfide (MoS2), tungsten disulfide (WS2), and molybdenum ditelluride (MoTe2) nanolayers are explained. The three representative crystal structures are trigonal prismatic (hexagonal, H), octahedral (tetragonal, T), and distorted structure (Tʹ). At room temperature, the stable structure of MoS2 and WS2 is semiconducting 2H phase, and MoTe2 can reveal both 2H (semiconducting phase) and 1Tʹ (semi-metallic phase) phases determined by the existence of strains. In addition, the pros and cons of the synthesis techniques for nanolayers are discussed. In Chapter 3, the topic of synthesized large-scale MoS2, WS2, and MoTe2 films is considered. For MoS2 and WS2 films, the layer thickness is modulated from single-layer to multi-layers. The few-layer MoTe2 film is synthesized with two different phases (2H or 1Tʹ). The all TMDs films are fabricated using two-step chemical vapor deposition (CVD) method. The analyses of atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and Raman spectroscopy confirm that the synthesis of high crystalline MoS2, WS2, and MoTe2 films are successful. The electronic properties of both MoS2 and WS2 exhibit a p-type conduction with relatively high field effect mobility and current on/off ratio. In Chapter 4, vertically-stacked few-layer MoS2/WS2 heterostructures on SiO2/Si and flexible polyethylene terephthalate (PET) substrates is presented. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) show the structural integrity of two distinct 2D TMD layers with atomically sharp van der Waals (vdW) heterointerfaces. Electrical transport measurements of the MoS2/WS2 heterostructure reveal diode-like behavior with current on/off ratio of ~ 104. In Chapter 5, optically uniform and scalable single-layer Mo1-xWxS2 alloys are synthesized by a two-step CVD method followed by a laser thinning. Post laser treatment is presented for etching of few-layer Mo1-xWxS2 alloys down to single-layer alloys. The optical band gap is controlled from 1.871 to 1.971 eV with the variation in the tungsten (W) content, x = 0 to 1. PL and Raman mapping analyses confirm that the laser-thinning of the Mo1-xWxS2 alloys is a self-limiting process caused via heat dissipation to SiO2/Si substrate, resulting in fabrication of spatially uniform single-layer Mo1-xWxS2 alloy films.
63

Information Transduction Between Spintronic, Photonic, and Magnetic States in Two-Dimensional Hybrid Systems

Luo, Yunqiu (Kelly) January 2019 (has links)
No description available.
64

Energy and Charge Transfer at Hybrid Interfaces Probed by Optical Spectroscopy

Mutz, Niklas 30 April 2021 (has links)
Hybride anorganisch/organischen Systeme können die individuellen Vorteile, etwa eine hohe elektronische Mobilität in anorganischen und starke Licht-Materie-Wechselwirkung in organischen Halbleitern, kombinieren. Ein sinnvoller Nutzen dieser Heterostrukturen benötigt ein umfassendes Verständnis der Grenzfläche. Zwei Grenzflächenprozesse werden in dieser Arbeit behandelt. Förster-Resonanzenergietransfer (FRET) wird zwischen einem InGaN/GaN Quantengraben und dem Polymer Cn-ether PPV untersucht. Trotz des hohen internen elektrischen Feldes im Quantengraben, ist effizienter Energietransfer möglich, solange andere nicht-strahlende Zerfallsprozesse unterdrückt werden. Dies wird mittels temperaturabhängiger PL und PLE Spektroskopie gezeigt. PLE demonstriert eine eindeutige Erhöhung der Emission des Akzeptors. Bei höheren Temperaturen dominieren nicht-strahlende Zerfallskanäle. Ladungstransfer wird zwischen MoS2 und dem Molekül H2Pc untersucht. Die Kombination mit organischen Molekülen kann die Funktionalität von MoS2 erweitern. Photoelektronenspektroskopie (PES) zeigt einen Typ-II Heteroübergang an der MoS2/H2Pc Grenzfläche. Angeregte Elektronen gehen von den H2Pc Molekülen in die MoS2 Monolage über, wie mittels einer Verkürzung der PL Lebenszeit von H2Pc gezeigt wird. Photostrommessungen demonstrieren zudem, dass die transferierten Elektronen zu einer erhöhten Photoleitfähigkeit beitragen. Zusätzlich werden auch einzelne 2D Übergangsmetall Dichalkogenide (TMDCs) untersucht. Um TMDCs von hoher Qualität herzustellen, wurde intern eine Wachstumsmethode entwickelt. Mittels PL Spektroskopie werden die so hergestellten Schichten charakterisiert. Die Vielseitigkeit der Methode wird anhand des Wachstums von Mischkristallen und Heterostrukturen gezeigt. Der Einfluss der dielektrischen Funktion des Substrates wird erforscht. Durch die Kombination von PES und Reflexionsmessungen kann eine gleichzeitige Abnahme sowohl der Bandlücke als auch der Exzitonen Bindungsenergie gezeigt werden. / Hybrid inorganic/organic systems can combine the advantages of both materials such as high carrier mobilities in inorganic semiconductors and large light-matter interaction in organic ones. In order to benefit from these heterostructures, a thorough understanding of the interface is needed. Two processes occurring at the interface are looked at in this thesis. Förster resonance energy transfer (FRET) is studied between a single InGaN/GaN quantum well and the polymer Cn-ether PPV. Despite the large internal electric fields in the quantum well, efficient FRET is possible as long as other non-radiative decay channels are suppressed. This is shown by temperature dependent PL and PLE spectroscopy. PLE spectra clearly demonstrate an enhanced light emission from the acceptor. At elevated temperatures, non-radiative decay pathways become dominant. Excited-state charge transfer is studied on MoS2 in combination with the molecule H2Pc. The combination with molecules can extend the functionality of MoS2. Photoelectron spectroscopy (PES) reveals a type II energy level alignment at the MoS2/H2Pc interface. Excited electrons are transferred from H2Pc to MoS2, deduced from a shortening of the H2Pc PL decay time. Photocurrent spectra further show that the transferred electrons contribute to an enhanced photoconductivity. Additionally, bare 2D transition-metal dichalcogenides (TMDCs) are studied. In order to fabricate high-quality TMDC monolayers, a growth method was developed in-house. The grown monolayers are characterised by optical spectroscopy. The versatility of the method is demonstrated by the growth of alloys and heterostructures. The influence of the substrate dielectric function is investigated by comparing band-gaps measured by PES with the exciton transition energies obtained by reflectance measurements. An almost equal reduction in both energies with the substrate dielectric constant is seen.
65

Optical spectroscopy of two-dimensional materials : graphene, transition metal dichalcogenides and van der Waals heterostructures / Spectroscopie optique de cristaux bidimensionnels : graphène, dichalcogénures de métaux de transitions et hétérostructures de van der Waals

Froehlicher, Guillaume 12 December 2016 (has links)
Au cours de ce projet, nous avons utilisé la microspectroscopie Raman et de photoluminescence pour étudier des matériaux bidimensionnels (graphène et dichalcogénures de métaux de transition) et des hétérostructures de van der Waals. Tout d’abord, à l’aide de transistors de graphène munis d’une grille électrochimique, nous montrons que la spectroscopie Raman est un outil extrêmement performant pour caractériser précisément des échantillons de graphène. Puis, nous explorons l’évolution des propriétés physiques de N couches de dichalcogénures de métaux de transition semi-conducteurs, en particulier de ditellurure de molybdène (MoTe2) et de diséléniure de molybdène (MoSe2). Dans ces structures lamellaires, nous observons la séparation de Davydov des phonons optiques au centre de la première zone de Brillouin, que nous décrivons à l’aide d’un modèle de chaîne linéaire. Enfin, nous présentons une étude toute optique du transfert de charge et d’énergie dans des hétérostructures de van der Waals constituées de monocouches de graphène et de MoSe2. Ce travail de thèse met en évidence la riche photophysique de ces matériaux atomiquement fins et leur potentiel en vue de la réalisation de nouveaux dispositifs optoélectroniques. / In this project, we have used micro-Raman and micro-photoluminescence spectroscopy to study two-dimensional materials (graphene and transition metal dichalcogenides) and van der Waals heterostructures. First, using electrochemically-gated graphene transistors, we show that Raman spectroscopy is an extremely sensitive tool for advanced characteri-zations of graphene samples. Then, we investigate the evolution of the physical properties of N-layer semiconducting transition metal dichalcogenides, in particular molybdenum ditelluride (MoTe2) and molybdenum diselenide (MoSe2). In these layered structures, theDavydov splitting of zone-center optical phonons is observed and remarkably well described by a ‘textbook’ force constant model. We then describe an all-optical study of interlayer charge and energy transfer in van der Waals heterostructures made of graphene and MoSe2 monolayers. This work sheds light on the very rich photophysics of these atomically thin two-dimensional materials and on their potential in view of optoelectronic applications.
66

Electronic Structure of Transition Metal Dichalcogenides and Molecular Semiconductors

Ma, Jie 01 December 2022 (has links)
Zweidimensionale (2D) Übergangsmetalldichalcogenide (TMDCs) gehören zu den attraktivsten neuen Materialien für optoelektronische Bauelemente der nächsten Generation. Um die überlegene Funktionalität der mit TMDCs verbundenen Bauelemente zu realisieren, ist ein umfassendes Verständnis ihrer elektronischen Struktur, einschließlich, aber nicht beschränkt auf die Auswirkungen von Defekten auf die elektronischen Eigenschaften und die Ausrichtung der Energieniveaus (ELA) an den TMDCs-Grenzflächen, unerlässlich, aber derzeit nicht ausreichend. Um einen tieferen Einblick in die elektronischen Eigenschaften von TMDCs und den damit verbundenen Grenzflächen in Kombination mit molekularen Halbleitern (MSCs) zu erhalten, untersuchen wir i) die fundamentale Bandstruktur von Monolagen (ML) TMDCs und die durch Schwefelfehlstellen (SVs) induzierte Renormierung der Bandstruktur, um eine solide Grundlage für ein besseres Verständnis der elektronischen Eigenschaften von polykristallinen dünnen Filmen zu schaffen, und ii) die optoelektronischen Eigenschaften ausgewählter MSC/ML-TMDCs-Grenzflächen. Darüber hinaus wird iii) der Einfluss des Substrats auf die elektronischen Eigenschaften einer MSC/ML-TMDC-Grenzfläche untersucht, um das Bauelementedesign zu steuern. Die Charakterisierung erfolgt hauptsächlich durch winkelaufgelöste Photoelektronenspektroskopie (ARPES), ergänzt durch Photolumineszenz (PL), Raman-Spektroskopie, UV-Vis-Absorption, Rastertransmissionselektronenmikroskopie (TEM) und Rasterkraftmikroskopie (AFM). Unsere Ergebnisse tragen zu einem besseren Verständnis der Auswirkungen von Defekten auf ML-TMDC und verwandte Grenzflächen mit MSCs bei, wobei auch die Auswirkungen der Substrate berücksichtigt werden, und sollten dazu beitragen, unser Verständnis des elektronischen Verhaltens in TMDC-verwandten Geräten zu verbessern. / Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are amongst the most attractive emerging materials for next-generation optoelectronic devices. To realize the superior functionality of the TMDCs related devices, a comprehensive understanding of their electronic structure, including but not limited to the impact of defects on the electronic properties and energy level alignment (ELA) at TMDCs interfaces, is essential but presently not sufficient. In an attempt to get a deep insight into the electronic properties of TMDCs and the related interfaces combined with molecular semiconductors (MSCs), we investigate i) the fundamental band structure of monolayer (ML) TMDCs and band structure renormalization induced by sulfur vacancies (SVs), in order to provide a solid foundation for a better understanding the electronic properties of polycrystalline thin films and ii) the optoelectronic properties of selected MSC/ML-TMDC interface. In addition, iii) the impact of the substrate on the electronic properties of the MSC/ML-TMDC interface is investigated for guiding device design. The characterization is mainly performed by using angle-resolved photoelectron spectroscopy (ARPES), with complementary techniques including photoluminescence (PL), Raman spectroscopies, UV-vis absorption, scanning transmission electron microscopy (TEM), and atomic force microscopy (AFM) measurements. Our findings contribute to achieving a better understanding of the impact of defects on ML-TMDC and related interfaces with MSCs considering the substrates’ effect and should help refine our understanding of the electronic behavior in TMDC-related devices.

Page generated in 0.2792 seconds