• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 366
  • 139
  • 47
  • 42
  • 34
  • 10
  • 9
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 842
  • 116
  • 105
  • 104
  • 61
  • 60
  • 59
  • 55
  • 50
  • 45
  • 44
  • 43
  • 43
  • 43
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Ultra-Wideband Channel Modeling using Singularity Expansion Method

Joshi, Gaurav Gaurang 04 May 2006 (has links)
Ultra-wideband (UWB) communications is expected to revolutionize high data-rate, short-distance wireless communications, providing data-rates in excess of 100 Mbps. However, the wireless channel distorts the transmitted signal by dispersing the signal energy over time. This degrades the output signal-to-noise ratio (SNR) of a correlation based matched-filter receiver, limiting the achievable data-rate and user capacity. Most wideband channel models do not account for all the identified dispersion mechanisms namely the frequency dispersion, the resonant dispersion and the multipath dispersion. The objective of this research is to model resonant dispersion based on the Singularity Expansion Method (SEM) and provide guidelines for UWB receiver design to meet the data capacity. The original contribution of this research is a novel pole dispersion channel model that includes resonant dispersion characterization. An empirical investigation supports our claim that a correlation type matched-filter receiver using a template signal based on the pole dispersion channel model overcomes distortion related losses. Various physical mechanisms responsible for dispersion in UWB communication systems are described in detail. The applicability of the proposed dispersive channel model is evaluated using the optimal matched filter (OMF) receiver. The SEM approach, which was originally proposed for target identification using short pulse radars, offers limited benefits of due to its susceptibility to noise. A combined fuzzy-statistical approach is proposed to improve the robustness of resonant dispersion channel modeling in presence of noise. A natural extension of this doctoral research is to improve buried landmine detection as well as breast tumor detection by applying statistical and fuzzy analysis to the backscatter response. Moreover, radar target identification using UWB short pulses stands to gain tremendously from this research. / Ph. D.
182

The Modeling and Control of a Wind Farm and Grid Interconnection in a multi-machine system

Skolthanarat, Siriya 26 October 2009 (has links)
This dissertation focuses on the modeling and control of WECS (Wind Energy Conversion System) in a multi-machine system. As one of the fastest growing renewable energy resources, the trend of wind energy changes to variable speed wind turbines. The concept of the variable speed is based on the variable speed according to the instantaneous wind speed of wind turbines. Since the utility grid requires the stable frequency and magnitude voltages, there must be grid interconnection of the wind farm and the utility grid. The grid interconnection must support the concept of the variable speed wind turbines. Since each wind turbine locates in a different location in a wind site, it receives the different wind speed. Hence the grid interconnection must convert the variable frequency and magnitude output voltages of the wind turbines to a synchronous frequency and magnitude voltages associated to the grid. With the new technologies of power semiconductor devices, the power converter can operate with high voltage, high current, and high switching frequency. This results in a higher power capacity of a wind farm. Nonetheless, the power converters generate harmonic distortions to the utility grid. The harmonic distortions components in the voltages and currents of the grid degrade the power quality. This results in the damage of electrical components in the power system such as capacitor banks, inductors, protection devices, etc. The harmonic distortions can be reduced with the technology of the multi-level inverter. It is required that the wind energy provides the real and reactive power control for frequency and voltage stability. In order to achieve the power control, the modeling and control of the power electronic grid interconnection is presented in this dissertation. The grid interconnection is modeled with linearization techniques. The models in frequency domain in the form of transfer functions are used to design the compensators in the control system. The model is considered as a SISO (Single Input Single Output) system to design the compensators in SISO tool of MATLAB. The selected control system is current control that can control the real and reactive powers independently. Furthermore, since the grid interconnection is modeled separately for each sub-system, the control system is verified with integration of the sub-systems. The grid interconnection is modeled in Simulink and simulated in the PSCAD. In reality, the power system is comprised of multi-machines. They affect the power system stability, reliability, and quality. The dynamic modeling of an aggregated wind farm with synchronous generator and grid interconnection in a multi-machine system is presented. The test system is a 10-bus system with three generators and three loads. The dynamic modeling involves the power flow calculations that determine the equilibrium points of the system. The system is modeled with differential equations of wind turbines, synchronous generators, and grid interconnection. The system is modeled in the time domain in state space form. The system characteristics can be determined by poles or eigen values obtained from the characteristic equations. Since the system is MIMO (Multi Input Multi Output) system, the optimal control theory is used to reduce the deviation of system behaviors during disturbances. The LQR (Linear Quadratic Regulator) is utilized to control the system with eigen value assignment method. Simulation results in Simulink are illustrated. / Ph. D.
183

Approximate signal reconstruction from partial information

Moose, Phillip J. 10 June 2009 (has links)
It is known that transform techniques do not represent an optimal way in which to code a signal in terms of theoretical rate distortion bounds. A signal may be coded more efficiently if side information is included with the signal during transmission. This side information can then be used to reconstruct the image at some later time. In this thesis, the type of transform coding used is Multiple Bases Representation (MBR). This coding scheme is known to perform better than transform coding that uses a single basis. The method of Projection Onto Convex Sets (POCS) is used to reconstruct an approximation to the MBR signal using the side information. Thus, any number of constraints may be used as long as they form closed and convex sets and the side information is a priori knowledge required to implement projections onto the defined closed and convex sets. Several closed and convex sets are examined including the MBR, positivity, sign, zero crossing, minimum increase, and minimum decrease constraints. Constraints that tend to limit energy are not as effective as constraints that introduce energy into the signal especially when the observed image is used as the initialization vector. When a different initialization vector is used, the POCS reconstruction performs considerably better. Two initialization vectors are proposed; the observed signal plus white noise and the observed signal plus a constant. The performance of POCS with initialization by the observed signal plus a constant is superior to that when using the observed signal only. One nonconvex constraint is considered. The Laplacian histogram constraint requires other convex constraints to help ensure convergence of the reconstruction algorithm, but produces good quality images. / Master of Science
184

A new approach to dynamic range enhancement

Cheng, Fu-Sheng 10 November 2009 (has links)
This thesis evaluates a new approach for effectively increasing the dynamic range of optical fiber links for transporting RF signals. This new approach, called the Dynamic Range Enhancement Technique (DRET), is key to connecting remotely located microcell base station antenna sites to a centralized base station via optical fiber while maintaining a good dynamic range. This thesis examines the causes and characteristics of distortion introduced by the optical fiber link and describes and compares the performance of the DRET with other dynamic range enhancing techniques using computer simulation. In most instances, the DRET is shown to be superior both in reducing harmonic and intermodulation distortion compared to other dynamic range enhancement techniques. The DRET has several advantages over automatic gain control (AGC) including stability and the absence of parasitic modulation on weak signals caused by fading or transient high power signals. / Master of Science
185

Stereoscopic Particle Image Velocimetry Measurements of Swirl Distortion on a Full-Scale Turbofan Engine Inlet

Nelson, Michael Allan 08 October 2014 (has links)
There is a present need for simulation and measuring the inlet swirl distortion generated by airframe/engine system interactions to identify potential degradation in fan performance and operability in a full-scale, ground testing environment. Efforts are described to address this need by developing and characterizing methods for complex, prescribed distortion patterns. A relevant inlet swirl distortion profile that mimics boundary layer ingesting inlets was generated by a novel new method, dubbed the StreamVane method, and measured in a sub scale tunnel using stereoscopic particle image velocimetry (SPIV) as a precursor for swirl distortion generation and characterization in an operating turbofan research engine. Diagnostic development efforts for the distortion measurements within the research engine paralleled the StreamVane characterization. The system used for research engine PIV measurements is described. Data was obtained in the wake of a total pressure distortion screen for engine conditions at idle and 80% corrected fan speed, and of full-scale StreamVane screen at 50% corrected fan speed. The StreamVane screen was designed to generate a swirl distortion that is representative for hybrid wing body applications and was made of Ultem*9085 using additive manufacturing. Additional improvements to the StreamVane method are also described. Data reduction algorithms are put forth to reduce spurious velocity vectors. Uncertainty estimations specific to the inlet distortion test rig, including bias error due to mechanical vibration, are made. Results indicate that the methods develop may be used to both generate and characterize complex distortion profiles at the aerodynamic interface plane, providing new information about airframe/engine integration. / Master of Science
186

The Applicability of the Tap-Delay Line Channel Model to Ultra Wideband

Yang, Liu 30 September 2004 (has links)
Ultra-wideband (UWB) communication systems are highly promising because of their capabilities for high data rate information transmission with low power consumption and low interference and their immunity to multipath fading. More importantly, they have the potential to relieve the "spectrum drought" caused by the explosion of wireless systems in the past decade by operating in the same bands as existing narrowband systems. With the extremely large bandwidth of UWB signals, we need to revisit UWB channel modeling. Specifically we need to verify whether or not the traditional tap-line delay channel model is still applicable to UWB. One essential task involved in channel modeling is deconvolving the channel impulse response from the measurement data. Both frequency domain and time domain techniques were studied in this work. After a comparison, we examined a time domain technique known as the CLEAN algorithm for our channel modeling analysis. A detailed analysis of the CLEAN algorithm is given, as it is found that it is sufficient for our application. The impact of per-path pulse distortion due to various mechanisms on the tap-delay line channel model is discussed. It is shown that with cautious interpretation of the channel impulse response, the tap-line delay channel model is still applicable to UWB. / Master of Science
187

La Pentalogie De D´s (Rethinking Denim)

Kristof, Andréas January 2024 (has links)
This work aims to upcycle old jeans by enhancing both the surface and material as well as generating alternative forms. The work further investigates circumstances, such as gender stereotypes and one garment’s “single” usage. — At its foundation, It initiates by investigating jeans.
188

Sensitivity Analysis and Distortion Decomposition of Mildly Nonlinear Circuits

Zhu, Guoji January 2007 (has links)
Volterra Series (VS) is often used in the analysis of mildly nonlinear circuits. In this approach, nonlinear circuit analysis is converted into the analysis of a series of linear circuits. The main benefit of this approach is that linear circuit analysis is well established and direct frequency domain analysis of a nonlinear circuit becomes possible. Sensitivity analysis is useful in comparing the quality of two designs and the evaluation of gradient, Jacobian or Hessian matrices, in analog Computer Aided Design. This thesis presents, for the first time, the sensitivity analysis of mildly nonlinear circuits in the frequency domain as an extension of the VS approach. To overcome efficiency limitation due to multiple mixing effects, Nonlinear Transfer Matrix (NTM) is introduced. It is the first explicit analytical representation of the complicated multiple mixing effects. The application of NTM in sensitivity analysis is capable of two orders of magnitude speedup. Per-element distortion decomposition determines the contribution towards the total distortion from an individual nonlinearity. It is useful in design optimization, symbolic simplification and nonlinear model reduction. In this thesis, a numerical distortion decomposition technique is introduced which combines the insight of traditional symbolic analysis with the numerical advantages of SPICE like simulators. The use of NTM leads to an efficient implementation. The proposed method greatly extends the size of the circuit and the complexity of the transistor model over what previous approaches could handle. For example, industry standard compact model, such as BSIM3V3 [35] was used for the first time in distortion analysis. The decomposition can be achieved at device, transistor and block level, all with device level accuracy. The theories have been implemented in a computer program and validated on examples. The proposed methods will leverage the performance of present VS based distortion analysis to the next level.
189

Coherent Distortion Risk Measures in Portfolio Selection

Feng, Ming Bin January 2011 (has links)
The theme of this thesis relates to solving the optimal portfolio selection problems using linear programming. There are two key contributions in this thesis. The first contribution is to generalize the well-known linear optimization framework of Conditional Value-at-Risk (CVaR)-based portfolio selection problems (see Rockafellar and Uryasev (2000, 2002)) to more general risk measure portfolio selection problems. In particular, the class of risk measure under consideration is called the Coherent Distortion Risk Measure (CDRM) and is the intersection of two well-known classes of risk measures in the literature: the Coherent Risk Measure (CRM) and the Distortion Risk Measure (DRM). In addition to CVaR, other risk measures which belong to CDRM include the Wang Transform (WT) measure, Proportional Hazard (PH) transform measure, and lookback (LB) distortion measure. Our generalization implies that the portfolio selection problems can be solved very efficiently using the linear programming approach and over a much wider class of risk measures. The second contribution of the thesis is to establish the equivalences among four formulations of CDRM optimization problems: the return maximization subject to CDRM constraint, the CDRM minimization subject to return constraint, the return-CDRM utility maximization, the CDRM-based Sharpe Ratio maximization. Equivalences among these four formulations are established in a sense that they produce the same efficient frontier when varying the parameters in their corresponding problems. We point out that the first three formulations have already been investigated in Krokhmal et al. (2002) with milder assumptions on risk measures (convex functional of portfolio weights). Here we apply their results to CDRM and establish the fourth equivalence. For every one of these formulations, the relationship between its given parameter and the implied parameters for the other three formulations is explored. Such equivalences and relationships can help verifying consistencies (or inconsistencies) for risk management with different objectives and constraints. They are also helpful for uncovering the implied information of a decision making process or of a given investment market. We conclude the thesis by conducting two case studies to illustrate the methodologies and implementations of our linear optimization approach, to verify the equivalences among four different problem formulations, and to investigate the properties of different members of CDRM. In addition, the efficiency (or inefficiency) of the so-called 1/n portfolio strategy in terms of the trade off between portfolio return and portfolio CDRM. The properties of optimal portfolios and their returns with respect to different CDRM minimization problems are compared through their numerical results.
190

Phase distortion in envelope elimination and restoration radio frequency power amplifiers

Fedorenko, Pavlo 22 June 2009 (has links)
The objective of this research is to analyze and improve linearity of envelope elimination and restoration (EER) radio frequency (RF) power amplifiers. Envelope elimination and restoration was compared to other efficiency enhancement techniques and determined to likely be the most suitable solution for implementation of multimode, multiband portable RF transmitters. Distortion, stemming from dynamic power-supply modulation of RF transistors in EER RF power amplifiers was identified as one of the key challenges to the development of commercially viable EER transmitters. This dissertation presents a study of phase distortion in RF power amplifiers (PAs) with emphasis on identification of the origins of phase distortion in EER RF power amplifiers. Circuit-level techniques for distortion mitigation are also presented. Memory effects in conventional power amplifiers are investigated through the accurate measurement and analysis of phase asymmetry of out-of-band distortion components. Novel physically-based power amplifier model is developed for attributing measured memory effects to their physical origin. The amount of linearity correction, obtained through pre-distortion for a particular RF power amplifier, is then correlated to the behavior of the memory effects in the corresponding PA. Heterojunction field-effect transistor and heterojunction bipolar transistor amplifiers are used for investigation of voltage-dependent phase distortion in handset EER RF PAs. The distortion is found to stem from vector addition of signals, generated in nonlinear circuit elements of the PA. Specifically, nonlinear base-collector capacitance and downconversion of distortion components from second harmonic frequency are found to be the dominant sources of phase distortion. Shorting of second harmonic is proposed as a way to reduce the distortion contribution of the downconverted signal. Phase distortion is reduced by 50%, however a slight degradation in the amplitude distortion is observed. Push-pull architecture is proposed for EER RF power amplifiers to cancel distortion components, generated in the nonlinear base-collector capacitance. Push-pull implementation enables a 67% reduction in phase distortion, accompanied by a 1-2 dB reduction in amplitude distortion in EER RF power amplifiers. This work, combined with other studies in the field, will help advance the development of multimode, multiband portable RF transmitters, based on the envelope elimination and restoration architecture.

Page generated in 0.1008 seconds