21 |
Controls on Surface and Sedimentary Processes on Continental Margins from Geophysical Data: New Insights at Cascadia, Galicia, and the Eastern North American MarginGibson, James Charles January 2022 (has links)
Seafloor sedimentary depositional and erosional processes create a record of near and far-field climatic and tectonic signals adjacent to continental margins and within oceanic basins worldwide. In this dissertation I study both modern and paleo-seafloor surface processes at three separate and distinct study sites; Cascadia offshore Oregon, U.S.A., the Eastern North American Margin from south Georgia in the south to Massachusetts in the north, and the Deep Galicia Margin offshore Spain. I have the advantage of using modern geophysical methods and high power computing resources, however the study of seafloor processes at Columbia University's Lamont-Doherty Earth Observatory (LDEO) stretches back over ~80 yrs.
Specifically I use data collected during a variety of geophysical research cruises spanning the past ~50 yrs.-the majority of which can be directly attributed to seagoing programs managed by LDEO. The modern seafloor is the integrated result of all previous near and far field processes. As such, I look below the seafloor using multi-channel seismic reflection data, which is the result of innumerable soundings stacked together to create an image of the sub-seafloor (paleo) horizons. I map, analyze and interpret the sub-seafloor sedimentary horizons using a variety of both novel and established methods. In turn, I use multi-beam sonar data, which is also the result of innumerable soundings to map, analyze, and interpret the modern seafloor topography (bathymetry). Additionally, I look to the results from academic ocean drilling programs, which can provide information on both the composition and physical properties of sediments. The sediment composition alone can provide important information about both near and far-field processes, however when supplemented with physical properties (e.g., density/porosity) the results become invaluable.
In my second chapter, I use a compilation of multi-beam sonar bathymetry data to identify and evaluate 86 seafloor morphological features interpreted to represent large-scale erosional scours not previously recognized on the Astoria Fan offshore Oregon, U.S.A. The Astoria Fan is primarily composed of sediments transported from the margin to the deep ocean during Late Pleistocene interglacial periods. A significant portion of the sediments have been found to be associated with Late Pleistocene outburst flood events attributed to glacial lakes Bonneville and Missoula. The erosional scours provide a record of the flow path of the scouring event(s), which if well understood can provide important information for the study of past earthquakes as the sedimentary record remains intact outside of the erosional force created by the massive flood events. I design and implement a Monte Carlo inversion to calculate the event(s) flow path at each individual scour location, which results in a comprehensive map of Late Pleistocene erosion on the Astoria Fan. The results indicate that at least 4 outburst flood events are recorded by the scour marks.
In my third chapter, I build a stratigraphic framework of the Eastern North American margin using a compilation of multi-channel seismic data. Horizon Au is a primary horizon within the stratigraphic framework and is thought to represent a significant margin wide bottom-water erosional event associated with subsidence of the Greenland-Scotland Ridge and opening of Fram Strait in the late Eocene/early Oligocene. A recent study found that the bottom-water was enriched in fossil carbon, leading us to hypothesize that the bottom-water erosion recorded by horizon Au may have been facilitated by chemical weathering of the carbonate sediments. I use sediment isopach(s) to build a margin-wide model of the late Eocene/early Oligocene continental margin in order to estimate the volume of sediments eroded/dissolved during the event marked by horizon Au. The results indicate that ~170,000 km3 of sediments were removed with a carbonate fraction of 42,500 km³, resulting in 1.15e18 mol CaCO₃ going into solution. An influx of this magnitude likely played a role in significant climatic changes identified at the Eocene-Oligocene transition (EOT).
In my fourth chapter, I use a combination of 3D multi-channel seismic and multi-beam sonar bathymetry data collected during the Galicia 3D Seismic Experiment in 2013. The Galicia Bank is the largest of many crustal blocks and is located 120 km west of the coast on the Iberian Margin. The crustal blocks have been attributed to the opening of the North Atlantic Ocean in the Late Triassic/Middle Jurassic. The Galicia Bank is the source for the majority of sediments delivered to the Deep Galicia Margin, the focus of this study. I map the seafloor and 5 paleo-seafloor surfaces in order to study controls on sediment delivery provided by the crustal blocks. The results show that the crustal blocks begin as a barrier to and remain a primary control on sediment delivery pathways to the Deep Galicia basin. Additionally, the paleo-seafloor surfaces record morphological structures that can inform us on both near and far field past climatic and tectonic events e.g., the Alpine Orogeny and Pleistocene inter-glacial periods.
|
22 |
Design of Power Efficient Power Amplifier for B3G Base Stations.Hussaini, Abubakar S., Gwandu, B.A.L., Abd-Alhameed, Raed, Rodriguez, Jonathan 11 November 2010 (has links)
Yes / Fourth generation systems require the use of both
amplitude and phase modulation to efficiently utilize the
available spectrum and to obtain high data rates, hence imposing
stringent requirements on the power amplifier in terms of
efficiency and linearity and requires the power amplifier to
operate linearly and efficiently. The B3G base station transceiver
Doherty power amplifier was designed to operate over the
frequency range of 3.47GHz to 3.53GHz mobile WiMAX band
using Freescale¿s N-Channel Enhancement-Mode Lateral
MOSFET Transistor, MRF7S38010HR3; The performances of
the Doherty amplifier are compared with that of the conventional
Class AB amplifier. The results of 43 dBm output power and
66% power added efficiency are achieved.
|
23 |
A 70-W Asymmetrical Doherty Power Amplifier for 5G Base StationsAbdulkhaleq, Ahmed M., Al-Yasir, Yasir I.A., Ojaroudi Parchin, Naser, Brunning, J., McEwan, N., Rayit, A., Abd-Alhameed, Raed, Noras, James M., AbdulJabbar, N. 22 August 2018 (has links)
Yes / Much attention has been paid to making 5G developments more en-ergy efficient, especially in view of the need for using high data rates with more complex modulation schemes within a limited bandwidth. The concept of the Doherty power amplifier for improving amplifier efficiency is explained in addi-tion to a case study of a 70W asymmetrical Doherty power Amplifier using two GaN HEMTs transistors with peak power ratings of 45W and 25W. The rationale for this choice of power ratio is discussed. The designed circuit works in the 3.4GHz frequency band with 200 MHz bandwidth. Rogers RO4350B substrate with dielectric constant εr=4.66 and thickness 0.035 mm is used. The perfor-mance analysis of the Doherty power amplifier is simulated using AWR MWO software. The simulated results showed that 54-64% drain efficiency has been achieved at 8 dB back-off within the specified bandwidth with an average gain of 10.7 dB.
|
24 |
Adaptive Power Amplifiers for Modern Communication Systems with Diverse Operating ConditionsMahmoud Mohamed, Ahmed January 2014 (has links)
In this thesis, novel designs for adaptive power amplifiers, capable of maintaining excellent performance at dissimilar signal parameters, are presented. These designs result in electronically reconfigurable, single-ended and Doherty power amplifiers (DPA) that efficiently sustain functionality at different driving signal levels, highly varying time domain characteristics and wide-spread frequency bands. The foregoing three contexts represent those dictated by the diverse standards of modern communication systems.
Firstly, two prototypes for a harmonically-tuned reconfigurable matching network using discrete radio frequency (RF) microelectromechanical systems (MEMS) switches and semiconductor varactors will be introduced. Following that is an explanation of how the varactor-based matching network was used to develop a high performance reconfigurable Class F-1 power amplifier.
Afterwards, a systematic design procedure for realizing an electronically reconfigurable DPA capable of operating at arbitrary centre frequencies, average power levels and back-off efficiency enhancement power ranges is presented. Complete sets of closed-form equations are outlined which were used to build tunable matching networks that compensate for the deviation of the Doherty distributed elements under the desired deployment scenarios. Off-the-shelf RF MEMS switches are used to realize the reconfigurability of the adaptive Doherty amplifiers.
Finally, based on the derived closed-form equations, a tri-band, monolithically integrated DPA was realized using the Canadian Photonics Fabrication Centre (CPFC??) GaN500 monolithic microwave integrated circuit (MMIC) process. Successful integration of high power, high performance RF MEMS switches within the MMIC process paved the way for the realization of the frequency-agile, integrated version of the adaptive Doherty amplifier.
|
25 |
Contributions to the Design of RF Power AmplifiersAcimovic, Igor 19 August 2013 (has links)
In this thesis we introduce a two-way Doherty amplifier architecture with multiple feedbacks for digital predistortion based on impedance-inverting directional coupler (transcoupler). The tunable two-way Doherty amplifier with a tuned circulator-based impedance inverter is presented. Compact N-way Doherty architectures that subsume impedance inverter and offset line functionality into output matching networks are derived. Comprehensive N-way Doherty amplifier design and analysis techniques based on load-pull characterization of active devices and impedance modulation effects are developed. These techniques were then applied to the design of a two-way Doherty amplifier and a three-way Doherty amplifier which were manufactured and their performance measured and compared to the amplifier performance specifications and simulated results.
|
26 |
Doherty-Outphasing Power Amplifier Continuum TheoryLiang, Chenyu January 2020 (has links)
No description available.
|
27 |
A Novel 3-Way Dual-Band Doherty Power AmplifierAlsulami, Ruwaybih R. 30 August 2022 (has links)
No description available.
|
28 |
Negative Conductance Load Modulation RF Power AmplifierNeslen, Cody R 01 June 2010 (has links) (PDF)
The number of mobile wireless devices on the market has increased substantially over the last decade. The frequency spectrum has become crowded due to the number of devices demanding radio traffic and new modulation schemes have been developed to accommodate the number of users. These new modulation schemes have caused very poor efficiencies in power amplifiers for wireless transmission systems due to high peak-to-average power ratios (PAPR). This thesis first presents the issue with classical power amplifiers in modern modulation systems. A brief overview of current attempts to mitigate this issue is provided. A new RF power amplifier topology is then presented with supporting simulations.
The presented amplifier topology utilizes the concept of negative conductance and load modulation. The amplifier operates in two stages, a low power stage and a high power stage. A negative conductance amplifier is utilized during peak power transmission to modulate the load presented to the input amplifier. This topology is shown to greatly improve the power added efficiency of power amplifiers in systems with high PAPR.
|
29 |
Energy efficient radio frequency system design for mobile WiMax applications. Modelling, optimisation and measurement of radio frequency power amplifier covering WiMax bandwidth based on the combination of class AB, class B, and C operations.Hussaini, Abubakar S. January 2012 (has links)
In today's digital world, information and communication technology accounts for 3%
and 2% of the global power consumption and CO2 emissions respectively. This
alarming figure is on an upward trend, as future telecommunications systems and
handsets will become even more power hungry since new services with higher
bandwidth requirements emerge as part of the so called ¿future internet¿ paradigm. In
addition, the mobile handset industry is tightly coupled to the consumer need for more
sophisticated handsets with greater battery lifetime. If we cannot make any significant
step to reducing the energy gap between the power hungry requirements of future
handsets, and what battery technology can deliver, then market penetration for 4G
handsets can be at risk. Therefore, energy conservation must be a design objective at the
forefront of any system design from the network layer, to the physical and the
microelectronic counterparts. In fact, the energy distribution of a handset device is
dominated by the energy consumption of the RF hardware, and in particular the power
amplifier design. Power amplifier design is a traditional topic that addresses the design
challenge of how to obtain a trade-off between linearity and efficiency in order to avoid
the introduction of signal distortion, whilst making best use of the available power
resources for amplification. However, the present work goes beyond this by
investigating a new line of amplifiers that address the green initiatives, namely green
power amplifiers. This research work explores how to use the Doherty technique to
promote efficiency enhancement and thus energy saving. Five different topologies of
RF power amplifiers have been designed with custom-made signal splitters. The design
core of the Doherty technique is based on the combination of a class B, class AB and a
class C power amplifier working in synergy; which includes 90-degree 2-way power
splitter at the input, quarter wavelength transformer at the output, and a new output
power combiner. The frequency range for the amplifiers was designed to operate in the
3.4 - 3.6 GHz frequency band of Europe mobile WiMAX. The experimental results
show that 30dBm output power can be achieved with 67% power added efficiency
(PAE) for the user terminal, and 45dBm with 66% power added efficiency (PAE) for
base stations which marks a 14% and 11% respective improvement over current stateof-
the-art, while meeting the power output requirements for mobile WiMAX
applications.
|
30 |
Investigation and Design of New, Efficient and Compact Load Modulation Amplifiers for 5G Base Stations. Design, Simulation, Implementation and Measurements of Radio Frequency Power Amplifiers Using Active Load Modulation Technique for More Compact and Efficient 5G Base Stations AmplifiersAbdulkhaleq, Ahmed M. January 2020 (has links)
High efficiency is an essential requirement for any system, where the energy
can be saved with full retention of system performance. The power amplifier in
modern mobile communications system consumes most of the supplied power
through the dissipated power and the required cooling systems. However, as
new services were added as features for the developed mobile generations, the
required data rate has increased to fulfil the new requirements. In this case, the
data should be sent with the allocated bandwidth, so complex modulation
schemes are used to utilise the available bandwidth efficiently. Nevertheless,
the modulated signal will have a Peak to Average Power Ratio (PAPR) which
increases as the modulation complexity is increasing. In this case, the power
amplifier should be backed off and designed to provide good linearity and
efficiency over high PAPR.
Among the efficiency enhancement techniques, the Doherty technique (Load
modulation technique) is the simplest one, where no additional circuity nor
signal processing is required. In this work, the theory of load modulation
amplifiers is investigated through two asymmetrical Doherty Power Amplifiers
(DPA) targeting 3.3-3.5 GHz were designed and fabricated using two transistors
(25 W and 45 W). In addition, more compact load modulation amplifiers
targeting sub 6-GHz bandwidth of 5G specifically 3.4-3.8 GHz is discussed
including the theory of implementing these amplifiers, where different amplifier
capabilities are explored. Each amplifier design was discussed in detail, in
which the input and output matching networks were designed and tested in
addition to the design of the stability circuit to make sure that the amplifier is
stable and working according to the specified requirements. The fabricated
circuits were evaluated practically using the available instrument test, whereas
Microwave Office software was used for the simulation purpose, each amplifier
was designed separately, where all the designed amplifiers were able to provide
the targeted efficiency at different back-off power points. Besides, some
additional factors that affect the designed load modulation amplifiers such as
the effect of the harmonics at the back-off and mismatching the amplifier is
discussed. / European Union’s Horizon 2020 research and innovation programme (SECRET)
|
Page generated in 0.0439 seconds