• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 15
  • 4
  • Tagged with
  • 48
  • 48
  • 26
  • 26
  • 19
  • 16
  • 14
  • 13
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modélisation flexible du risque d’événements iatrogènes radio-induits / Flexible modeling of radiation-induced adverse events risk

Benadjaoud, Mohamed Amine 27 March 2015 (has links)
La radiothérapie occupe une place majeure dans l’arsenal thérapeutique des cancers.Malgré des progrès technologiques importants depuis près de vingt ans, des tissus sains au voisinage ou à distance de la tumeur cible continuent à être inévitablement irradiés à des niveaux de doses très différents. Ces doses sont à l’origine d’effets secondaires précoces (Œdème, radionécrose, Dysphagie, Cystite) ou tardifs (rectorragies, télangiectasie, effets carcinogènes, les pathologie cérébrovasculaires).Il est donc primordial de quantifier et de prévenir ces effets secondaires afin d'améliorer la qualité de vie des patients pendant et après leur traitement.La modélisation du risque d'événements iatrogènes radio-induits repose sur la connaissance précise de la distribution de doses au tissu sain d'intérêt ainsi que sur un modèle de risque capable d'intégrer un maximum d'informations sur le profil d'irradiation et des autres facteurs de risques non dosimétriques. L'objectif de ce travail de thèse a été de développer des méthodes de modélisation capables de répondre à des questions spécifiques aux deux aspects, dosimétriques et statistiques, intervenant dans la modélisation du risque de survenue d'événements iatrogènes radio-induits.Nous nous sommes intéressé dans un premier temps au développement d'un modèle de calcul permettant de déterminer avec précision la dose à distance due au rayonnements de diffusion et de fuite lors d'un traitement par radiothérapie externe et ce, pour différentes tailles des champs et à différentes distances de l'axe du faisceau. Ensuite, nous avons utilisé des méthodes d'analyse de données fonctionnelles pour développer un modèle de risque de toxicité rectales après irradiation de la loge prostatique. Le modèle proposé a montré des performances supérieures aux modèles de risque existants particulièrement pour décrire le risque de toxicités rectales de grade 3. Dans le contexte d'une régression de Cox flexible sur données réelles, nous avons proposé une application originale des méthodes de statistique fonctionnelle permettant d'améliorer les performances d'une modélisation via fonctions B-splines de la relation dose-effet entre la dose de radiation à la thyroïde.Nous avons également proposé dans le domaine de la radiobiologie une méthodes basée sur l’analyse en composantes principales multiniveau pour quantifier la part de la variabilité expérimentale dans la variabilité des courbes de fluorescence mesurées. / Radiotherapy plays a major role in the therapeutic arsenal against cancer. Despite significant advances in technology for nearly twenty years, healthy tissues near or away from the target tumor remain inevitably irradiated at very different levels of doses. These doses are at the origin of early side effects (edema, radiation necrosis, dysphagia, cystitis) or late (rectal bleeding, telangiectasia, carcinogenic, cerebrovascular diseases). It is therefore essential to quantify and prevent these side effects to improve the patient quality of life after their cancer treatment.The objective of this thesis was to propose modelling methods able to answer specific questions asked in both aspects, dosimetry and statistics, involved in the modeling risk of developing radiation-induced iatrogenic pathologies.Our purpose was firstly to assess the out-of-field dose component related to head scatter radiation in high-energy photon therapy beams and then derive a multisource model for this dose component. For measured doses under out-of-field conditions, the average local difference between the calculated and measured photon dose is 10%, including doses as low as 0.01% of the maximum dose on the beam axis. We secondly described a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding for In the flexible Cox model context, we proposed a new dimension reduction technique based on a functional principal component analysis to estimate a dose-response relationship. A two-stage knots selection scheme was performed: a potential set of knots is chosen based on information from the rotated functional principal components and the final knots selection is then based on statistical model selection. Finally, a multilevel functional principal component analysis was applied to radiobiological data in order to quantify the experimental Variability for replicate measurements of fluorescence signals of telomere length.
32

Méthodologie de traitement et d'analyse de signaux expérimentaux d'émission acoustique : application au comportement d'un élément combustible en situation accidentelle / Methodology of treatment and analysis of experimental acoustic emission signals : application to the behavior of a fuel element in accident situation

Traore, Oumar Issiaka 15 January 2018 (has links)
L’objectif de cette thèse est de contribuer à l’amélioration du processus de dépouillement d’essais de sûreté visant étudier le comportement d'un combustible nucléaire en contexte d’accident d’injection de réactivité (RIA), via la technique de contrôle par émission acoustique. Il s’agit notamment d’identifier clairement les mécanismes physiques pouvant intervenir au cours des essais à travers leur signature acoustique. Dans un premier temps, au travers de calculs analytiques et des simulation numériques conduites au moyen d’une méthode d’éléments finis spectraux, l’impact du dispositif d’essais sur la propagation des ondes est étudié. Une fréquence de résonance du dispositif est identifiée. On établit également que les mécanismes basses fréquences ne sont pas impactés par le dispositif d'essais. En second lieu, diverses techniques de traitement du signal (soustraction spectrale, analyse spectrale singulière, ondelettes. . . ) sont expérimentées, afin de proposer des outils permettant de traiter différent types de bruit survenant lors des essais RIA. La soustraction spectrale s’avère être la méthode la plus robuste aux changements de nature du bruit, avec un fort potentiel d’amélioration du rapport signal-à-bruit. Enfin, des méthodes d’analyse de données multivariées et d’analyse de données fonctionnelles ont été appliquées, afin de proposer un algorithme de classification statistique permettant de mieux comprendre la phénoménologie des accidents de type RIA et d’identifier les mécanismes physiques. Selon l’approche (multivariée ou fonctionnelle), les algorithmes obtenus permettent de reconnaître le mécanisme associé à une salve dans plus de 80% des cas. / The objective of the thesis is to contribute to the improvement of the monitoring process of nuclear safety experiments dedicated to study the behavior of the nuclear fuel in a reactivity initiated accident (RIA) context, by using the acoustic emission technique. In particular, we want to identify the physical mechanisms occurring during the experiments through their acoustic signatures. Firstly, analytical derivations and numerical simulations using the spectral finite element method have been performed in order to evaluate the impact of the wave travelpath in the test device on the recorded signals. A resonant frequency has been identified and it has been shown that the geometry and the configuration of the test device may not influence the wave propagation in the low frequency range. Secondly, signal processing methods (spectral subtraction, singular spectrum analysis, wavelets,…) have been explored in order to propose different denoising strategies according to the type of noise observed during the experiments. If we consider only the global SNR improvement ratio, the spectral subtraction method is the most robust to changes in the stochastic behavior of noise. Finally, classical multivariate and functional data analysis tools are used in order to create a machine learning algorithm dedicated to contribute to a better understanding of the phenomenology of RIA accidents. According to the method (multivariate or functional), the obtained algorithms allow to identify the mechanisms in more than 80 % of cases.
33

L'approche Support Vector Machines (SVM) pour le traitement des données fonctionnelles / Support Vector Machines (SVM) for Fonctional Data Analysis

Henchiri, Yousri 16 October 2013 (has links)
L'Analyse des Données Fonctionnelles est un domaine important et dynamique en statistique. Elle offre des outils efficaces et propose de nouveaux développements méthodologiques et théoriques en présence de données de type fonctionnel (fonctions, courbes, surfaces, ...). Le travail exposé dans cette thèse apporte une nouvelle contribution aux thèmes de l'apprentissage statistique et des quantiles conditionnels lorsque les données sont assimilables à des fonctions. Une attention particulière a été réservée à l'utilisation de la technique Support Vector Machines (SVM). Cette technique fait intervenir la notion d'Espace de Hilbert à Noyau Reproduisant. Dans ce cadre, l'objectif principal est d'étendre cette technique non-paramétrique d'estimation aux modèles conditionnels où les données sont fonctionnelles. Nous avons étudié les aspects théoriques et le comportement pratique de la technique présentée et adaptée sur les modèles de régression suivants. Le premier modèle est le modèle fonctionnel de quantiles de régression quand la variable réponse est réelle, les variables explicatives sont à valeurs dans un espace fonctionnel de dimension infinie et les observations sont i.i.d.. Le deuxième modèle est le modèle additif fonctionnel de quantiles de régression où la variable d'intérêt réelle dépend d'un vecteur de variables explicatives fonctionnelles. Le dernier modèle est le modèle fonctionnel de quantiles de régression quand les observations sont dépendantes. Nous avons obtenu des résultats sur la consistance et les vitesses de convergence des estimateurs dans ces modèles. Des simulations ont été effectuées afin d'évaluer la performance des procédures d'inférence. Des applications sur des jeux de données réelles ont été considérées. Le bon comportement de l'estimateur SVM est ainsi mis en évidence. / Functional Data Analysis is an important and dynamic area of statistics. It offers effective new tools and proposes new methodological and theoretical developments in the presence of functional type data (functions, curves, surfaces, ...). The work outlined in this dissertation provides a new contribution to the themes of statistical learning and quantile regression when data can be considered as functions. Special attention is devoted to use the Support Vector Machines (SVM) technique, which involves the notion of a Reproducing Kernel Hilbert Space. In this context, the main goal is to extend this nonparametric estimation technique to conditional models that take into account functional data. We investigated the theoretical aspects and practical attitude of the proposed and adapted technique to the following regression models.The first model is the conditional quantile functional model when the covariate takes its values in a bounded subspace of the functional space of infinite dimension, the response variable takes its values in a compact of the real line, and the observations are i.i.d.. The second model is the functional additive quantile regression model where the response variable depends on a vector of functional covariates. The last model is the conditional quantile functional model in the dependent functional data case. We obtained the weak consistency and a convergence rate of these estimators. Simulation studies are performed to evaluate the performance of the inference procedures. Applications to chemometrics, environmental and climatic data analysis are considered. The good behavior of the SVM estimator is thus highlighted.
34

Contributions à la statistique des processus et à l'estimation fonctionnelle

Rachdi, Mustapha 07 November 2006 (has links) (PDF)
Dans cette HDR, notre objectif premier est de présenter nos travaux sur la statistique non paramétrique des processus stochastiques et sur l'estimation fonctionnelle. Plutôt que de vouloir insister sur les détails mathématiques de nos résultats, que l'on pourra toujours retrouver dans les articles correspondants, nous avons choisi de les présenter d'une façon synthétique. Sans prétendre à l'exhaustivité, nous nous sommes attachés à indiquer les articles historiques et à faire un choix de certains articles nous paraîssant les plus intéressants. Les techniques non paramétriques ont pris une importance de plus en plus grande depuis une trentaine d'années dans la recherche en statistique mathématique. Le nombre toujours croissant d'articles sur ce thème en témoigne. Il faut également signaler que le développement des moyens informatiques et la puissance actuelle de calcul des ordinateurs permettent d'élargir toujours plus le champs d'application de ces méthodes. Ce document est organisé en respectant des thématiques. En fait, nous avons classifié l'ensemble de nos travaux en six chapitres. Dans chacun de ces chapitres, nous indiquons les travaux concernés avant un bref historique, ensuite nous résumons les principaux résultats, les idées sous-jacentes, et ce qui a motivé ce travail. Nous scindons nos recherches en deux grandes parties : d'abord, l'estimation fonctionnelle et la statistique des processus en dimension finie (chapitres 1, 2, 3 et 4), et puis, l'analyse statistique des données fonctionnelles (chapitre 5). Le dernier chapitre de ce mémoire est le fruit de nos investigations avec l'équipe de Telecom Lille 1 sur la modélisation statistique du canal de transmission à 60 GHz dans les milieux confinés.
35

Analyse et modélisation de données probabilistes par décomposition de mélange de copules et application à une base de données climatologiques

Vrac, Mathieu 06 December 2002 (has links) (PDF)
Nous étendons les méthodes de décomposition de mélange de densités de probabilité au cas des données "fonctions de répartition", permettant ainsi de classifier ces fonctions et de modéliser une loi pour ces données fonctionnelles particulières. Cette loi est donnée par la notion de "fonctions de distribution de distributions" (FDD), basée sur la définition d'une fonction de répartition pour des variables aléatoires à valeurs dans un espace probabiliste. Les extensions sont effectuées en associant les FDD aux fonctions "copules" par le théorème de Sklar. Les copules "couplent" les fonctions de répartition à n dimensions (jointes) et à 1-dimension (marginales) d'un n-uplet de variables aléatoires. Nous regardons principalement une classe de copules paramétriques, les copules Archimédiennes, et proposons trois nouvelles méthodes d'estimation des paramètres dans le cas de copules multivariées : par coefficients de corrélation de Kendall, de Spearman, et par maximisation de la vraisemblance. L'association des FDD et des copules caractérise l'évolution des données fonctionnelles (i.e. la forme de ces fonctions) entre différents points à l'intérieur des classes pour chaque variable, et donne une mesure de dépendance entre les variables utilisées. Les méthodes sont tout d'abord développées pour une variable, puis divers généralisations sont proposées pour n dimensions. Certains points théoriques sont ensuite discutés, tels que la convergence de l'algorithme et le fait que la méthode par copules est une généralisation du cas classique. Une application de la méthode "approche classification" par copules est réalisée sur des données climatiques de l'atmosphère terrestre. Le but est la classification de "profils" atmosphériques et l'estimation de la loi sous-jacente des données. Les résultats sont comparés avec ceux de méthodes "classiques", prouvant ainsi les performances nettement supérieures de la méthode par décomposition de mélange de copules (DMC) et l'intérêt de l'utilisation des données probabilistes.
36

Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire

Lardin, Pauline 26 November 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données
37

Algorithmes stochastiques pour la statistique robuste en grande dimension / Stochastic algorithms for robust statistics in high dimension

Godichon-Baggioni, Antoine 17 June 2016 (has links)
Cette thèse porte sur l'étude d'algorithmes stochastiques en grande dimension ainsi qu'à leur application en statistique robuste. Dans la suite, l'expression grande dimension pourra aussi bien signifier que la taille des échantillons étudiés est grande ou encore que les variables considérées sont à valeurs dans des espaces de grande dimension (pas nécessairement finie). Afin d'analyser ce type de données, il peut être avantageux de considérer des algorithmes qui soient rapides, qui ne nécessitent pas de stocker toutes les données, et qui permettent de mettre à jour facilement les estimations. Dans de grandes masses de données en grande dimension, la détection automatique de points atypiques est souvent délicate. Cependant, ces points, même s'ils sont peu nombreux, peuvent fortement perturber des indicateurs simples tels que la moyenne ou la covariance. On va se concentrer sur des estimateurs robustes, qui ne sont pas trop sensibles aux données atypiques. Dans une première partie, on s'intéresse à l'estimation récursive de la médiane géométrique, un indicateur de position robuste, et qui peut donc être préférée à la moyenne lorsqu'une partie des données étudiées est contaminée. Pour cela, on introduit un algorithme de Robbins-Monro ainsi que sa version moyennée, avant de construire des boules de confiance non asymptotiques et d'exhiber leurs vitesses de convergence $L^{p}$ et presque sûre.La deuxième partie traite de l'estimation de la "Median Covariation Matrix" (MCM), qui est un indicateur de dispersion robuste lié à la médiane, et qui, si la variable étudiée suit une loi symétrique, a les mêmes sous-espaces propres que la matrice de variance-covariance. Ces dernières propriétés rendent l'étude de la MCM particulièrement intéressante pour l'Analyse en Composantes Principales Robuste. On va donc introduire un algorithme itératif qui permet d'estimer simultanément la médiane géométrique et la MCM ainsi que les $q$ principaux vecteurs propres de cette dernière. On donne, dans un premier temps, la forte consistance des estimateurs de la MCM avant d'exhiber les vitesses de convergence en moyenne quadratique.Dans une troisième partie, en s'inspirant du travail effectué sur les estimateurs de la médiane et de la "Median Covariation Matrix", on exhibe les vitesses de convergence presque sûre et $L^{p}$ des algorithmes de gradient stochastiques et de leur version moyennée dans des espaces de Hilbert, avec des hypothèses moins restrictives que celles présentes dans la littérature. On présente alors deux applications en statistique robuste: estimation de quantiles géométriques et régression logistique robuste.Dans la dernière partie, on cherche à ajuster une sphère sur un nuage de points répartis autour d'une sphère complète où tronquée. Plus précisément, on considère une variable aléatoire ayant une distribution sphérique tronquée, et on cherche à estimer son centre ainsi que son rayon. Pour ce faire, on introduit un algorithme de gradient stochastique projeté et son moyenné. Sous des hypothèses raisonnables, on établit leurs vitesses de convergence en moyenne quadratique ainsi que la normalité asymptotique de l'algorithme moyenné. / This thesis focus on stochastic algorithms in high dimension as well as their application in robust statistics. In what follows, the expression high dimension may be used when the the size of the studied sample is large or when the variables we consider take values in high dimensional spaces (not necessarily finite). In order to analyze these kind of data, it can be interesting to consider algorithms which are fast, which do not need to store all the data, and which allow to update easily the estimates. In large sample of high dimensional data, outliers detection is often complicated. Nevertheless, these outliers, even if they are not many, can strongly disturb simple indicators like the mean and the covariance. We will focus on robust estimates, which are not too much sensitive to outliers.In a first part, we are interested in the recursive estimation of the geometric median, which is a robust indicator of location which can so be preferred to the mean when a part of the studied data is contaminated. For this purpose, we introduce a Robbins-Monro algorithm as well as its averaged version, before building non asymptotic confidence balls for these estimates, and exhibiting their $L^{p}$ and almost sure rates of convergence.In a second part, we focus on the estimation of the Median Covariation Matrix (MCM), which is a robust dispersion indicator linked to the geometric median. Furthermore, if the studied variable has a symmetric law, this indicator has the same eigenvectors as the covariance matrix. This last property represent a real interest to study the MCM, especially for Robust Principal Component Analysis. We so introduce a recursive algorithm which enables us to estimate simultaneously the geometric median, the MCM, and its $q$ main eigenvectors. We give, in a first time, the strong consistency of the estimators of the MCM, before exhibiting their rates of convergence in quadratic mean.In a third part, in the light of the work on the estimates of the median and of the Median Covariation Matrix, we exhibit the almost sure and $L^{p}$ rates of convergence of averaged stochastic gradient algorithms in Hilbert spaces, with less restrictive assumptions than in the literature. Then, two applications in robust statistics are given: estimation of the geometric quantiles and application in robust logistic regression.In the last part, we aim to fit a sphere on a noisy points cloud spread around a complete or truncated sphere. More precisely, we consider a random variable with a truncated spherical distribution, and we want to estimate its center as well as its radius. In this aim, we introduce a projected stochastic gradient algorithm and its averaged version. We establish the strong consistency of these estimators as well as their rates of convergence in quadratic mean. Finally, the asymptotic normality of the averaged algorithm is given.
38

Exploration de données pour l'optimisation de trajectoires aériennes / Data analysis for aircraft trajectory optimization

Rommel, Cédric 26 October 2018 (has links)
Cette thèse porte sur l'utilisation de données de vols pour l'optimisation de trajectoires de montée vis-à-vis de la consommation de carburant.Dans un premier temps nous nous sommes intéressé au problème d'identification de modèles de la dynamique de l'avion dans le but de les utiliser pour poser le problème d'optimisation de trajectoire à résoudre. Nous commençont par proposer une formulation statique du problème d'identification de la dynamique. Nous l'interpretons comme un problème de régression multi-tâche à structure latente, pour lequel nous proposons un modèle paramétrique. L'estimation des paramètres est faite par l'application de quelques variations de la méthode du maximum de vraisemblance.Nous suggérons également dans ce contexte d'employer des méthodes de sélection de variable pour construire une structure de modèle de régression polynomiale dépendant des données. L'approche proposée est une extension à un contexte multi-tâche structuré du bootstrap Lasso. Elle nous permet en effet de sélectionner les variables du modèle dans un contexte à fortes corrélations, tout en conservant la structure du problème inhérente à nos connaissances métier.Dans un deuxième temps, nous traitons la caractérisation des solutions du problème d'optimisation de trajectoire relativement au domaine de validité des modèles identifiés. Dans cette optique, nous proposons un critère probabiliste pour quantifier la proximité entre une courbe arbitraire et un ensemble de trajectoires échantillonnées à partir d'un même processus stochastique. Nous proposons une classe d'estimateurs de cette quantitée et nous étudions de façon plus pratique une implémentation nonparamétrique basé sur des estimateurs à noyau, et une implémentation paramétrique faisant intervenir des mélanges Gaussiens. Ce dernier est introduit comme pénalité dans le critère d'optimisation de trajectoire dans l'objectif l'intention d'obtenir directement des trajectoires consommant peu sans trop s'éloigner des régions de validité. / This thesis deals with the use of flight data for the optimization of climb trajectories with relation to fuel consumption.We first focus on methods for identifying the aircraft dynamics, in order to plug it in the trajectory optimization problem. We suggest a static formulation of the identification problem, which we interpret as a structured multi-task regression problem. In this framework, we propose parametric models and use different maximum likelihood approaches to learn the unknown parameters.Furthermore, polynomial models are considered and an extension to the structured multi-task setting of the bootstrap Lasso is used to make a consistent selection of the monomials despite the high correlations among them.Next, we consider the problem of assessing the optimized trajectories relatively to the validity region of the identified models. For this, we propose a probabilistic criterion for quantifying the closeness between an arbitrary curve and a set of trajectories sampled from the same stochastic process. We propose a class of estimators of this quantity and prove their consistency in some sense. A nonparemetric implementation based on kernel density estimators, as well as a parametric implementation based on Gaussian mixtures are presented. We introduce the later as a penalty term in the trajectory optimization problem, which allows us to control the trade-off between trajectory acceptability and consumption reduction.
39

Contributions à la modélisation de données spatiales et fonctionnelles : applications / Contributions to modeling spatial and functional data : applications

Ternynck, Camille 28 November 2014 (has links)
Dans ce mémoire de thèse, nous nous intéressons à la modélisation non paramétrique de données spatiales et/ou fonctionnelles, plus particulièrement basée sur la méthode à noyau. En général, les échantillons que nous avons considérés pour établir les propriétés asymptotiques des estimateurs proposés sont constitués de variables dépendantes. La spécificité des méthodes étudiées réside dans le fait que les estimateurs prennent en compte la structure de dépendance des données considérées.Dans une première partie, nous appréhendons l’étude de variables réelles spatialement dépendantes. Nous proposons une nouvelle approche à noyau pour estimer les fonctions de densité de probabilité et de régression spatiales ainsi que le mode. La particularité de cette approche est qu’elle permet de tenir compte à la fois de la proximité entre les observations et de celle entre les sites. Nous étudions les comportements asymptotiques des estimateurs proposés ainsi que leurs applications à des données simulées et réelles.Dans une seconde partie, nous nous intéressons à la modélisation de données à valeurs dans un espace de dimension infinie ou dites "données fonctionnelles". Dans un premier temps, nous adaptons le modèle de régression non paramétrique introduit en première partie au cadre de données fonctionnelles spatialement dépendantes. Nous donnons des résultats asymptotiques ainsi que numériques. Puis, dans un second temps, nous étudions un modèle de régression de séries temporelles dont les variables explicatives sont fonctionnelles et le processus des innovations est autorégressif. Nous proposons une procédure permettant de tenir compte de l’information contenue dans le processus des erreurs. Après avoir étudié le comportement asymptotique de l’estimateur à noyau proposé, nous analysons ses performances sur des données simulées puis réelles.La troisième partie est consacrée aux applications. Tout d’abord, nous présentons des résultats de classification non supervisée de données spatiales (multivariées), simulées et réelles. La méthode de classification considérée est basée sur l’estimation du mode spatial, obtenu à partir de l’estimateur de la fonction de densité spatiale introduit dans le cadre de la première partie de cette thèse. Puis, nous appliquons cette méthode de classification basée sur le mode ainsi que d’autres méthodes de classification non supervisée de la littérature sur des données hydrologiques de nature fonctionnelle. Enfin, cette classification des données hydrologiques nous a amené à appliquer des outils de détection de rupture sur ces données fonctionnelles. / In this dissertation, we are interested in nonparametric modeling of spatial and/or functional data, more specifically based on kernel method. Generally, the samples we have considered for establishing asymptotic properties of the proposed estimators are constituted of dependent variables. The specificity of the studied methods lies in the fact that the estimators take into account the structure of the dependence of the considered data.In a first part, we study real variables spatially dependent. We propose a new kernel approach to estimating spatial probability density of the mode and regression functions. The distinctive feature of this approach is that it allows taking into account both the proximity between observations and that between sites. We study the asymptotic behaviors of the proposed estimates as well as their applications to simulated and real data. In a second part, we are interested in modeling data valued in a space of infinite dimension or so-called "functional data". As a first step, we adapt the nonparametric regression model, introduced in the first part, to spatially functional dependent data framework. We get convergence results as well as numerical results. Then, later, we study time series regression model in which explanatory variables are functional and the innovation process is autoregressive. We propose a procedure which allows us to take into account information contained in the error process. After showing asymptotic behavior of the proposed kernel estimate, we study its performance on simulated and real data.The third part is devoted to applications. First of all, we present unsupervised classificationresults of simulated and real spatial data (multivariate). The considered classification method is based on the estimation of spatial mode, obtained from the spatial density function introduced in the first part of this thesis. Then, we apply this classification method based on the mode as well as other unsupervised classification methods of the literature on hydrological data of functional nature. Lastly, this classification of hydrological data has led us to apply change point detection tools on these functional data.
40

Prévision non paramétrique dans les modèles de censure via l'estimation du quantile conditionnel en dimension infinie / Nonparametric prediction in censorship models via the estimation of the conditional quantile in infinite dimension

Horrigue, Walid 12 December 2012 (has links)
Dans cette thèse, nous étudions les propriétés asymptotiques de paramètres fonctionnels conditionnels en statistique non paramétrique, quand la variable explicative prend ses valeurs dans un espace de dimension infinie. Dans ce cadre non paramétrique, on considère les estimateurs des paramètres fonctionnels usuels, tels la loi conditionnelle, la densité de probabilité conditionnelle, ainsi que le quantile conditionnel. Le premier travail consiste à proposer un estimateur du quantile conditionnel et de prouver sa convergence uniforme sur un sous-ensemble compact. Afin de suivre la convention dans les études biomédicales, nous considérons une suite de v.a {Ti, i ≥ 1} identiquement distribuées, de densité f, censurée à droite par une suite aléatoire {Ci, i ≥ 1} supposée aussi indépendante, identiquement distribuée et indépendante de {Ti, i ≥ 1}. Notre étude porte sur des données fortement mélangeantes et X la covariable prend des valeurs dans un espace à dimension infinie.Le second travail consiste à établir la normalité asymptotique de l’estimateur à noyau du quantile conditionnel convenablement normalisé, pour des données fortement mélangeantes, et repose sur la probabilité de petites boules. Plusieurs applications à des cas particuliers ont été traitées. Enfin, nos résultats sont appliqués à des données simulées et montrent la qualité de notre estimateur. / In this thesis, we study some asymptotic properties of conditional functional parameters in nonparametric statistics setting, when the explanatory variable takes its values in infinite dimension space. In this nonparametric setting, we consider the estimators of the usual functional parameters, as the conditional law, the conditional probability density, the conditional quantile. We are essentially interested in the problem of forecasting in the nonparametric conditional models, when the data are functional random variables. Firstly, we propose an estimator of the conditional quantile and we establish its uniform strong convergence with rates over a compact subset. To follow the convention in biomedical studies, we consider an identically distributed sequence {Ti, i ≥ 1}, here density f, right censored by a random {Ci, i ≥ 1} also assumed independent identically distributed and independent of {Ti, i ≥ 1}. Our study focuses on dependent data and the covariate X takes values in an infinite space dimension. In a second step we establish the asymptotic normality of the kernel estimator of the conditional quantile, under α-mixing assumption and on the concentration properties on small balls of the probability measure of the functional regressors. Many applications in some particular cases have been also given.

Page generated in 0.0791 seconds