• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 23
  • 12
  • Tagged with
  • 156
  • 64
  • 64
  • 49
  • 49
  • 32
  • 30
  • 28
  • 27
  • 20
  • 19
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Dosimétrie basée sur l'imagerie pour l'optimisation de la thérapie photodynamique pour le mésothéliome pleural malin / Optimizing photodynamic therapy for malignant pleural mesothelioma with dosimetry based on imaging

Munck, Camille 05 December 2017 (has links)
Le mésothéliome pleural malin (MPM) est un cancer au pronostic sombre, en lien avec des traitements décevants. Quand la chirurgie fait partie d’un traitement multimodal, il est essentiel de l’associer avec un traitement adjuvant local pour tuer les cellules tumorales résiduelles. Récemment, la thérapie photodynamique (PDT) intrapleurale intra-opératoire, après exérèse tumorale chirurgicale, est apparue comme un traitement prometteur. Son succès repose sur l’illumination la plus complète et homogène de la cavité pleurale, contrôlée par une dosimétrie de lumière. Celle utilisée aujourd’hui en pratique clinique aux Etats-Unis repose sur la dosimétrie ponctuelle de sept capteurs intrathoraciques, mais ne permet pas d’avoir un reflet de la lumière délivrée sur l’ensemble des surfaces pleurales. Mon projet de recherche se décline sur un axe clinique et un axe expérimental : 1) mettre en place un essai de clinique de phase II au CHRU de Lille, associant la PDT intrapleurale au traitement multimodal du MPM, 2) développer une méthode de dosimétrie de lumière peropératoire innovante par la caractérisation du dispositif lumineux et l’utilisation de l’imagerie.L’essai clinique a démarré en Février 2016, en utilisant la dosimétrie de référence avec les sept capteurs en suivant le protocole américain. Une baguette lumineuse innovante a été conçue au laboratoire, ainsi que le système de dosimétrie. Quatre patients ont bénéficié d’une pleurectomie/décortication suivie d’une PDT intrapleurale (avec le photosensibilisateur Photofrin®) et d’une chimiothérapie adjuvante, sans toxicité majeure. Concernant le projet expérimental, un profil d’illumination de la baguette lumineuse a été défini en combinant les mesures de puissance ponctuelles (Watt) et celles de pixel à partir d’une photographie digitale. Un coefficient d’atténuation effectif a été calculé : µeff = 0,705 cm-1. A l’aide d’un système de repérage spatial électromagnétique (TrackStar®), la position de la baguette lumineuse est connue à l’intérieur de la cavité pleurale en temps réel, et ses coordonnées spatiales sont projetées sur le TDM thoracique en 3D. Après avoir intégré le profil d’illumination de la baguette au système de repérage, un logiciel dédié permet la représentation spatiale sur imagerie de la dose cumulée de lumière délivrée. Ce travail a été réalisé et validé sur un fantôme de cavité thoracique intra opératoire, puis notre méthode de dosimétrie a été comparée à celle de référence.Les perspectives sont de pouvoir tester la faisabilité cette nouvelle méthode de dosimétrie chez l’homme et de développer des dispositifs lumineux innovants pour une meilleure standardisation de la PDT pour le MPM. / Malignant pleural mesothelioma (MPM) is a cancer with a poor prognosis due to deceiving treatments. When surgery is part of a multimodal treatment for MPM, it is crucial to combine it with a local adjuvant treatment to kill residual tumour cells. Recently, intrapleural photodynamic therapy (PDT) after surgical resection has appeared to be a promising treatment for MPM. Its success relies essentially on the most complete and homogeneous illumination of the pleural cavity, monitored by light dosimetry. The dosimetry method used today in the United States, with intrathoracic probes collecting the light at 7 strategic locations, does not give information about the light delivered on the whole pleural surface. This research project has a clinical and experimental axis: 1) to set up a phase II clinical trial in Lille University Hospital, combining intrapleural PDT to surgery within a multimodal treatment, 2) to develop an innovative peroperative light dosimetry method by the characterization of a light device and use of imaging.Clinical trial has started in February 2016, with the seven probes dosimetry method of reference, following the American protocol. An innovative light wand was conceived within the laboratory, as well as the dosimetry sytem. Four patients have undergone pleurectomy/decortications, intrapleural PDT (with photosensitizer Photofrin®) and adjuvant chemotherapy, without major toxicity. Regarding the experimental project, an illumination profile of the light wand was defined using two complementary methods: power measurements (Watt) and pixel intensity from digital photography. An effective attenuation coefficient was calculated: µeff = 0.705 cm-1. With an electromagnetic spatial tracking system (TrackStar®), we localized in real time the position of the light wand within the pleural cavity and projected its spatial coordinates to the 3D CT scan images. After having inserted the illumination profile of the light wand to the tracking system, a dedicated software allowed the spatial representation on CT images of the cumulated light dose. This work has been completed on an intraoperative thoracic cavity phantom. Our dosimetry method was validated on this phantom and compared to the one of reference.The perspectives are to test the feasibility of this new dosimetry method in humans, and to develop alternative light devices for a better standardization of the intrapleural PDT technique for MPM.
92

Contribution à la radiothérapie adaptative par analyse systématique de la fluence en entrée et de la dose en sortie du patient / Contribution to adaptative radiotherapy by systematic analysis of the entrance fluence and exit patient dose

Celi, Sofia 01 April 2016 (has links)
La radiothérapie moderne combine les techniques complexes et les traitements personnalisés, avec le risque que certaines évolutions et erreurs ayant lieu au cours de traitement passent inaperçues. Ces aléas peuvent entraîner des conséquences graves pour la santé du patient. Dans cette perspective, nous avons étudié le potentiel d'un système de dosimétrie in vivo de transit pour le suivi continu du patient et, par conséquent, la radiothérapie adaptative. L'expérience clinique et des tests de faisabilité ont permis de définir les axes de travail principaux: l'automatisation et la simplification du procédé d'analyse des contrôles. Les développements incluent la création d'une bibliothèque de données standard et une série d'analyses de causes racines, permettant ainsi de renforcer la précision du système, d'améliorer l'automatisation de sa mise en place et d'identifier des pistes pour une analyse efficace des résultats et pour la création d'outils supplémentaires facilitant le suivi et l'adaptation du traitement en routine clinique. / Modern radiation therapy combines complex techniques and personalized treatments, with the risk that certain evolutions and errors occurring during the course of the treatment might go unnoticed. These fluctuations may cause great damage to the health of the patient. In this perspective, we worked on the potential of a transit in vivo dosimetry system for continuous monitoring of the patient and, hereafter, adaptive radiotherapy. Our clinical experience and feasibility testing determined the main lines of work : automatization and simplification of the results analysis method. The developments included the creation of a golden data library and a series of root cause analyzes, allowing us to strengthen the accuracy of the system, to enhance the automatization of the setup and to identify tracks for an efficient analysis of the results and for the creation of additional analytical tools to facilitate the monitoring and adaptation of the treatments in clinical routine.
93

Biodistribution d'un agent de contraste iodé et impacts dosimétriques : étude pour la radiothérapie stéréotaxique par rayonnement synchrotron / Iodinated contrast agent biodistribution : a study for synchrotron stereotactic radiation therapy

Obeid, Layal 16 December 2014 (has links)
Le traitement des gliomes de haut grade représente un réel défi médical. Les techniques de thérapies actuelles sont principalement à visée palliative et leur efficacité est limitée. De nombreuses stratégies thérapeutiques sont explorées pour trouver un traitement curatif. La radiothérapie stéréotaxique par rayonnement synchrotron (SSRT) est une technique innovante dont le principe repose sur l'accumulation sélective d'un élément lourd (Z élevé) dans la tumeur, suivie d'une irradiation stéréotaxique avec un faisceau monochromatique de rayons X, de faible énergie (50-100 keV), issus d'une source synchrotron. Une augmentation de la dose déposée localement dans la tumeur est obtenue grâce au renforcement de l’effet photoélectrique dans ces conditions. Cette thèse s’inscrit dans le cadre des essais cliniques de phase I et II de la SSRT menés sur des métastases cérébrales, au synchrotron européen à Grenoble. Une injection systémique d’un agent de contraste iodé et un faisceau synchrotron de 80 keV sont utilisés lors de ces essais. L’efficacité de la SSRT repose directement sur la concentration de l’agent de contraste iodé accumulé dans la tumeur, sa stabilité au cours du temps et sa reproductibilité chez le même patient. L’objectif principal de ce travail a été d’évaluer et de modéliser les concentrations d'iode moyennes atteintes dans des métastases cérébrales, d’une part, et d’appréhender les impacts dosimétriques, engendrés par les variations spatiales et temporelles de ces concentrations sur le traitement des patients, d’autre part. Un protocole d'imagerie scanner a été conçu spécifiquement pour cette étude afin de permettre le suivi, temporel et spatial, des concentrations d'iode et l’extraction des paramètres de perfusion cérébrale dans une métastase cérébrale. Une méthodologie d'analyse expérimentale et une modélisation théorique de la bio-distribution d'iode dans des métastases cérébrales ont été développées. Un modèle mathématique reliant les concentrations d'iode aux paramètres de perfusion a été établi, dans le but de prédire les concentrations d'iode chez chaque patient et de réduire la durée du protocole de suivi. La reproductibilité de la prise de contraste a été caractérisée chez des patients à dix jours d’intervalle. Les impacts dosimétriques des écarts de concentrations d'iode observés sur les plans de traitement en SSRT ont été analysés. Ces derniers ont été comparés aux plans de traitement obtenus avec différentes techniques de pointe en radiothérapie afin d’évaluer les performances dosimétriques de la SSRT. / Gliomas treatment is still a challenging disease in medicine. Available treatments are mainly palliative and their efficiency is limited. Since years, many therapeutic strategies have been explored to find a cure. Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumours with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. A localised dose enhancement in brain tumours is obtained due to the reinforced photoelectric absorption in these conditions. This thesis takes part in the framework of phase I/II clinical trials, which are underway at the European Synchrotron Radiation Facility in Grenoble, France. These trials are realised on human brain metastasis using venous infusion of iodinated contrast agents and a 80 keV X-ray beam. The radiation dose enhancement depends on the amount of iodine in the tumour, its time course and its reproducibility for each patient. The aim of this work was to evaluate and model the amounts of iodine concentrations reached in brain metastasis, and to analyse the dosimetric deviations caused by spatial and temporal variations of these concentrations during the treatments. A CT cine scan protocol was designed especially for this study in order to extract quantitative iodine concentrations and associated brain perfusion parameters in human brain metastasis, as key parameters for treatment feasibility and quality. An experimental analysis methodology and a theoretical model of iodine biodistribution were developed. A mathematical relationship between iodine concentrations and perfusion parameters was established in order to estimate these concentrations for each patient in the future and to reduce the imaging dose, associated to the prolonged imaging acquisition time. The reproducibility of iodine uptake between the CT planning scan day and the treatment day was assessed (~10 days interval). The impact of iodine concentration variations on reference SSRT dosimetries was analysed. Finally, SSRT treatment plans were compared to those obtained with different cutting-edge radiotherapy techniques in order to evaluate dosimetric performances of SSRT.
94

Contribution des effets ciblés et non ciblés en radioimmunothérapie alpha et Auger de carcinoses péritonéales / Contribution of targeted and non-targeted effects in alpha and Auger radioimmunotherapy of peritoneal carcinomatosis.

Ladjohounlou, Riad 06 December 2016 (has links)
L’efficacité d’une radioimmunothérapie (RIT) peut impliquer la coexistence des effets ciblés et des effets dit « non ciblés ». Les effets ciblés regroupent les effets biologiques observés dans les cellules ou tissus traversés par les particules ionisantes alors que les effets non-ciblés (ou bystander) sont observés dans des cellules qui n’ont pas été irradiées mais qui sont au proche voisinage des cellules exposées. Nous avons au cours de cette étude évalué in vitro et in vivo, la contribution des effets ciblés et non ciblés dans l’efficacité obtenue lors de la RIT alpha (212Pb, 213Bi) et de la RIT Auger (125I). Les effets ciblés ont été mesurés in vitro sur les cellules irradiées (cellules donneuses) alors que les effets bystander sont mesurés sur les cellules non irradiées (cellules receveuses) par une méthode de transfert de milieu. Elle consiste, à traiter les cellules receveuses dans un milieu de culture pré-incubé pendant 2h avec les cellules donneuses. Nos résultats montrent que la contribution des effets ciblés est nettement plus importante qu’en RIT alpha qu’Auger. En RIT alpha, on observe que les lésions de l’ADN (foci 53BP1et γ-H2AX) pourraient être différenciées en lésions complexes (sites multilésés = observation de gros foci) ou simples lésions (petit foci). Par contre en RIT Auger, ce sont les effets non ciblés qui prédominent sur les effets ciblés. L’utilisation d’inhibiteurs pharmacologiques des ROS montre l’implication du stress oxydatif dans ces effets non ciblés observés en RIT alpha et Auger. Ces effets non ciblés ont été observés également in vivo sur des souris athymiques porteuses de carcinoses péritonéales de petites tailles ; démontrant ainsi leur contribution dans l’efficacité thérapeutique finale observée après la RIT alpha et Auger. L’ensemble de ces résultats indiquent que même si des lésions de l’ADN sont produites après irradiation, que les effets non ciblés pourraient aussi contribuer à l’efficacité thérapeutique finale observée avec les anticorps couplés aux émetteurs de particules alpha ou d’électrons Auger. Ces résultats sont particulièrement intéressants pour la thérapie ciblée car les vecteurs utilisés n’ont pas souvent accès à l’ensemble des cellules constituant la tumeur. / We investigated in vitro and in vivo the relative contribution of targeted and non-targeted effects in the therapeutic efficacy against tumors of antibodies radiolabeled with alpha particle (212Pb, 213Bi) or Auger electron (125I) emitters. Targeted effects occurs in cells directly crossed by ionising particles while non-targeted effects are measured in cells neighbouring irradiated cells. Targeted effects were measured in vitro in cells exposed to antibodies radiolabeled with alpha or Auger emitters (donor cells) while non-targeted effects were investigated in recipient cells. Recipient cells consisted of cells not exposed to radiolabeled-mAbs, but grown in medium previously incubated for 2h with donor cells. We showed that the relative contribution of targeted effects versus non-targeted effects was higher during alpha RIT than Auger RIT. Alpha particles produced 53BP1 and gamma-H2AX foci in donor cells that could be differentiated in large, medium and small foci, while only small foci were observed in recipient cells. We assumed that large foci would correspond to locally multiply damage sites in DNA. Conversely, Auger RIT led predominantly to non-targeted effects compared with targeted effects. Use of radical scavengers showed that oxidative stress was involved in non-targeted effects. In vivo, we showed in athymic nude mice bearing tumor xenograft that non-targeted effects were also involved and participated to therapeutic efficacy of radiolabeled antibodies. These results indicate that although producing single DNA lesion, non-targeted effects can contribute to the therapeutic efficacy of mAbs radiolabeled with alpha particle or Auger electron emitters. These findings are particularly relevant for targeted therapy in which vectors cannot gain access to every tumor cell.
95

Développement d'un dosimètre diamant pour une mesure de la dose absorbée dans les mini-faisceaux utilisés en radiothérapie stéréotaxique. / Development of a diamond dosimeter for measuring the absorbed dose in small beams used in stereotactic radiotherapy

Marsolat, Fanny 10 January 2014 (has links)
La radiothérapie stéréotaxique est une technique de pointe relativement récente utilisée pour le traitement de tumeurs bénignes ou malignes de petites dimensions employant des mini-faisceaux. L'efficacité clinique de cette technique est prouvée et n'est pas remise en cause, cependant il n'existe pas actuellement de dosimètre véritablement approprié permettant de caractériser ces faisceaux de petites dimensions par des mesures précises de dose absolue et relative. Le problème du manque d'équilibre électronique latéral rencontré en mini-faisceaux entraîne principalement les contraintes suivantes pour le dosimètre : équivalence-eau et petit volume de détection. Les caractéristiques du diamant (faible numéro atomique Z=6, densité élevée d'atomes) en font un candidat idéal. Au cours de cette thèse, nous avons développé un prototype de dosimètre pour mini-faisceaux à partir de diamant monocristallin synthétique CVD. Les échantillons ont été caractérisés optiquement par différentes techniques et leurs propriétés de détection ont été étudiées sous rayonnement X et sous particules ?. Une série de premiers prototypes a été développée et testée sur plusieurs machines de stéréotaxie. Une étape d'optimisation de ces premiers dosimètres diamant a ensuite été réalisée notamment par l'utilisation de simulations Monte Carlo. L'optimisation des différents paramètres entrant en jeu dans la réponse du dosimètre en mini-faisceaux a permis d'aboutir à un prototype final de dosimètre diamant. Ce prototype répond au cahier des charges rédigé par les physiciens médicaux des centres hospitaliers, aussi bien en champs standards qu'en mini-faisceaux. / Stereotactic radiotherapy is a relatively recent technique used for the treatment of small benign and malignant tumors with small radiation beams. The clinical efficiency of this technique has been proved. However, the measurement of absolute and relative dose in small beams is not possible currently due to the lack of suited detectors for these measurements. In small beam dosimetry, the detector has to be as close as possible to tissue equivalence and exhibit a small detection volume due to the lack of lateral electronic equilibrium. Characteristics of diamond (water equivalent material Z=6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. In this thesis, we developed a dosimeter prototype for small beams, based on CVD synthetic single crystal diamond. The diamond samples were characterized optically and their detection properties were investigated under X-rays and alpha-particles. First diamond dosimeter prototypes were tested with small beams produced by several stereotactic machines. Studies using Monte Carlo simulations were performed in order to optimize the parameters involved in the detector response in small beams. This leaded to a final diamond dosimeter prototype that respects all radiotherapy centers requirements, in both standard and small beams.
96

Contrôle de la dose délivrée en radiothérapie externe : étude de l'apport mutuel de l'imagerie volumique embarquée et de la dosimétrie de transit / Control of the dose delivered in external radiotherapy : study of the mutual contribution of On-Board volume imaging and transit dosimetry

Chevillard, Clément 16 November 2018 (has links)
En radiothérapie externe, le traitement est administré au patient avec une séance chaque jour en utilisant le traitement établi en amont et répété jusqu’à la fin du traitement. La planification du traitement est établie par un système de planification du traitement (TPS) qui utilise des informations basées sur l’anatomie du patient (CT, IRM, TEP) et un calcul de dose. L'intégration aux unités de traitement des dispositifs d´ imagerie embarquée peuvent être utilisées pour vérifier la position du patient et son anatomie (dispositif d’imagerie Portal Électronique - EPID-, tomodensitométrie à faisceau conique - CBCT -). L'objectif principal est de fournir une solution robuste pour la routine afin de contrôler la dose délivrée au patient avec la dose prévue établie à partir du TPS. La première partie de ce travail consiste à intégrer une comparaison d'images EPID pour chaque fraction par rapport à la fraction planifiée (images CT) en acceptant, rejetant ou ignorant la différence de position et de niveau de dose du patient selon une tolérance seuil définie par l’utilisateur. La deuxième partie consiste à utiliser l´ imagerie volumique embarquée pour reconstruire la dose délivrée fraction par fraction en réalisant un calcul de dose. Avec la dose reçue par le patient jour après jour, sur la base de nouveaux indicateurs, il est possible d’établir une traçabilité permettant d’identifier les déviations et d’évaluer la qualité du traitement.Pour conclure, ces nouveaux indicateurs permettraient une double traçabilité : d'une part l'amélioration du calcul de dose puis l'efficacité du traitement ; d´ autre part, la sécurité du traitement et de la technique utilisée. / In external radiation therapy, the treatment is delivered to the patient with a fraction every day using the treatment established before and repeated until the end of the treatment. Treatment planning is establish using anatomical information of the patient and a dose calculation. New technologies already integrated to the treatment units can be used to check the positioning of the patient and anatomical information (Electronic Portal Imaging Device - EPID-, Cone Beam Computed Tomography - CBCT - ).The main goal is to develop a system to control the dose delivered to the patient from the dose establish with the TPS.The first aim of this work is to integrate portal images to compare and assess the position of the patient at each fraction to the planned one (CT images) by accepting, rejecting or ignoring the patient positioning and dose level discrepancy according to a tolerance threshold defined by the user. The second aim is to integrate on boardimaging to reconstruct the delivered dose using a dose calculation. Following the dose received by the patient day after day, based on new indicators, it can be established a traceability to identify deviation and assess treatment quality.To conclude, these new indicators would allow a double traceability : in one hand the improvement of the calculation and then the efficiency of the treatment ; in another hand the safety of the treatment and the technique used.
97

Spatial fractionation of the dose in charged particle therapy / Fractionnement spatial de la dose en radiothérapie par particules chargées

Peucelle, Cécile 04 November 2016 (has links)
Malgré de récentes avancées, les traitements par radiothérapie (RT) demeurent insatisfaisants : la tolérance des tissus sains aux rayonnements limite la délivrance de fortes doses (potentiellement curatives) à la tumeur. Pour remédier à ce problème, de nouvelles approches basées sur des modes de dépôt de dose innovants sont aujourd’hui à l’étude. Parmi ces approches, la technique synchrotron “Minibeam Radiation Therapy” (MBRT) a démontré sa capacité à élever la résistance des tissus sains aux rayonnements, ainsi qu’à induire un important retard de croissance tumorale. La MBRT combine des faisceaux submillimétriques à un fractionnement spatial de la dose. Dans ce contexte, l’alliance de la balistique plus avantageuse des particules chargées (et leur sélectivité biologique) à la préservation des tissus sains observée en MBRT permettrait de préserver d’avantage les tissus sains. Cette stratégie innovante a été explorée durant ce travail de thèse. Deux voies ont notamment été étudiées: la MBRT par faisceaux de protons (pMBRT), et d’ions très lourds. Premièrement, la preuve de concept expérimentale de la pMBRT a été réalisée dans un centre clinique (Institut Curie, Centre de Protonthérapie d’Orsay). De plus, l'évaluation de potentielles optimisations de la pMBRT, à la fois en terme de configuration d’irradiation et de génération des minifaisceaux, a été menée dans une étude Monte Carlo (MC). Dans la seconde partie de ce travail, un nouvel usage potentiel des ions très lourds (néon et plus lourds) en radiothérapie a été évalué dans une étude MC. Les combiner à un fractionnement spatial permettrait de tirer profit de leur efficacité dans le traitement de tumeurs radiorésistantes (hypoxiques), un des principaux défis de la RT, tout en minimisant leurs effets secondaires. Les résultats obtenus au terme de ce travail sont favorables à une exploration approfondie de ces deux approches innovantes. Les données dosimétriques compilées dans ce manuscrit serviront à guider prochaines les expérimentations biologiques. / Despite recent breakthroughs, radiotherapy (RT) treatments remain unsatisfactory : the tolerance of normal tissues to radiations still limits the possibility of delivering high (potentially curative) doses in the tumour. To overcome these difficulties, new RT approaches using distinct dose delivery methods are being explored. Among them, the synchrotron minibeam radiation therapy (MBRT) technique has been shown to lead to a remarkable normal tissue resistance to very high doses, and a significant tumour growth delay. MBRT allies sub-millimetric beams to a spatial fractionation of the dose. The combination of the more selective energy deposition of charged particles (and their biological selectivity) to the well-established normal tissue sparing of MBRT could lead to a further gain in normal tissue sparing. This innovative strategy was explored in this Ph.D. thesis. In particular, two new avenues were studied: proton MBRT (pMBRT) and very heavy ion MBRT. First, the experimental proof of concept of pMBRT was performed at a clinical facility (Institut Curie, Orsay, France). In addition, pMBRT setup and minibeam generation were optimised by means of Monte Carlo (MC) simulations. In the second part of this work, a potential renewed use of very heavy ions (neon and heavier) for therapy was evaluated in a MC study. Combining such ions to a spatial fractionation could allow profiting from their high efficiency in the treatment of hypoxic radioresistant tumours, one of the main challenges in RT, while reducing at maximum their side effects. The promising results obtained in this thesis support further explorations of these two novel avenues. The dosimetry knowledge acquired will serve to guide the biological experiments.
98

Etude de l'exposition des personnes aux ondes électromagnétiques en environnement complexe / Study of people's exposure to electromagnetic waves in complex environment

Jawad, Ourouk 22 October 2014 (has links)
Les recherches en dosimétrie numérique non-ionisante ont connu des avancées considérables notamment grâce à la capacité de calcul croissante des ordinateurs. Ces dernières années, la prise en compte de la variabilité dans la dosimétrie est devenue un enjeu majeur. Les sources de variabilité sont nombreuses, parmi elles, les conditions d'exposition au rayonnement électromagnétique peuvent induire des doses absorbées très différentes. La modélisation de canal de propagation en environnement intérieur a permis d'avoir une connaissance précise des conditions d'exposition d'un corps humain plongé dans cet environnement. Cette thèse a pour but de développer une méthode statistique du calcul de la dose absorbée par le corps et d'adapter le modèle de canal stochastique à la dosimétrie. L'étude statistique de l'exposition a révélé la nécessité d'obtenir les valeurs de Débit d'Absorption Spécifique corps entier dans le cas d'expositions à une onde plane pour tous les angles d'incidence possibles. Compte tenu des temps de calcul particulièrement long en dosimétrie, une méthode d'interpolation efficace, le krigeage, des valeurs de Débit d'Absorption Spécifique a été mise en oeuvre. L'analyse de sensibilité aux paramètres du canal des moments du Débit d'Absorption Spécifique a permis de connaître l'impact de chacun de ces paramètres. Le modèle de canal a pu être simplifié et donc adapté à la dosimétrie tout en quantifiant l'erreur d'approximation qu'implique cette simplification. Cette thèse répond à l'enjeu de la prise en compte de la variabilité en dosimétrie dans un environnement complexe. / Research in non-ionizing numerical dosimetry has been improved thanks to high calculation capacity of computers. These years, integrating variability in the field of dosimetry has become a major issue. Sources of variability are numerous; among them, there are the exposure conditions to electromagnetic radiation which can lead to very different absorbed doses. Indoor channel modeling enables to have a deep knowledge of the exposure conditions of a human body located inside this indoor environment. The aim of this thesis is to develop a statistical method of calculation of the absorbed dose by the human body and to adapt the stochastic channel model to dosimetry. The statistical study of exposure reveals the need to obtain Specific Absorption Rate values for a plane wave exposure for all possible angles of incidence. Taking into account that computation in dosimetry is time consuming, an efficient interpolation method, kriging method, is implemented in order to get whole body Specific Absorption Rate values. Kriging method enables to obtain Specific Absorption Rate for all possible angles of incidence and then to calculate expectation and variance of Specific Absorption Rate. Sensitivity Analysis of expectation and variance to the statistical channel parameters reveals the impact of each parameter. The channel model has been simplified and then adapted to dosimetry by estimating the approximation error induced by this reduction. This thesis answers to the issue of integrating variability in dosimetry in a complex environment and develop the tools that open a new path in studying exposure in any complex environment.
99

Optimisation de la dosimétrie en alphathérapie par approche multi-échelle : application au traitement des métastases osseuses par le ²²³Ra / Optimization of dosimetry in alphatherapy by a multi-scale approach : application to the treatment of bone metastases with ²²³Ra

Benabdallah, Nadia 21 December 2017 (has links)
La radiothérapie interne vectorisée (RIV) repose sur l’administration d’un radiopharmaceutique, qui va se distribuer dans le corps du patient et se fixer plus spécifiquement dans les régions tumorales afin de les détruire. Récemment, le développement de nouveaux radiopharmaceutiques, notamment des émetteurs alpha, rend la discipline particulièrement prometteuse. En effet, leurs propriétés leur confèrent, par rapport aux émetteurs β-, une plus grande cytotoxicité pour les cellules tumorales tout en limitant l’irradiation non désirée aux tissus sains.L’objectif dans le domaine est plus particulièrement de déterminer, pour chaque patient, l’activité à injecter permettant d’obtenir un maximum de dose à la tumeur tout en ne dépassant pas les limites de dose aux organes à risques. Pour les radiopharmaceutiques émetteurs alpha, l’évaluation dosimétrique est un véritable challenge au vu du faible parcours de ces particules.Pour répondre à ce challenge, les études proposées se sont portées sur le ²²³Ra (Xofigo®) qui est le premier radiopharmaceutique émetteur alpha à avoir obtenu en novembre 2013 l’autorisation de mise sur le marché, valide dans toute l’Union Européenne, pour le traitement de patients atteints de métastases osseuses du cancer de la prostate. Ces études se sont articulées sous la forme de trois défis.Le premier défi est d’être en mesure de réaliser des images afin de connaître la répartition de l’activité dans le corps du patient. En effet, le faible parcours des particules alphas ne permettent pas à ceux-ci d’être détectés. Toutefois, le ²²³Ra et ses descendants émettent plusieurs raies gamma. Un protocole optimisé pour l’obtention d’images du ²²³Ra à l’aide d’une gamma-caméra a été mis en place en collaboration avec l’Hôpital Européen Georges Pompidou. De nombreuses expériences ont été réalisées à l’aide de fantômes physiques. Ce protocole d’imagerie a été accepté dans le cadre d’un nouvel essai clinique multicentrique (HEGP, Cochin, IGR, Caen, Bordeaux) de phase I/II dédié au traitement par le ²²³Ra des métastases osseuses du cancer rénal.La distribution spatiale du radiopharmaceutique ainsi connue, il s’agit de prendre en compte son évolution temporelle. Ainsi, pour calculer l’activité cumulée à partir d’images dynamiques, un algorithme a été intégré au logiciel de dosimétrie interne OEDIPE (Outil d’Evaluation de la Dose Interne PErsonnalisée), développé depuis une quinzaine d’années à l’IRSN. Ce dernier permet, à l’aide de calculs Monte Carlo directs, d’effectuer une dosimétrie précise et personnalisée en prenant en compte les données anatomiques et fonctionnelles du patient.Le deuxième défi concerne la détermination de l’énergie absorbée dans les parties radiosensibles de l’os. A l’heure actuelle, les paramètres dosimétriques utilisés ne considèrent pas l’énergie de l’alpha, le site squelettique ou la proportion de moelle rouge. Ainsi, les calculs de dose ont été optimisés en utilisant les modèles de l’os les plus réalistes à l’heure actuelle.Enfin, le troisième défi est de connaître la distribution du ²²³Ra à l’échelle sub-cellulaire pour relier au mieux la dose aux effets biologiques. Ces paramètres étant difficilement caractérisables chez un patient, des études ont été réalisées sur la souris. Des modèles animaux sains et présentant des métastases osseuses dérivant d’un cancer du rein ou de la prostate ont été développés en collaboration avec le CIPA à Orléans. La différence de fixation et de répartition du ²²³Ra entre les tissus sains et les métastases pour les différents modèles a été étudiée, à l’échelle microscopique, à l’aide d’images autoradiographiques réalisées en collaboration avec le CRCNA de Nantes.Finalement ce travail de recherche a permis d’appréhender les divers aspects de la dosimétrie interne appliqués au ²²³Ra. Il offre également des outils pour aller plus loin dans la personnalisation de la dosimétrie des nouveaux radiopharmaceutiques émetteurs alpha, actuellement en plein essor. / Targeted therapy is based on the administration of a radiopharmaceutical, which will bind specifically in tumor regions in order to destroy them. Nowadays, this field is more and more promising thanks to the development of new radiopharmaceuticals, especially alpha emitters. Indeed, their characteristics confer a greater cytotoxicity to tumor cells while minimizing the unwanted radiation to healthy tissues in comparison with β- emitters.The goal here is to determine the administered activity, for each patient, which will ensure a maximum dose deposition in the tumor and a minimum dose deposition to the organs at risk. For alpha emitting radiopharmaceuticals, the dosimetric evaluation is a main challenge because of the particles short range.To meet this challenge, the proposed studies will focus on ²²³Ra (Xofigo®), which is the first alpha emitter that has received marketing authorization from European Commission in November 2013 for the treatment of patients with castration-resistant prostate cancer metastasized to bones. These studies were organized in three different challenges.The first challenge is to perform ²²³Ra imaging in order to determine the activity distribution in patient body. Indeed, the short path of alpha particles prevents their detection. Nevertheless, ²²³Ra and its daughters have several gamma emissions. An optimized ²²³Ra imaging protocol for gamma-camera was implemented in collaboration with the European Hospital George Pompidou. Many experiments were performed on physical phantoms. This protocol was then accepted in a new multicenter phase I/II clinical trial for the treatment of renal cell carcinoma with bone metastases.After the determination of the spatial distribution of the radiopharmaceutical, the temporal evolution must be taken into account. In order to calculate the cumulated activity from dynamic imaging, a biokinetic module has been implemented to the OEDIPE software (French acronym for “tool for personalized internal dose assessment”). This software developed by IRSN for the last fifteen years can perform precise and personalized Monte Carlo dosimetry from patient-specific anatomic and functional data.The second challenge involves the determination of the absorbed energy in the radiosensitive parts of the bone. Nowadays, the dosimetric parameters do not take the alpha particle energy, the bone site or the bone marrow proportion into account. Thus, dose calculations were optimized using the most recent and realistic bone models.Lastly, the third challenge is to characterize the distribution of ²²³Ra at the microscopic level in order to better assess the relationship between dose and biological effects. As theses parameters cannot be properly characterized on human, studies were performed on mice. Healthy mice and metastasis models, from a renal or prostate cancer, were developed in collaboration with the CIPA in Orléans. Differences of uptake between healthy tissues and metastases were studied in each model, at the microscopic scale using autoradiography methods performed in collaboration with the CRCNA at Nantes.Finally, this research work has helped to gain more insight into the various aspects of the ²²³Ra dosimetry. This work also offers tools to go further in dosimetry personalization for new alpha emitting radiopharmaceuticals, currently on the rise.
100

Transport and control of a laser-accelerated proton beam for application to radiobiology / Transport et contrôle de faisceaux de protons accélérés par laser pour une application à la radiobiologie

Pommarel, Loann 13 January 2017 (has links)
L’accélération de particules par interaction laser-plasma est une alternative prometteuse aux accélérateurs conventionnels qui permettrait de rendre plus compactes les machines du futur dédiées à la protonthérapie. Des champs électriques extrêmes de l’ordre du TV/m sont créés en focalisant une impulsion laser ultra-intense sur une cible solide mince de quelques micromètres d’épaisseur, ce qui produit un faisceau de particules de haute énergie. Ce dernier contient des protons ayant une énergie allant jusqu’à la dizaine de mégaélectron-volts, et est caractérisé par une forte divergence angulaire et un spectre en énergie très étendu.Le but de cette thèse est de caractériser parfaitement un accélérateur laser-plasma afin de produire un faisceau de protons stable, satisfaisant les critères d'énergie, de charge et d'homogénéité de surface requis pour son utilisation en radiobiologie. La conception, la réalisation et l’implémentation d’un système magnétique, constitué d'aimants permanents quadripolaires ont été optimisés au préalable avec des simulations numériques. Ce système permet d’obtenir un faisceau de protons ayant un spectre en énergie qui à été mise en forme, et dont le profil est uniforme sur une surface de taille adaptée aux échantillons biologiques.Une dosimétrie absolue et en ligne a également été établie, permettant le contrôle de la dose délivrée en sortie. Pour cela, une chambre d'ionisation à transmission, précédemment calibrée sur un accélérateur à usage médical de type cyclotron, a été mise en place sur le trajet du faisceau de protons. Des simulations Monte Carlo ont ensuite permis de calculer la dose déposée dans les échantillons. Ce système compact autorise maintenant de définir un protocole expérimental rigoureux pour la poursuite d’expériences in vitro de radiobiologie. De premières irradiations de cellules cancéreuses ont été ainsi réalisées in vitro, ouvrant la voie à l’exploration des effets de rayonnements ionisants pulsés à haut débit de dose sur les cellules vivantes. / Particle acceleration by laser-plasma interaction is a promising alternative to conventional accelerators that could make future devices dedicated to protontherapy more compact. Extreme electric fields in the order of TV/m are created when an ultra-intense laser pulse is focused on a thin solid target with a thickness of a few micrometers, which generates a beam of highly energetic particles. The latter includes protons with energies up to about ten megaelectron-volts and characterised by a wide angular divergence and a broad energy spectrum.The goal of this thesis is to fully characterise a laser-based accelerator in order to produce a stable proton beam meeting the energy, charge and surface homogeneity requirements for radiobiological experiments. The design, realisation and implementation of a magnetic system made of permanent magnet quadrupoles were optimised beforehand through numerical simulations. It enables to obtain a beam with a shaped energy spectrum and with a uniform profile over a surface with a size adapted to the biological samples.Deferred and online dosimetry was setup to monitor the delivered output dose. For that purpose, a transmission ionisation chamber, previously calibrated absolutely on a medical proton accelerator, was used. Monte Carlo simulations enabled to compute the dose deposited into the samples. This compact system allows now to define a rigorous experimental protocol for in vitro radiobiological experiments. First experiments of cancer cell irradiation have been carried out, paving the way for the exploration of the effects of pulsed ionizing radiations at extremely high dose rates on living cells.

Page generated in 0.0997 seconds