Spelling suggestions: "subject:"klimatstrategi"" "subject:"tillväxtstrategi""
1 |
Utformning av en driftstrategi för Löt lakvattenreningsanläggningWirström Juhlin-Dannfelt, Sofia January 2018 (has links)
Söderhalls renhållningsverk AB’s (SÖRAB) waste facility have an active landfill where they previously have been deposited organic waste. This landfill generates leachate that contains high levels of ammonium. To treat the ammonium rich leachate SÖRAB has built a continuous biological treatment plant (KBR). The KBR uses nitrification and denitrification to transform ammonium to nitrogen. Together with a wetland it constitutes SÖRAB’s treatment for leachate. This project aimed at creating a strategy to ensure that nutrient limits given by Miljödomstolen are not exceeded. SÖRAB wished for the KBR to be emptied yearly, a consequence of this is that the treatment period is paused for 4-5 months. While investigating the recipient it was found that the outflow from the treatment plant cannot be larger than the flow in the recipient. In cases where the outflow was larger internal nutrient limits were exceeded. With these demands and by evaluating the efficiency of the treatment steps and modelling the leachate formation an operational strategy of how the leachate treatment should be operated during the year was created. The evaluation showed that the denitrification process in the KBR needs additional phosphorus to perform satisfactory. Phosphorus cannot be added without taking the risk of exceeding the limits in the recipient. During the warm season the wetland performed denitrification adequately, though it decreased with the temperature. Therefore the most suitable time for emptying the KBR and pausing the treatment is the cold season. The KBR is optimally emptied during the fourth quarter, it will then be functioning again during the second quarter. Modelling the leachate volume showed that the outflow was greater than the recipient runoff during the third quarter. During this time water needs to be stored within the treatment plan, the wetland was considered the most suitable pond for storage. To enable capacity for the excess volume the level in the wetland needs to be lowered during the first quarter, when the flow in the recipient is high due to the spring flood. The outflow is then higher than the actual runoff from the treatment plant. During the third quarter the water level in the wetland is increased to allow for the treated water to be stored.
|
2 |
Energikartläggning av hotellbyggnad med byggår 2016 och effektivisering av ventilation i IDA-ICE / Energy evaluation of hotel building built 2016 and energy efficiency of ventilation in IDA-ICEForslund, August January 2020 (has links)
The main purpose of this thesis was to evaluate the energy use and the potential for energy savings in the ventilation for a hotel building that has been preliminary certified in the Swedish environmental assessment method Miljöbyggnad. In the preliminary certificate the building received the certificate SILVER for the energy use. This certificate needs to be verified in order to acquire the final certificate. The energy use was determined with data from energy meters and statistics from the energy provider. The potential for energy savings in the ventilation was evaluated by analyzing the effects of air flows, room temperature and supply temperature on the energy use and the room climate with the help of the simulation program IDA-ICE. The results show that the energy use in the building is 119 kWh/(m2, year), which equals the certificate BRONS in Miljöbyggnad. The certificate for SILVER will not be achieved. The biggest energy consumers are the heating system, the hot water system and the cooling system. They stand for 36, 21 and 19 percent of the total energy use, respectively. With energy savings measures in the ventilation the energy use can be reduced by 8 kWh/(m2, year). This would mean that the energy use can be reduced to 110 kWh/(m2, year). The building would still receive the certificate for BRONS. The energy savings, however, would be achieved by using a lower supply temperature, minimum air flows (0,1 l/(s, m2)) when rooms are not used as well as decreasing the time schedule for the ventilation by two hours and allowing the maximum temperature to rise by 0,5 degrees Celsius. This also resulted in a higher temperature in the conference rooms, where the temperature could reach up to 24,2 degrees Celsius in winter and 24,5 degrees Celsius hot summer days.
|
3 |
Järn- och manganreducering vid Österbybruks vattenverk : förstudie till nytt processteg / Reducing iron and manganese at Österbybruks water treatment plant : a pilot study to a new process stageTrygg, Johan January 2020 (has links)
Österbybruks vattenverk har haft problem med höga mängder järn och mangan vid en av de tre råvattentäkter (Kyrkholmen) som används i nuläget. Delar av det nuvarande processteg som behandlar reduktionen av dessa ämnen byggdes i början av 70-talet och behöver nu ses över. Utöver detta har Östhammars kommun, som vattenverket ligger i, haft problem med tillgången av råvatten.För att motverka detta har man nu påbörjat bygga en vattenledning mellan Österbybruks vattenverk och Örbyhus vattenverk som ligger i grannkommunen Tierp. Utifrån detta har olika driftstrategier tagits fram som kommer påverka beslutet om hur man bör hantera mängden järn och mangan i råvattnet från Kyrkholmen. En nulägesanalys sammanfattar även den situation som vattenverket och kommunen befinner sig i. Flera tekniker har analyserats i denna förstudie genom SWOT-analyser. Två alternativ väger tyngre i slutändan: antingen förnya nuvarande teknik och optimera driften eller införskaffa en bioreaktor som genom mikrobiologisk aktivitet oxiderar järn och mangan i råvattnet. Ytterligare förslag till kompletterande och förebyggande rening föreslås angående halten av organiskt material som finns i Kyrkholmens råvatten.
|
4 |
Vätskekopplade värme- och kylåtervinningssystem Utveckling av ett verktyg för energiberäkningarBrorsson, Martin, Danielsson, Erik January 2013 (has links)
According to a decision of the European Commission, measures are to be taken to reduce the use of energy in the EU. The goal is to reduce it by 20 % compared to the current use. This shall be done to the year 2020 (European Commission, 2011). One industry that use large amounts of energy is the construction of buildings which account for almost a third of the energy use (Brogren, 2012). The major part of the energy that is used in the construction industry is not used when the buildings are built, but rather during the rest of their subsequent lifetime. There is a great potential to save energy by reducing the energy that is used to maintain a satisfactory indoor climate. Recovery of excess heat and excess cold is a solution that the European Commission think has the biggest potential to reduce the total energy consumption. The most common system used for energy recovery is air to air heat exchangers connected with the supply air and the exhaust air. For different reasons it is not possible to use this kind of system in several buildings. If that is the case there is a possibility to use a liquid coupled recovery system instead. If an additional source of excess heat or excess cooling exist within the building, or nearby, it is also possible to connect this to the system which would increase the ability to save energy even more. The purpose of this thesis has been to develop a tool for energy calculations in liquid-coupled recovery systems. This tool has been developed in the program IDA ICE (used for energy calculations) and has made it possible to perform dynamic simulations in this kind of system over the timeframe of a whole year and with a very short calculation time. The tool is flexible in terms of its components and system design so it can be used for several different types of projects. Everything from simple systems with fixed brine flow with only one supply air and exhaust air unit to systems with several units, various types of control possibilities and an addition of excess heat from, for example, a room containing computer servers. The tool that has been developed has been verified and used to calculate the potential to save energy in a system that is installed at the Ångström laboratory in Uppsala. The tool has shown that with the kind of control and the conditions that currently exist at the laboratory the energy consumption could be reduced by 444 MWh which in this case almost is 50 % of the current energy consumption. Besides the recovery system in Ångström two more systems have been investigated, a server room for The Royal Institute of Technology and the server halls that Facebook is building near Luleå town. The investigation shows that there exist very large amounts of heat that is possible to recover in buildings that include server rooms and that the installed recovery systems, if there are any, in many cases could be improved. Besides constructing recovery systems that recover heat or cold in buildings it is also possible to build this kind of system that recover heat or cold between buildings in the same area. The tool can also be used to investigate how such a system should work in order to minimize the use of energy as much as possible. A solution where heat and cold is recovered between multiple buildings is a solution that probably will be very interesting in the future, which means that this tool could come in handy.
|
5 |
Vätskekopplade värme- och kylåtervinningssystem : Utveckling av ett verktyg för energiberäkningarBrorsson, Martin, Danielsson, Erik January 2013 (has links)
Enligt ett beslut från EU-kommissionen ska åtgärder genomföras för att energianvändningen inom EU ska minska. Minskningarna ska motsvara ungefär 20 % av dagens energianvändning och ska uppnås till år 2020 (Europeiska Kommissionen, 2011). En sektor som använder stora mängder energi är byggbranschen som står för nästan en tredjedel av energianvändningen i samhället (Brogren, 2012). Den största delen av energin används inte under uppförandetiden utan under byggnadernas efterföljande livstid. Det finns därför stora besparingar att göra om energin som krävs för att upprätthålla ett tillfredsställande inomhusklimat minimeras. Återvinning av överskottsvärme och överskottskyla är den åtgärd som enligt EU-kommissionen har den största potentialen för att minska den totala energianvändningen. Det vanligaste systemet för energiåtervinning är luftvärmeväxlare mellan tilluften och frånluften men i flera byggnader är denna typ av system av olika anledningar inte möjliga. I dessa fall kan vätskekopplade återvinningssystem användas. Om en extra källa för överskottsvärme eller överskottskyla finns inom byggnaden, eller i närheten, kan också en sådan anslutas vilket i sådana fall ger ännu bättre förutsättningar att spara energi. Syftet med examensarbetet har varit att tillverka ett verktyg för energiberäkningar i vätskekopplade återvinningskretsar. Detta verktyg har utvecklats i energiberäkningsprogrammet IDA ICE och har gett möjligheter att utföra dynamiska helårssimuleringar av vätskekopplade återvinningssystem på väldigt kort tid. Verktyget är dessutom flexibelt vad gäller dess komponenter och återvinningssystemets utformning varför det kan användas till flera olika typer av projekt. Allt ifrån enkla system med fast köldbärarflöde och återvinning mellan endast ett tillufts- och frånluftsaggregat till system med flera aggregat, olika typer av styrning och tillskottsvärme från exempelvis en serverhall. Det utvecklade verktyget har också verifierats och använts för att beräkna möjlig energibesparing på ett system som återfinns på Ångströmslaboratoriet i Uppsala. Med den styrning och de förutsättningar som råder i skrivande stund visade verktyget på möjligheter att minska energianvändningen med 444 MWh, vilket motsvarar en minskning på nästan 50 % för det aktuella systemet. Förutom Ångströmslaboratoriet har även förutsättningar för Kungliga Tekniska Högskolans serverhall och Facebooks serverhallar i Luleå undersökts. Utredningen visar att det finns mycket stora mängder värme att återvinna i byggnader som innefattar serverhaller och att återvinningen, om det finns någon, ofta inte är optimal. Förutom att återvinna värme och kyla inom byggnader är det också möjligt att bygga denna typ av system mellan byggnader inom samma område. Verktyget kan även användas för att utreda hur ett sådant system skulle fungera för att ge så stora energibesparingar som möjligt. En lösning där värme och kyla återvinns lokalt mellan flera byggnader är något som troligen kommer att vara mycket intressant i framtiden varför detta verktyg kommer att komma väl till pass. / 1 According to a decision of the European Commission, measures are to be taken to reduce the use of energy in the EU. The goal is to reduce it by 20 % compared to the current use. This shall be done to the year 2020 (European Commission, 2011). One industry that use large amounts of energy is the construction of buildings which account for almost a third of the energy use (Brogren, 2012). The major part of the energy that is used in the construction industry is not used when the buildings are built, but rather during the rest of their subsequent lifetime. There is a great potential to save energy by reducing the energy that is used to maintain a satisfactory indoor climate. Recovery of excess heat and excess cold is a solution that the European Commission think has the biggest potential to reduce the total energy consumption. The most common system used for energy recovery is air to air heat exchangers connected with the supply air and the exhaust air. For different reasons it is not possible to use this kind of system in several buildings. If that is the case there is a possibility to use a liquid coupled recovery system instead. If an additional source of excess heat or excess cooling exist within the building, or nearby, it is also possible to connect this to the system which would increase the ability to save energy even more. The purpose of this thesis has been to develop a tool for energy calculations in liquid-coupled recovery systems. This tool has been developed in the program IDA ICE (used for energy calculations) and has made it possible to perform dynamic simulations in this kind of system over the timeframe of a whole year and with a very short calculation time. The tool is flexible in terms of its components and system design so it can be used for several different types of projects. Everything from simple systems with fixed brine flow with only one supply air and exhaust air unit to systems with several units, various types of control possibilities and an addition of excess heat from, for example, a room containing computer servers. The tool that has been developed has been verified and used to calculate the potential to save energy in a system that is installed at the Ångström laboratory in Uppsala. The tool has shown that with the kind of control and the conditions that currently exist at the laboratory the energy consumption could be reduced by 444 MWh which in this case almost is 50 % of the current energy consumption. Besides the recovery system in Ångström two more systems have been investigated, a server room for The Royal Institute of Technology and the server halls that Facebook is building near Luleå town. The investigation shows that there exist very large amounts of heat that is possible to recover in buildings that include server rooms and that the installed recovery systems, if there are any, in many cases could be improved. Besides constructing recovery systems that recover heat or cold in buildings it is also possible to build this kind of system that recover heat or cold between buildings in the same area. The tool can also be used to investigate how such a system should work in order to minimize the use of energy as much as possible. A solution where heat and cold is recovered between multiple buildings is a solution that probably will be very interesting in the future, which means that this
|
Page generated in 0.0727 seconds