• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 262
  • 88
  • 43
  • 26
  • 1
  • 1
  • 1
  • Tagged with
  • 420
  • 264
  • 222
  • 119
  • 105
  • 89
  • 89
  • 89
  • 75
  • 65
  • 42
  • 37
  • 35
  • 33
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Simulationslösungen in Pro/ENGINEER

Simmler, Urs 07 May 2009 (has links)
Im Vortrag werden alle derzeit bestehenden Simulations-Werkzeuge im Überblick vorgestellt und deren Anwendung an einzelnen Beispielen verdeutlicht. Desweiteren beinhaltet der Beitrag die Vorstellung der wesentlichen Neuerungen der Pro/ENGINEER Version Wildfire 5 auf dem Gebiet Simulation. Dabei wird auf die Dynamische Analyse und die Erweiterungen in Mechanica besonders eingegangen.
332

Periodic Variable Mechanical Ventilation and Dynamics of Recruitment and De-recruitment in Experimental Acute Respiratory Distress Syndrome

Huhle, Robert 09 December 2019 (has links)
Background Controlled mechanical ventilation with randomly variable tidal volume patterns has been shown to improve gas exchange and respiratory system mechanics compared to conventional ventilation in numerous experimental models of acute respiratory distress syndrome (ARDS). Multiple mechanisms have been proposed to explain this phenomenon called stochastic resonance. The recruitment of collapsed lung regions has been proposed as the dominant mechanism, but the role of respiratory system recruitment and de-recruitment dynamics during variable ventilation and the influence of periodic instead of random variation has not been elucidated. Objectives The primary objective of this thesis was to investigate the effects of periodic tidal volume patterns during variable ventilation on functional parameters with a special focus on gas exchange, respiratory system mechanics and cardiovascular interactions. Further aims were to elucidate the relationship between recruitment and de-recruitment dynamics and recruitment effects of random variable ventilation as well as the impact of an excessive increase in pattern period during variable ventilation on respiratory system mechanics. Finally, the relationship between recruitment effects during variable ventilation and the recruitment and de-recruitment dynamics as well as the ability of random variable ventilation to prevent de-recruitment are to be clarified. Methods Recruitment and de-recruitment dynamics were investigated based on the analysis of the time course of dynamic respiratory system elastance in a double-hit model of ARDS in pigs, a model of lung inflammation in rats, and in silico. The effects of periodic variable ventilation were studied for a wide range of pattern periods using a non-linear computational model of respiratory system mechanics, and in two experimental studies: Partial pressure of oxygen in arterial blood (PaO2) was the primary outcome of the longitudinal study during six hours of therapy in a double-hit model of ARDS in pigs. A cross-over study in a hydrochloric acid-induced model of ARDS in rats was performed to investigate the effects of periodic variable ventilation on baroreflex and respiratory sinus arrhythmia in context of the improvement of the primary end-point PaO2. In both studies, tidal volume patterns were chosen to have main periods overlapping with the dynamics of cardiovascular and respiratory sub-systems. Results and Discussion Periodic variable ventilation, but not random variable ventilation, improved PaO2 compared to conventional ventilation in the double hit model of ARDS. In both experimental studies, variable ventilation independent of pattern period improved respiratory system elastance. The study in silico indicated that periodic patterns have no additional positive effect on respiratory system mechanics compared to random patterns, but will attenuate recruitment for an excessive increase in pattern period. Baroreflex and respiratory sinus arrhythmia were affected by periodic tidal volume patterns in the acid-induced ARDS model; however, pattern period was associated with a decrease in PaO2. Recruitment and de-recruitment dynamics in the experimental model were similar to values derived by analysis of dynamic computed tomography according to literature. In the computational study, re-cruitment during random variable ventilation was maximised for specific values of recruitment and de-recruitment dynamics. Recruitment dynamics were lower during random variable ventilation compared to conventional recruitment manoeuvres, however in the range of de-recruitment dynamics of the respective model. Consequently, random variable ventilation with a coefficient of variation of 30 % was sufficient to prevent an increase of respiratory system elastance during ventilation in the study on acute lung inflammation in rats. Conclusion The asymmetry between recruitment and de-recruitment dynamics, which could be quantified by the analysis of the time course of dynamic elastance, was associated with recruitment during random variable ventilation in numerical simulations. Periodic variable ventilation improved arterial oxygenation to a clinically relevant extent without concomitant improvement of lung recruitment compared to random variable ventilation in a double-hit model of ARDS. Cardiovascular-respiratory interactions and asymmetry of recruitment and de-recruitment dynamics were not associated with this improvement. / Hintergrund In zahlreichen experimentellen Modellen des Akuten Atemnotsyndroms (ARDS) konnte gezeigt werden, dass die kontrollierte maschinelle Beatmung mit zufällig variablen Tidalvolumen pro Atemzug den Gasaustausch und die Atemmechanik im Vergleich zur konventionellen maschinellen Beatmung deutlich verbessert. Es wurden mehrere Mechanismen zur Erklärung dieses Phänomens, der Stochastischen Resonanz, vorgeschlagen. Die Wiedereröffnung kollabierter Lungenareale (Rekrutierung) ist dabei als dominanter Mechanismus der variablen Beatmung identifiziert wurden. Die Rolle der Dynamik von Rekrutierung und Derekrutierung sowie der Einfluss von Periodizität an Stelle von Zufälligkeit in der Sequenz der Tidalvolumina während Zufälliger Variabler Maschineller Beatmung (ZVB) wurde bisher lediglich in numerischen Simulationen evaluiert. Fragestellung Hauptziel dieser Arbeit war es, die Auswirkungen der Periodischen Variablen Maschinellen Beatmung (PVB) auf Gasaustausch, Mechanik des Respiratorischen Systems sowie Kardiovaskulärer Wechselwirkungen zu untersuchen. Ferner sollten mögliche Mechanismen der PVB identifiziert werden. Der Zusammenhang zwischen der Rekrutierungsdynamik und den Rekrutierungseffekten der ZVB sowie den Auswirkungen einer übermäßigen Erhöhung der Periodendauer während der PVB auf die Mechanik des Respiratorischen System war ebenfalls zu untersuchen. Ferner war der Zusammenhang zwischen den Rekrutierungseffekten bei der ZVB und der Dynamik der Rekrutierung / Derekrutierung des Respiratorischen Systems zu untersuchen. Material und Methoden In einem nichtlinearen numerischen Modell der Atemmechanik wurden die Auswirkungen der PVB für einen breiten Bereich von Periodendauern untersucht. Die Dynamik der Rekrutierung und Derekrutierung der Lunge wurde basierend auf der Analyse des Zeitverlaufs der dynamischen Elastance des Respiratorischen Systems in einem Doppelhit-Modell des ARDS im Schwein, einem Modell der Lungenentzündung in der Ratte sowie in silico untersucht. Die Effekte der PVB auf Gasaustausch und Atemmechanik wurden in zwei experimentelle Studien in verschiedenen Modellen des experimentellen ARDS untersucht: Der Partialdruck von Sauerstoff im arteriellen Blut (PaO2 ) war die primäre Zielgröße in der Längsschnittuntersuchung während der sechsstündigen Therapie des experimentellen ARDS am Hausschwein, welches induziert wurde durch wiederholte Auswaschung von Surfaktant mit anschließender beatmungsinduzierter Lungenschädigung. In einer Cross-over-Studie an einem salzsäureinduzierten Modell des ARDS in Ratten wurden die Auswirkungen der PVB auf Baroreflex- und respiratorische Sinusarrhythmie im Zusammenhang mit dem primären Endpunkt PaO2 untersucht. Ergebnisse und Diskussion PVB jedoch nicht die ZVB, verbesserte den PaO2 im Vergleich zur konventionellen maschinellen Beatmung im Doppelhit-Modell des ARDS während sechstündiger Therapie. In beiden Studien verbesserte die PVB unabhängig von der Periodendauer die Elastance des Respiratorischen Systems. Die Simulationen am Computermodell bestätigten, dass periodische Muster keinen zusätzlichen positiven Effekt auf die Mechanik des Atmungssystems im Vergleich zu zufälligen Mustern haben, aber die Rekrutierung während Variabler Maschineller Beatmung für eine übermäßige Erhöhung der Periodendauer abschwächen können. Baroreflex und Respiratorische Sinusarrhythmie wurden durch periodische Sequenz aufeinander folgender Tidalvolumina im säure-induzierten ARDS-Modell beeinflusst, jedoch war die Musterperiode mit einem Rückgang des PaO2 assoziiert. Die im experimentellen Modell bestimmte Dynamik der Rekrutierung und Derekrutierung bestätigte aus der Literatur bekannte Werte, die durch die Analyse der dynamischen Computertomographie gewonnen wurden. In der numerischen Modell-Studie zeigte sich, dass die Rekrutierung während der ZVB für bestimmte Verhältnisse zwischen Rekrutierungs- und Derekrutierungsdynamik (Asymmetrie) maximiert werden. Die Dynamik der Rekrutierung war bei der ZVB im Vergleich zu herkömmlichen Rekrutierungsmanövern geringer, jedoch innerhalb des Wertebereichs der Dynamik der Rekrutierung des jeweiligen Modells. Folglich konnte durch ZVB mit einem Variationskoeffizienten von 30 % die Derekru- tierung der Lunge in einem Modell der akuten Lungenentzündung verhindert werden. Schlussfolgerung Die Asymmetrie zwischen der Dynamik der Rekrutierung und Derekrutierung der Lunge, die durch die Analyse des Zeitverlaufs der dynamischen Elastance quantifiziert werden konnte, war mit der Rekrutierung während der Zufälligen Variablen Beatmung in numerischen Simulationen assoziiert. Die Periodisch Variable Beatmung verbesserte die arterielle Oxygenierung in einem klinisch relevanten Umfang ohne gleichzeitige Verbesserung der Lungenrekrutierung im Vergleich zur Zufälligen Variablen Beatmung in einem Doppelhit-Modell des ARDS am Schwein. Weder Kardiovaskulär-respiratorische Wechselwirkungen noch die Asymmetrien der Rekrutierungs- und Derekruitierungsdynamik standen mit dieser Verbesserung im Zusammenhang.
333

Integrable Approximations for Dynamical Tunneling

Löbner, Clemens 27 August 2015 (has links)
Generic Hamiltonian systems have a mixed phase space, where classically disjoint regions of regular and chaotic motion coexist. For many applications it is useful to approximate the regular dynamics of such a mixed system H by an integrable approximation Hreg. We present a new, iterative method to construct such integrable approximations. The method is based on the construction of an integrable approximation in action representation which is then improved in phase space by iterative applications of canonical transformations. In contrast to other known approaches, our method remains applicable to strongly non-integrable systems H. We present its application to 2D maps and 2D billiards. Based on the obtained integrable approximations we finally discuss the theoretical description of dynamical tunneling in mixed systems. / Typische Hamiltonsche Systeme haben einen gemischten Phasenraum, in dem disjunkte Bereiche klassisch regulärer und chaotischer Dynamik koexistieren. Für viele Anwendungen ist es zweckmäßig, die reguläre Dynamik eines solchen gemischten Systems H durch eine integrable Näherung Hreg zu beschreiben. Wir stellen eine neue, iterative Methode vor, um solche integrablen Näherungen zu konstruieren. Diese Methode basiert auf der Konstruktion einer integrablen Näherung in Winkel-Wirkungs-Variablen, die im Phasenraum durch iterative Anwendungen kanonischer Transformationen verbessert wird. Im Gegensatz zu bisher bekannten Verfahren bleibt unsere Methode auch auf stark nichtintegrable Systeme H anwendbar. Wir demonstrieren sie anhand von 2D-Abbildungen und 2D-Billards. Mit den gewonnenen integrablen Näherungen diskutieren wir schließlich die theoretische Beschreibung von dynamischem Tunneln in gemischten Systemen.
334

Shear behavior of plane joints under CNL and DNL conditions: Lab testing and numerical simulation

Dang, Wengang 21 February 2017 (has links)
The aim of this research work is to deepen the understanding of joint shear behavior under different boundary conditions. For this purpose, joint closure tests under quasi-static and dynamic conditions, direct shear and cyclic shear tests under CNL and DNL boundary conditions of plane joints are performed using GS-1000 big shear box device. The dissertation also presents the procedure to simulate the shear box device and simulating the behavior of plane joints at the micro-scale using FLAC3D. Special attention has been given to understand the influencing factors of the normal stress level, direct shear rate, horizontal cyclic shear frequency, normal impact frequency, horizontal cyclic shear displacement amplitude and vertical impact force amplitude. Lab test and numerical simulation results show that the quasi-static joint stiffness increases with increasing normal force. Dynamic joint stiffness decreases with increasing superimposed normal force amplitudes. Normal impact frequencies have little influence on the joint stiffness. Rotations and stress changes at the plane joint during shearing are proven. Rotations and development of stress gradients can be decreased significantly by increasing the size of the bottom specimen and applying a shear velocity at the upper shear box and normal loading piston. Furthermore, peak shear force increases with increasing normal force. Friction angle of cyclic shear tests is smaller than that of direct shear tests. Moreover, significant time shifts between normal and shear force (shear force delay), normal force and friction coefficient (friction coefficient delay) during direct shear tests under DNL boundary conditions are observed and the reference quantity ‘shear-velocity-normal-impact-frequency’ (SV-NIF) to describe the behavior under DNL boundary conditions is defined. Peak shear force and minimum friction coefficient increase with increasing SV-NIF. Relative time shift between normal force and shear force decreases with increase of SV-NIF. The mechanical behavior of the GS-1000 big shear box device is simulated and the loss of normal force caused by the tilting of the loading plate is quantified. Finally, the novel direct and cyclic shear strength criterions under DNL conditions are put forward. The shear strength criterions are in close agreement with the measured values, which indicates that the novel shear strength criterions are able to predict the shear strength under DNL conditions.
335

Klassische und quantenmechanische Beschreibung von Singularitäten in der Verteilung der Zeitverzögerung von 2D-Streusystemen

Majewsky, Stefan 20 February 2012 (has links)
Die Zeitverzögerung bei der Streuung in zwei Dimensionen ist eine Funktion von zwei unabhängigen Parametern. Wenn diese Funktion Sattelpunkte aufweist, so hat der entsprechende Funktionswert theoretisch ein unendlich großes Gewicht in der Wahrscheinlichkeitsverteilung der Zeitverzögerungen. Dieser Zusammenhang soll analytisch und numerisch nachgewiesen und detailliert beschrieben werden. Insbesondere soll die klassische und quantenmechanische Wahrscheinlichkeitsverteilung der Zeitverzögerung für ein Modellsystem aus mehreren nichtüberlappenden zentralsymmetrischen Potentialen berechnet werden. Erwartete Ergebnisse sind Aussagen über die Parameterwerte, bei denen der oben genannte Effekt zu beobachten ist sowie Näherungsformeln für die Verteilung der Zeitverzögerung in der Nähe der Singularitäten. Außerdem soll die quantenmechanisch zu erwartende Glättung der Verteilungsfunktion quantitativ beschrieben werden.:1 Einleitung 2 Zeitverzögerung in klassischen Streusystemen 2.1 Definition durch die Wirkung 2.2 Geometrisch motivierte Definitionen 2.2.1 Eigentliche Zeitverzögerung 2.2.2 Definition über retardierten Ort 2.2.3 Definition über Aufenthaltszeit 2.2.4 Numerische Bestimmung der Zeitverzögerung 2.3 Zeitverzögerungsfunktion und -verteilung 2.4 Rechenregeln 2.4.1 Koordinatensystemwechsel 2.4.2 Verkettung 3 Klassische Modellsysteme 3.1 Harte Scheibe 3.2 Verschobene harte Scheibe 3.2.1 Verhalten in der Umgebung von stationären Punkten 3.3 Weiches Scheibenpaar 3.3.1 Sattelpunkte 3.3.2 Extrempunkte 3.3.3 Zusammenfassung 4 Quantenmechanische Zeitverzögerung 4.1 Quantisierung der klassischen Definition 4.1.1 Definition über Aufenthaltszeit 4.1.2 Wigner-Smith-Matrix 4.1.3 Numerische Umsetzung 4.2 Einheitenlose Formulierung 4.3 Gegenüberstellung von Zeitentwicklungsmethoden 4.4 Split-Operator-Methode 4.4.1 Parameterwahl 4.4.2 Zur Abschätzung des systematischen Fehlers 4.5 Unterdrückung der periodischen Randbedingung 4.6 Harte Potentiale 5 Quantenmechanische Modellsysteme 5.1 Stationäre Punkte 5.2 Unschärfeeffekte 5.3 Numerische Ungenauigkeiten 5.3.1 Skalierungsverhalten der numerischen Methoden 5.4 Zusammenfassung der Ergebnisse 6 Zusammenfassung und Ausblick Anhang A Verhalten der Verteilung einer Funktion in der Nähe stationärer Punkte A.1 Umgebung eines Sattelpunktes A.2 Umgebung eines Extremums B Zeitverzögerung für das weiche Scheibenpaar / For scattering problems in two dimensions, time-delay is a function of two independent parameters. If this function features saddle points, the corresponding function value should theoretically have an infinite weight in the probability distribution of time-delays. This correlation shall be confirmed analytically and numerically and studied in-depth. In particular, the classical and quantum-mechanical probability distribution of time-delays shall be calculated for a model system consisting of multiple non-overlapping potentials with rotational symmetry. We expect to obtain information about the parameter values where the aforementioned effects can be observed, and analytical approximations for the time-delay distribution near the singularities. Furthermore, the smoothing of the distribution in the quantummechanical regime shall be quantified.:1 Einleitung 2 Zeitverzögerung in klassischen Streusystemen 2.1 Definition durch die Wirkung 2.2 Geometrisch motivierte Definitionen 2.2.1 Eigentliche Zeitverzögerung 2.2.2 Definition über retardierten Ort 2.2.3 Definition über Aufenthaltszeit 2.2.4 Numerische Bestimmung der Zeitverzögerung 2.3 Zeitverzögerungsfunktion und -verteilung 2.4 Rechenregeln 2.4.1 Koordinatensystemwechsel 2.4.2 Verkettung 3 Klassische Modellsysteme 3.1 Harte Scheibe 3.2 Verschobene harte Scheibe 3.2.1 Verhalten in der Umgebung von stationären Punkten 3.3 Weiches Scheibenpaar 3.3.1 Sattelpunkte 3.3.2 Extrempunkte 3.3.3 Zusammenfassung 4 Quantenmechanische Zeitverzögerung 4.1 Quantisierung der klassischen Definition 4.1.1 Definition über Aufenthaltszeit 4.1.2 Wigner-Smith-Matrix 4.1.3 Numerische Umsetzung 4.2 Einheitenlose Formulierung 4.3 Gegenüberstellung von Zeitentwicklungsmethoden 4.4 Split-Operator-Methode 4.4.1 Parameterwahl 4.4.2 Zur Abschätzung des systematischen Fehlers 4.5 Unterdrückung der periodischen Randbedingung 4.6 Harte Potentiale 5 Quantenmechanische Modellsysteme 5.1 Stationäre Punkte 5.2 Unschärfeeffekte 5.3 Numerische Ungenauigkeiten 5.3.1 Skalierungsverhalten der numerischen Methoden 5.4 Zusammenfassung der Ergebnisse 6 Zusammenfassung und Ausblick Anhang A Verhalten der Verteilung einer Funktion in der Nähe stationärer Punkte A.1 Umgebung eines Sattelpunktes A.2 Umgebung eines Extremums B Zeitverzögerung für das weiche Scheibenpaar
336

Classical and quantum investigations of four-dimensional maps with a mixed phase space

Richter, Martin 05 July 2012 (has links)
Für das Verständnis einer Vielzahl von Problemen von der Himmelsmechanik bis hin zur Beschreibung von Molekülen spielen Systeme mit mehr als zwei Freiheitsgraden eine entscheidende Rolle. Aufgrund der Dimensionalität gestaltet sich ein Verständnis dieser Systeme jedoch deutlich schwieriger als bei Systemen mit zwei oder weniger Freiheitsgraden. Die vorliegende Arbeit soll zum besseren Verständnis der klassischen und quantenmechanischen Eigenschaften getriebener Systeme mit zwei Freiheitsgraden beitragen. Hierzu werden dreidimensionale Schnitte durch den Phasenraum von 4D Abbildungen betrachtet. Anhand dreier Beispiele, deren Phasenräume zunehmend kompliziert sind, werden diese 3D Schnitte vorgestellt und untersucht. In einer sich anschließenden quantenmechanischen Untersuchung gehen wir auf zwei wichtige Aspekte ein. Zum einen untersuchen wir die quantenmechanischen Signaturen des klassischen "Arnold Webs". Es wird darauf eingegangen, wie die Quantenmechanik dieses Netz im semiklassischen Limes auflösen kann. Darüberhinaus widmen wir uns dem wichtigen Aspekt quantenmechanischer Kopplungen klassisch getrennter Phasenraumgebiete anhand der Untersuchung dynamischer Tunnelraten. Für diese wenden wir sowohl den in der Literatur bekannten "fictitious integrable system approach" als auch die Theorie des resonanz-unterstützen Tunnelns auf 4D Abbildungen an.:Contents ..... v 1 Introduction ..... 1 2 2D mappings ..... 5 2.1 Hamiltonian systems with 1.5 degrees of freedom ..... 5 2.2 The 2D standard map ..... 6 3 Classical dynamics of higher dimensional systems ..... 11 3.1 Coupled standard maps as paradigmatic example ..... 12 Stability of fixed points in 4D maps ..... 13 Center manifolds of elliptic degrees of freedom ..... 13 3.2 Near-integrable systems ..... 15 3.2.1 Analytical description of multidimensional, near-integrable systems ..... 15 Resonance structures in 4D maps ..... 16 3.2.2 Pendulum approximation ..... 18 3.2.3 Normal forms ..... 24 3.2.4 Arnold diffusion and Arnold web ..... 24 3.3 Numerical tools for the analysis of regular and chaotic motion ..... 26 3.3.1 Frequency analysis ..... 26 Aim of the frequency analysis ..... 26 Realizations of the frequency analysis ..... 27 Wavelet transforms ..... 30 3.3.2 Fast Lyapunov indicator ..... 31 3.3.3 Phase-space sections ..... 33 Skew phase-space sections containing invariant eigenspaces ..... 34 3.4 Systems with regular dynamics and a large chaotic sea ..... 35 3.4.1 Designed maps: Map with linear regular region, P_llu ..... 36 Phase space of the designed map with linear regular region ..... 38 FLI values ..... 41 Estimating the size of the regular region ..... 43 3.4.2 Designed maps: Islands with resonances, P_nnc ..... 46 Frequency analysis ..... 46 FLI values and volume of the regular and stochastic region ..... 50 Frequency analysis for rank-2 resonance ..... 52 Phase-space sections at different positions p_1 and p_2 ..... 53 Using color to provide the 4-th coordinate ..... 53 Skew phase-space sections containing invariant eigenspaces ..... 57 Arnold diffusion ..... 58 3.4.3 Generic maps: Coupled standard maps, P_csm ..... 63 FLI values and volume of the regular and stochastic region ..... 63 Analysis of fundamental frequencies ..... 66 Skew phase-space sections containing invariant eigenspaces ..... 69 4 Quantum Mechanics ..... 75 4.1 Quantization of Classical Maps ..... 77 4.2 Eigenstates of the time evolution operator U ..... 79 4.2.1 Eigenstates of P_llu ..... 80 4.2.2 Eigenstates of P_nnc ..... 84 4.2.3 Eigenstates of P_csm ..... 87 4.3 Quantum signatures of the stochastic layer ..... 89 4.3.1 Eigenstates resolving the stochastic layer ..... 90 4.3.2 Wave-packet dynamics into the stochastic layer ..... 94 4.4 Dynamical tunneling rates ..... 98 4.4.1 Numerical calculation of dynamical tunneling rates ..... 99 4.4.2 Direct regular-to-chaotic tunneling rates gamma^d of P_llu ..... 101 4.4.3 Prediction of gamma^d using the fictitious integrable system approach ..... 103 4.4.4 Dynamical tunneling rates of P_nnc ..... 105 4.4.5 Interlude: Theory of resonance assisted tunneling (RAT) ..... 106 4.4.6 Prediction of tunneling rates for P_nnc, RAT ..... 111 Selection rules from nonlinear resonances ..... 111 Energy denominators ..... 114 Estimating the parameters of the pendulum approximation from phase-space properties ..... 116 Prediction ..... 118 4.4.7 Dynamical tunneling rates of P_csm ..... 120 5 Summary and outlook ..... 123 Appendix ..... 125 A Potential of the designed map ..... 125 B Quantum-number assignment-algorithm ..... 128 C Alternate paths due to alternate resonances in the description of RAT ..... 131 D Alternate resonances in the description of RAT leading to different tunneling rates ..... 133 E Tunneling rates of map with nonlinear resonances but uncoupled regular region ..... 133 F Interpolation of quasienergies ..... 135 G 2D Poincar'e map for the pendulum approximation ..... 137 H RAT prediction broken down to single paths ..... 139 I Linearization of the pendulum approximation ..... 140 J Iterative diagonalization schemes for the semiclassical limit ..... 143 Inverse iteration ..... 143 Arnoldi method ..... 144 Lanczos algorithm ..... 144 List of figures ..... 148 Bibliography ..... 163 / Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.:Contents ..... v 1 Introduction ..... 1 2 2D mappings ..... 5 2.1 Hamiltonian systems with 1.5 degrees of freedom ..... 5 2.2 The 2D standard map ..... 6 3 Classical dynamics of higher dimensional systems ..... 11 3.1 Coupled standard maps as paradigmatic example ..... 12 Stability of fixed points in 4D maps ..... 13 Center manifolds of elliptic degrees of freedom ..... 13 3.2 Near-integrable systems ..... 15 3.2.1 Analytical description of multidimensional, near-integrable systems ..... 15 Resonance structures in 4D maps ..... 16 3.2.2 Pendulum approximation ..... 18 3.2.3 Normal forms ..... 24 3.2.4 Arnold diffusion and Arnold web ..... 24 3.3 Numerical tools for the analysis of regular and chaotic motion ..... 26 3.3.1 Frequency analysis ..... 26 Aim of the frequency analysis ..... 26 Realizations of the frequency analysis ..... 27 Wavelet transforms ..... 30 3.3.2 Fast Lyapunov indicator ..... 31 3.3.3 Phase-space sections ..... 33 Skew phase-space sections containing invariant eigenspaces ..... 34 3.4 Systems with regular dynamics and a large chaotic sea ..... 35 3.4.1 Designed maps: Map with linear regular region, P_llu ..... 36 Phase space of the designed map with linear regular region ..... 38 FLI values ..... 41 Estimating the size of the regular region ..... 43 3.4.2 Designed maps: Islands with resonances, P_nnc ..... 46 Frequency analysis ..... 46 FLI values and volume of the regular and stochastic region ..... 50 Frequency analysis for rank-2 resonance ..... 52 Phase-space sections at different positions p_1 and p_2 ..... 53 Using color to provide the 4-th coordinate ..... 53 Skew phase-space sections containing invariant eigenspaces ..... 57 Arnold diffusion ..... 58 3.4.3 Generic maps: Coupled standard maps, P_csm ..... 63 FLI values and volume of the regular and stochastic region ..... 63 Analysis of fundamental frequencies ..... 66 Skew phase-space sections containing invariant eigenspaces ..... 69 4 Quantum Mechanics ..... 75 4.1 Quantization of Classical Maps ..... 77 4.2 Eigenstates of the time evolution operator U ..... 79 4.2.1 Eigenstates of P_llu ..... 80 4.2.2 Eigenstates of P_nnc ..... 84 4.2.3 Eigenstates of P_csm ..... 87 4.3 Quantum signatures of the stochastic layer ..... 89 4.3.1 Eigenstates resolving the stochastic layer ..... 90 4.3.2 Wave-packet dynamics into the stochastic layer ..... 94 4.4 Dynamical tunneling rates ..... 98 4.4.1 Numerical calculation of dynamical tunneling rates ..... 99 4.4.2 Direct regular-to-chaotic tunneling rates gamma^d of P_llu ..... 101 4.4.3 Prediction of gamma^d using the fictitious integrable system approach ..... 103 4.4.4 Dynamical tunneling rates of P_nnc ..... 105 4.4.5 Interlude: Theory of resonance assisted tunneling (RAT) ..... 106 4.4.6 Prediction of tunneling rates for P_nnc, RAT ..... 111 Selection rules from nonlinear resonances ..... 111 Energy denominators ..... 114 Estimating the parameters of the pendulum approximation from phase-space properties ..... 116 Prediction ..... 118 4.4.7 Dynamical tunneling rates of P_csm ..... 120 5 Summary and outlook ..... 123 Appendix ..... 125 A Potential of the designed map ..... 125 B Quantum-number assignment-algorithm ..... 128 C Alternate paths due to alternate resonances in the description of RAT ..... 131 D Alternate resonances in the description of RAT leading to different tunneling rates ..... 133 E Tunneling rates of map with nonlinear resonances but uncoupled regular region ..... 133 F Interpolation of quasienergies ..... 135 G 2D Poincar'e map for the pendulum approximation ..... 137 H RAT prediction broken down to single paths ..... 139 I Linearization of the pendulum approximation ..... 140 J Iterative diagonalization schemes for the semiclassical limit ..... 143 Inverse iteration ..... 143 Arnoldi method ..... 144 Lanczos algorithm ..... 144 List of figures ..... 148 Bibliography ..... 163
337

Ökologie der Fischbestände in Fließgewässern des Khentii-Gebirges (Mongolei): Bestandsaufbau, Dynamik und Gefährdung durch den Gold-Tagebau

Krätz, Daniel A. 25 March 2009 (has links)
Die Fischfauna der Mongolei umfasst 64 Arten, von denen aktuell in der Roten Liste elf Arten als regional bedroht und vier Arten als potentiell bedroht eingestuft werden. Eine der wichtigsten Ursachen für den Rückgang der Arten ist der Gold-Tagebau. Viele Goldvorkommen lagern in alluvialen Sedimenten der Fließgewässerauen und werden durch großflächigen Abbau und mechanische Auswaschungsprozesse gewonnen. Dies führt zu erheblichen Störungen im Schwebstoff- und Stoffhaushalt der Fließgewässer und beeinflusst die Habitatverfügbarkeit und -qualität für die Fischfauna. Das primäre Ziel der Arbeit war daher die abiotische und ichthyologische Charakterisierung ausgewählter Referenzgewässer sowie durch Gold-Tagebau beeinflusster Gewässer und die Quantifizierung der Einflüsse des Gold-Tagebaus. Ein weiteres Ziel lag in der Formulierung von angepassten Managementstrategien für eine nachhaltige Entwicklung des expandierenden Bergbausektors in der Mongolei. Die Untersuchungen fanden in den Jahren 2003 bis 2006 an vier rhitralen Gewässern des Khentii-Gebirges im Nord-Osten der Mongolei statt. Die Erfassung der Fischbestände erfolgte mit Hilfe von Elektrofischfanganlagen und Reusen, wobei die vorkommenden Habitate repräsentativ erfasst wurden. Zusätzlich erfolgten Untersuchungen zum Stoffhaushalt der Gewässer und der Gewässersohle. Die relevanten Habitate wurden kartiert und Experimente zum Wanderverhalten ausgewählter Arten durchgeführt. Die Untersuchungen erbrachten folgende wesentliche Ergebnisse: 1. Die Fischfauna der untersuchten Gewässer umfasste 14 Taxa mit überwiegend rhitralen Charakterarten wie Salmoniden, Äschen und Elritzen. Die Fischbestände wiesen eine sehr hohe saisonale Dynamik auf, wobei kleinere Fließgewässer im Herbst verlassen und im Frühjahr neu besiedelt wurden. 2. Der Gold-Tagebau führte zu erhöhten Schwebstoffkonzentrationen und zur Kolmation des hyporheischen Interstitials. Die physikalisch-chemischen Untersuchungen ergaben vor allem eine signifikante Erhöhung der Wassertemperaturen in den belasteten Gewässerabschnitten. Durch den Gold-Tagebau wurden weiterhin die Auenvegetation und die natürlichen Uferstrukturen zerstört, was zu vielfältigen Habitatveränderungen führt. 3. Die untersuchten Effekte des Gold-Tagebaus sind als sublethal und verhaltens-verändernd einzustufen. Sie wirken sich z.B. auf das funktionale Gefüge der verschiedenen trophischen Ebenen des Fließgewässerökosystems aus. So wiesen zahlreiche Fischarten einen signifikant verringerten Konditionsfaktor auf, der offensichtlich bottom-up gesteuert durch verminderten Aufwuchs und geringere Abundanzen des Makrozoobenthos verursacht wird. Auch wurde ein deutlicher Einfluss auf die Fischwanderung festgestellt, der vermutlich durch ungünstige physikalisch-chemische oder hydraulische Habitateigenschaften innerhalb des Abbaugebiets verursacht wird. Für Arktische Äschen und Lenok ist das Abbaugebiet nicht oder nur eingeschränkt passierbar. 4. Die Kolmation des Kieslückensystems führte zum Verlust von Laich- und Überwinterungshabitaten und ist daher als ein gravierender Einflussfaktor für die lokale Fischfauna einzustufen. 5. Letale Effekte wie Kiemen- oder Schleimhautverletzungen auf Grund von direkter Schädigung der Tiere durch die erhöhten Schwebstofffrachten wurden nicht beobachtet. Im Rahmen der Arbeit wurden ökologische Grundlagenkenntnisse zu Fischbeständen und Populationsdynamiken im Nord-Osten der Mongolei erarbeitet. Diese Informationen tragen zu einem besseren Verständnis der Gefährdungsursachen bei. Auf Basis der gewonnenen Erkenntnisse über die Ökologie der Arten und der Einflüsse des Gold-Tagebaus wurden Managementempfehlungen unterschiedlicher Priorität formuliert und an Hand eines Fallbeispiels exemplarisch bearbeitet. Darüber hinaus wurden Grundlagen für ein ökologisches Monitoring des Gold-Tagebaus entwickelt. / The fish fauna of Mongolia comprises 64 species of which eleven are regionally endangered and four potentially endangered according to the Red List of Mongolian Fish. Gold mining is regarded as one of the major causes for declining fish populations. Many gold deposits are found in the alluvial sediments of the floodplains and are extracted by large scale mining and mechanical elutriation. This heavily disturbs the balance of suspended sediments and matter in running waters and affects the habitat availability and quality for the fish fauna. Thus, the primary objective of this study was the abiotic and ichthyological characterization of selected reference waters and waters influenced by gold mining as well as the quantification of gold mining effects. Furthermore, an aim was the formulation of management strategies for a sustainable development of the expanding mining sector in Mongolia. The investigation took place from 2003 to 2006 at four rhitral waters of the Khentii Mountains in north-east Mongolia. Data acquisition of the fish fauna was carried out with electric fishing devices and fish traps on representative habitats. In addition, the balance of mater and characteristics of the hyporheic zone were analyzed, relevant habitats mapped and the migratory behavior of selected species experimentally studied. The following major results were obtained from this research: 1. The fish fauna of the examined waters comprised 14 taxa dominated by rhitral characteristic species like salmonids, arctic grayling and minnows. The fish population was strongly seasonally influenced, whereas small running waters being repopulated yearly in spring. 2. Gold mining brings about an increase in concentrations of suspended sediment and clogging of the hyporheic interstitial. Physical-chemical investigations primarily identified a significant rise in water temperatures in the polluted water sectors. Furthermore, gold mining degrades floodplain vegetation and natural bank structures causing varied habitat changes. 3. The examined gold mining effects are sublethal to fish or influence their behavior. They disrupt the functional arrangement of the different trophic levels of the river ecosystem. Thus, the condition of some fish species was significantly decreased, evidently regulated bottom-up by depleted periphyton and reduced abundances of macro invertebrates. Moreover, a strong influence on the river continuum was assessed. Arctic grayling and lenok did not migrate through the mining area, possibly due to unfavorable physical-chemical or hydraulic conditions within the mining site. 4. The clogging of the river bed substrate resulted in a loss of spawning and hibernation habitats and thus must be regarded as a major thread to the local fish fauna. 5. Lethal effects like injuries of gills or skin by direct lesions of suspended particles could not be observed. In this study basic ecological knowledge and population dynamics of the fish fauna in north-east Mongolia have been identified. This information is fundamental for a better understanding of the causes of endangerment. Based on the findings on the ecology of fish species and the influences of gold-mining management recommendations of different priority were developed and exemplified in a case study. Furthermore, this study worked out basic principles for an ecological monitoring of gold mining.
338

Soil-structure interaction of end-frames for high-speed railway bridges / Jord-struktur-interaktion av ändskärmar på broar för höghastighetståg

Östlund, Johan January 2016 (has links)
In this thesis, the influence of soil-structure interaction (SSI) of end-frame bridges for high-speed railways was studied. Impedance functions, representing the SSI, was calculated and analyzed. The impedance functions were applied to end-frame bridge models which were analyzed for use in HSR. A new high-speed railway link is currently being planned in Sweden by the Swedish Transport Administration (Trafikverket). \textit{Ostl\"{a}nken} is planned to run between the cities of Stockholm and Link\"{o}ping with a maximum speed limit of 320km/h. As high-speed traffic induces high dynamic impact on bridges, dynamic analysis to ensure safety and passenger comfort is needed according to Eurocode. Thus, there is a demand of dynamically safe bridges that are also cost-effective. One cost-effective bridge is the soil integrated end-frame bridge, however, there are no design advice in Eurocode today on how to take SSI into consideration. The aim of the thesis has therefore been to investigate if the influence of SSI on end-frame bridges for HSR. This thesis was executed using the frequency domain approach to solve dynamic problems in finite element software. Furthermore, impedance functions have been obtained representing the SSI. Impedance functions take dynamic stiffness and dynamic damping into consideration where the damping consists of two parts: material damping and radiation damping due to energy dissipation in the form of elastic waves. To limit the model size, an absorbing region (AR) was used to mitigate waves originating from the source. The accuracy of impedance functions is dependent on several parameters and demands a great computational capacity to reach, mostly governed by the radiation condition. A parameter study of impedance functions was conducted, including parameters such as geometry, modulus of soil and detail levels. The impedance functions were then attached to bridge models on which trains modelled as moving point loads were applied. Envelopes of the acceleration and displacements have been presented and analyzed. Shear strain checks were made in order to verify the assumption of linear-elastic material behavior of the embankment. By using SSI in form of impedance functions attached to bridge models, numerical results show a great reduction of vibrations in models. The study suggests that a large end-frame, either long or high or both, may reduce acceleration as well as displacements. A stiffer embankment material may further reduce vibrations. Shear strain checks confirm that the assumption of linear-elastic soil behavior was true. / I det här exjobbet har påverkan av jord-struktur interaktion (soil-structure interaction - SSI) av ändskärmsbroar för höghastighetsbana blivit studerat. Impedansfunktioner som representerar SSI har beräknats och analyserats. Impdansfunktionerna har sedan applicerats på bromodeller och analyserats för höghastighetstrafik. Sveriges första höghastighetsbana håller just nu på att planeras av Trafikverket. Ostlänken kommer att bli den första delen och är planerad att gå från Stockholm till Linköping med en högsta hastighet av 320 km/h. Då höghastighetstrafik introducerar stor dynamisk på verkan på broar behövs dynamisk analys genomföras enligt Eurocode för att kunna säkerställa broarnas säkerhet och komfortkrav. Därför finns idag ett behov av dynamiskt säkra broar som också är kostnadseffektiva. En typ av kostnadseffektiv bro är den med jord integrerade ändskärmsbron. I dagens Eurocode finns dock inga konstruktionsråd vad gäller jord-struktur interaktion av ändskärmarna. Målet med detta examensarbete har därför varit att undersöka påverkan av SSI och besluta huruvida användandet av ändskärmsbron på höghastighetsbanor är legitimerat, eller om den ska undvikas. Det här examensarbetet har utgått från att lösa dynamiska problem i frekvensdomänen med hjälp av FEM. Impedansfunktioner som representerar jord-struktur interaktionen har tagits fram. Impedansfunktioner tar dels hänsyn till dynamisk styvhet och dels dynamisk dämpning. Den dynamiska dämpningen består av två delar; den första är materialdämpning och den andra är vågdämpning där energi dissiperar i vågform. För att begränsa FE modellens storlek har en absorbing region tillämpats för att absorbera vågorna vid randen. Impedansfunktionernas konvergens beror på flertalet parametrar och kräver en hög datakapacitet för att fås, mestadels beroende av radiatorvillkoret. En parameterstudie utfördes för att kunna analysera sensitiviteten hos impedansfunktionerna. Vidare applicerades dessa impedansfunktioner på skal- och balk-bromodeller på vilka HSLM laster påfördes. Skjuvtöjningskontroller gjordes för att verifiera att antagandet om linjärelastiskt materialbeteende var korrekt. Genom att ta hänsyn till SSI i form av impedansfunktioner tyder numeriska resultat på att vibrationer kan reduceras i hög grad. Envelopper visar att en stor ändskärm, antingen lång, hög eller bådadera, kan reducera accelerationer liksom förskjutningar. En styvare bank kan ytterligare reducera vibrationer.
339

Observing Biomolecular Dynamics from Nanoseconds to Hours with Single-Molecule Fluorescence Spectroscopy

Hartmann, Andreas 31 August 2018 (has links)
Molecular dynamics of biomolecules, like proteins and nucleic acids dictate essential biological processes allowing life to function. They are involved in a vast number of cellular tasks including DNA replication, genetic recombination, transcription and translation, as well as signalling, translational motion, structure formation, biochemical synthesis, immune response, and many more. Developed over billions of years by evolution they constitute fine-tuned networks modulated by temperature and regulatory mechanisms. A better understanding of the thermodynamic fundamentals of inter- and intramolecular conformational changes can shed light on the underlying processes of diseases and enables the transfer of biological architectures, properties and compositions to nanotechnological applications. Dynamics of biomolecules occur on a wide range of timescales covering more than twelve orders of magnitude. Fluorescence spectroscopy techniques like time-correlated single photon counting (TCSPC), fluorescence correlation spectroscopy (FCS), and immobilized and freely diffusing single-molecule Förster resonance energy transfer (FRET) spectroscopy represent powerful tools monitoring the dynamics at different ranges within this large span of timescales. However, a unified approach covering all biological relevant timescales remains a goal in the field of fluorescence spectroscopy. This would comprise a methodological workflow for qualitative and quantitative analysis of biomolecular dynamics ranging from nanoseconds to hours. In this work, a custom built single-molecule fluorescence spectroscopy set-up was constructed combining confocal single-molecule FRET spectroscopy with TCSPC, FCS and fluorescence anisotropy techniques for multiparameter fluorescence detection (MFD). The set-up allows the complementary observation of single-molecules over an extensive timescale ranging from fast reconfiguration dynamics of polymers (nanoseconds) to slow membrane protein folding (hours) without the need of molecular synchronization. Freely diffusing molecules enable high throughput measurements in heterogeneous membrane-mimetic and denaturing environments. Additionally, routines for data acquisition and processing were developed followed by the elaboration of a methodological workflow for the qualitative and quantitative analysis of biomolecular dynamics. Finally, the applicability was demonstrated on a big diversity of biological systems (DNA hairpin, Holliday junction, soluble and membrane proteins) in aqueous, membrane-mimetic and denaturing environments covering conformational dynamics from nanoseconds to hours.:Chapter 1: Introduction Chapter 2: Dynamics of Biomolecules 2.1 Dynamics of Nucleic Acids 2.1.1 DNA Hairpin Dynamics 2.1.2 Dynamics of Holliday Junctions 2.2 Dynamics of Proteins 2.2.1 Model Systems of Protein Folding Chapter 3: Fundamentals of Fluorescence Spectroscopy 3.1 Basics of Fluorescence 3.2 Förster Resonance Energy Transfer (FRET) Chapter 4: Multiparameter Fluorescence Detection 4.1 Single-Molecule FRET Spectroscopy 4.1.1 Confocal Microscopy 4.1.2 Freely Diffusing Molecules 4.1.3 Fluorescence Spectroscopy 4.2 Time-Correlated Single-Photon Counting (TCSPC) 4.3 Pulsed Interleaved Excitation (PIE) 4.4 Fluorescence Anisotropy 4.5 Fluorescence Correlation Spectroscopy (FCS) 4.6 MFD Setup 4.7 Analysis Software Chapter 5: Analysis of Molecular Dynamics 5.1 Sub-Microseconds – Peptide Chain Dynamics 5.1.1 Identification of Peptide Chain Dynamics 5.1.2 Quantification of Peptide Chain Dynamics 5.1.3 Discussion 5.2 Microseconds – Dynamics of Barrier Crossing 5.2.1 Maximum Likelihood Estimation of the Transition-Path Time 5.2.2 Quantification of the Upper Bound of the Transition-Path Time 5.2.3 Discussion 5.3 Milliseconds – Fast Protein Folding Dynamics 5.3.1 Correlation of the Relative Donor Lifetime (τD(A) / τD(0)) with FRET Efficiency (E) 5.3.2 Burst-Variance Analysis (BVA) 5.3.3 FRET-Two-Channel Kernel-Based Density Distribution Estimator (FRET-2CDE) 5.3.4 Estimation of the Conformational Relaxation Rate using Bin-Time Analysis 5.3.5 Extracting Folding Kinetics using the Three-Gaussian (3G) Approximation 5.3.6 Dynamic Probability Distribution Analysis (dPDA) 5.3.7 Folding and Unfolding Rate Estimation using a Maximum-Likelihood Estimator 5.3.8 Discussion 5.4 Milliseconds to Seconds – Stacking Dynamics of DNA 5.4.1 Identification of Dynamics on the Recurrence Timescale 5.4.2 Quantification of Dynamics on the Recurrence Timescale 5.4.3 Discussion 5.5 Minutes to Hours – Slow Protein Folding Dynamics 5.5.1 Identification of Slow Protein Folding Dynamics 5.5.2 Quantification of Slow Protein Folding Dynamics 5.5.3 Discussion Chapter 6: Conclusion and Outlook Chapter 7: Appendices 7.1 Derivation of Equation 4.6 (inspired by Daniel Nettels) 7.2 Protein sequences 7.3 Identification of dynamics on the recurrence timescale 7.4 Dependency of psame on the sample concentration 7.5 Effect of fluorescence quenching on MFD parameters Chapter 8: References / Biomoleküle, wie Proteine und Nukleinsäuren, sind essentielle Bausteine des Lebens und permanent an biologischen Prozessen beteiligt. Innerhalb der Zelle nehmen sie eine Vielzahl von Aufgaben wahr, darunter DNA-Replikation, genetische Rekombination, Transkription und Translation, sowie Signalübertragung, Transport, Strukturbildung, biochemische Synthese und Immunreaktion. In Milliarden von Jahren evolutionärer Entwicklung wurden biomolekulare Prozesse immer feiner aufeinander Abgestimmt. Um den zugrundeliegenden Mechanismus von Krankheiten besser zu Verstehen und um die einzigartigen Eigenschaften und Kompositionen biologischer Systeme auf nanotechnologische Anwendungen übertragen zu können, ist es unbedingt notwendig ein besseres Verständnis thermodynamischer Grundlagen inter- und intramolekularer Konformationsänderungen zu erlangen. Dabei finden sich Dynamiken von Biomolekülen über eine Zeitskale von mehr als zwölf Größenordnungen verteilt. Fluoreszenzspektroskopietechniken, wie zeitkorrelierte Einzel-photonenzählung (TCSPC), Fluoreszenzkorrelationsspektroskopie (FCS), und Förster-Resonanzenergietransfer (FRET)–Spektroskopie von immobilisierten und frei diffundierenden Molekülen, stellen leistungsfähige Werkzeuge dar, welche es ermöglichen Dynamiken in der den Techniken entsprechenden Zeitskala aufzulösen. Dennoch, besteht der dringende Bedarf nach einer einheitlichen Methode, der in der Fluoreszenzspektroskopie alle biologisch relevanten Zeitskalen abdeckt. Dies würde einen methodischen Workflow für die qualitative und quantitative Analyse der biomolekularen Dynamik von Nanosekunden bis Stunden bedeuten. In dieser Arbeit wurde ein speziell angefertigter Multiparamter-Fluoreszenzspektroskopie-Aufbau konstruiert, welcher die konfokale Einzelmolekül-FRET-Spektroskopie mit den TCSPC-, FCS- und Fluoreszenz-Anisotropie-Techniken kombiniert. Der Aufbau ermöglicht die Beobachtung komplementärer Eigenschaften von Einzelmolekülen über eine umfangreiche Zeitskala hinweg. Dynamiken von schnell rekonfigurierenden Polymeren (Nanosekunden) bis hin zu langsam faltenden Membranproteinen (Stunden) sind ohne molekulare Synchronisation möglich. Darüber hinaus, ermöglicht der Einsatz frei diffundierender Moleküle einen hohen Messdurchsatz und die Anwendung heterogener membranmimetischer und denaturierender Lösungen. Zusätzlich wurden Routinen zur Datenerfassung und -verarbeitung entwickelt, gefolgt von der Ausarbeitung eines methodischen Workflows zur qualitativen und quantitativen Analyse von biomolekularen Dynamiken. Abschließend wurde die Anwendbarkeit an fünf biologischen Modelsystemen (DNA-Haarnadel, Holliday-Junction, lösliche und Membranproteine) in wässrigen, membranmimetischen und denaturierenden Umgebungen demonstriert und alle biologisch relevanten Zeitskalen von Nanosekunden bis Stunden abgedeckt.:Chapter 1: Introduction Chapter 2: Dynamics of Biomolecules 2.1 Dynamics of Nucleic Acids 2.1.1 DNA Hairpin Dynamics 2.1.2 Dynamics of Holliday Junctions 2.2 Dynamics of Proteins 2.2.1 Model Systems of Protein Folding Chapter 3: Fundamentals of Fluorescence Spectroscopy 3.1 Basics of Fluorescence 3.2 Förster Resonance Energy Transfer (FRET) Chapter 4: Multiparameter Fluorescence Detection 4.1 Single-Molecule FRET Spectroscopy 4.1.1 Confocal Microscopy 4.1.2 Freely Diffusing Molecules 4.1.3 Fluorescence Spectroscopy 4.2 Time-Correlated Single-Photon Counting (TCSPC) 4.3 Pulsed Interleaved Excitation (PIE) 4.4 Fluorescence Anisotropy 4.5 Fluorescence Correlation Spectroscopy (FCS) 4.6 MFD Setup 4.7 Analysis Software Chapter 5: Analysis of Molecular Dynamics 5.1 Sub-Microseconds – Peptide Chain Dynamics 5.1.1 Identification of Peptide Chain Dynamics 5.1.2 Quantification of Peptide Chain Dynamics 5.1.3 Discussion 5.2 Microseconds – Dynamics of Barrier Crossing 5.2.1 Maximum Likelihood Estimation of the Transition-Path Time 5.2.2 Quantification of the Upper Bound of the Transition-Path Time 5.2.3 Discussion 5.3 Milliseconds – Fast Protein Folding Dynamics 5.3.1 Correlation of the Relative Donor Lifetime (τD(A) / τD(0)) with FRET Efficiency (E) 5.3.2 Burst-Variance Analysis (BVA) 5.3.3 FRET-Two-Channel Kernel-Based Density Distribution Estimator (FRET-2CDE) 5.3.4 Estimation of the Conformational Relaxation Rate using Bin-Time Analysis 5.3.5 Extracting Folding Kinetics using the Three-Gaussian (3G) Approximation 5.3.6 Dynamic Probability Distribution Analysis (dPDA) 5.3.7 Folding and Unfolding Rate Estimation using a Maximum-Likelihood Estimator 5.3.8 Discussion 5.4 Milliseconds to Seconds – Stacking Dynamics of DNA 5.4.1 Identification of Dynamics on the Recurrence Timescale 5.4.2 Quantification of Dynamics on the Recurrence Timescale 5.4.3 Discussion 5.5 Minutes to Hours – Slow Protein Folding Dynamics 5.5.1 Identification of Slow Protein Folding Dynamics 5.5.2 Quantification of Slow Protein Folding Dynamics 5.5.3 Discussion Chapter 6: Conclusion and Outlook Chapter 7: Appendices 7.1 Derivation of Equation 4.6 (inspired by Daniel Nettels) 7.2 Protein sequences 7.3 Identification of dynamics on the recurrence timescale 7.4 Dependency of psame on the sample concentration 7.5 Effect of fluorescence quenching on MFD parameters Chapter 8: References
340

Pattern Formation in Cellular Automaton Models - Characterisation, Examples and Analysis / Musterbildung in Zellulären Automaten Modellen - Charakterisierung, Beispiele und Analyse

Dormann, Sabine 26 October 2000 (has links)
Cellular automata (CA) are fully discrete dynamical systems. Space is represented by a regular lattice while time proceeds in finite steps. Each cell of the lattice is assigned a state, chosen from a finite set of "values". The states of the cells are updated synchronously according to a local interaction rule, whereby each cell obeys the same rule. Formal definitions of deterministic, probabilistic and lattice-gas CA are presented. With the so-called mean-field approximation any CA model can be transformed into a deterministic model with continuous state space. CA rules, which characterise movement, single-component growth and many-component interactions are designed and explored. It is demonstrated that lattice-gas CA offer a suitable tool for modelling such processes and for analysing them by means of the corresponding mean-field approximation. In particular two types of many-component interactions in lattice-gas CA models are introduced and studied. The first CA captures in abstract form the essential ideas of activator-inhibitor interactions of biological systems. Despite of the automaton´s simplicity, self-organised formation of stationary spatial patterns emerging from a randomly perturbed uniform state is observed (Turing pattern). In the second CA, rules are designed to mimick the dynamics of excitable systems. Spatial patterns produced by this automaton are the self-organised formation of spiral waves and target patterns. Properties of both pattern formation processes can be well captured by a linear stability analysis of the corresponding nonlinear mean-field (Boltzmann) equations.

Page generated in 0.1197 seconds