• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 441
  • 126
  • 39
  • 33
  • 9
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 698
  • 456
  • 170
  • 68
  • 61
  • 52
  • 51
  • 34
  • 34
  • 30
  • 28
  • 28
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Physical Cell ID Allocation in Cellular Networks

Nyberg, Sofia January 2016 (has links)
In LTE networks, there are several properties that need to be carefully planned for thenetwork to be well performing. As the networks’ traffic increases and the networks aregetting denser, this planning gets even more important. The Physical Cell Id (PCI) is theidentifier of a network cell in the physical layer. This property is limited to 504 values, andtherefore needs to be reused in the network. If the PCI assignment is poorly planned, therisk for network conflicts is high. In this work, the aim is to develop a distributed approach where the planning is performedby the cells involved in the specific conflict. Initially, the PCI allocation problem isformulated mathematically and is proven to be NP-complete by a reduction to the vertexcolouring problem. Two optimisation models are developed which are minimising thenumber of PCI changes and the number of PCIs used within the network respectively. An approach is developed which enlargers the traditional decision basis for a distributedapproach by letting the confused cell request neighbour information from its confusioncausingneighbours. The approach is complemented with several decision rules for theconfused cell to be able to make an as good decision as possible and by that mimic the behaviourof the optimisation models. Three different algorithms are implemented using theapproach as a basis. For evaluation purpose, two additional algorithms are implemented,one which is applicable to today’s standard and one inspired by the work by Amirijoo et al. The algorithms were tested against three different test scenarios where the PCI rangewas narrowed, the number of cells was increased and the network was extended. Thealgorithms were also tested on a small world network. The testing showed promisingresults for the approach, especially for larger and denser networks.
402

Maximizing the amount of DNA recovered: a study of Mawi DNA technologies' iSWAB-ID collection device for forensic science application

Gordon, Michelle Kristen 01 November 2017 (has links)
In forensic casework, recovery of more deoxyribonucleic acid (DNA) generally leads to a better chance of obtaining a robust and reliable DNA profile. However, DNA evidence often contains a very low amount of cells, therefore, the importance of proper collection and storage to protect the DNA and ensure that maximum collection of cells is achieved cannot be over emphasized. New techniques and inventions have made the collection of DNA evidence more efficient and consistent through the development of different types of swabs, lysing buffers and various other improvements. Even with the development of these improvements, the ability to maximize the collection of cellular material from a substrate is still impeded by various issues in the extraction process along with the structural properties of swabs used for collection. Research by Adamowicz et al. found that when extracting buccal and blood cell samples collected on cotton swabs, using the recommended protocol for swabs with the QIAamp DNA Investigator extraction kit, over 50% of the recoverable DNA is retained on the swab or lost through the extraction process [1]. Although cotton swabs are very good at absorbing biological material, they exhibit low efficiency of DNA sample release. Additional DNA may be lost during the extraction process. An optimal method of collection and extraction for forensic samples will maximize the collection and release of cellular material and minimize the loss of cellular DNA in the extraction process. The design of the Mawi DNA Technologies’ iSWABTM collection device allows for the release of cells captured from any type of swab into a proprietary lysis and stabilizing iSWABTM buffer. The combination of the mechanistic release of cells and the proprietary lysis buffer claims to maximize the collection of cells from single or several swabs in a pre-measured amount of buffer while eliminating the potential for bacterial growth and contamination. The iSWABTM Device is designed with three prongs and contains cell lysis buffer with DNA stabilization chemistry. As the swab is taken out of the collection device, the prongs provide resistance and essentially squeeze the excess solution and cells off of the swab. Following collection of the cellular material, cell lysis is achieved by incubation in the lysis buffer for 3 hours at room temperature. No additional reagents are necessary. This study investigated whether the Mawi DNA Technologies’ iSWABTM collection device and buffer could be considered as an alternative method to maximize the recovery of cells/DNA from swabs. Experiments were conducted to test the efficiency and forensic application of the device. The following parameters of the iSWABTM buffer and collection device were tested: 1) ability to collect dried stains; 2) ability to recover cellular material from different types and conditions of swabs; 3) ability to lyse different cell types; 4) ability to stabilize DNA over an extended period of time; and, 5) ability to perform in downstream Polymerase Chain Reaction (PCR) testing and produce quality STR profiles. Cumulatively, the data indicates that the iSWABTM-ID collection device is simple, fast and convenient while providing high DNA recovery. Some modifications or additional procedure developments can be done to facilitate the application for use with samples containing very small amounts of biological materials.
403

Authentification in wireless mesh networks with identity-based cryptography / Authentification dans les réseaux maillés sans fils avec la cryptographie basée sur l’identité

Boudguiga, Aymen 10 September 2012 (has links)
De nos jours, l'authentification dans les réseaux maillés sans fils fait appel aux certificats ou aux secrets partagés. Dans les environnements sans fils, la gestion des certificats est désavantageuse. En effet, les certificats nécessitent le déploiement d'une infrastructure à clés publiques (ICP) et la définition d'une autorité de certification (AC). La AC définit toute une politique qui permet de contrôler la génération, la transmission et la révocation des certificats. Cette politique ne prend pas en considération les limites en termes de puissance et de mémoire que peuvent avoir les stations des clients dans un réseau maillé. Afin de ne pas utiliser les certificats et ne pas déployer une ICP, nous avons étudié dans cette thèse les utilisations possibles de la cryptographie basée sur l’identité (CBI) pour la définition de nouveaux schémas d’authentification pour les réseaux maillés sans fils. La CBI propose de dériver, directement, la clé publique d’une station à partir de son identité. Par conséquent, nous n’avons plus besoin de passer par des certificats pour associer l’identité de la station à sa paire de clés (publique et privée). Par contre, la CBI définit un générateur de clé privée (GCP) qui gère le calcul des clés privées des différentes stations sur le réseau. Par conséquent, ce GCP est capable de réaliser une attaque d’usurpation d’identité (escroc de clés) à l’encontre de toutes les stations légitimes. Pour diminuer le risque de cette attaque, les chercheurs ont tendance à supposer que le GCP est digne de confiance. Dans cette thèse, nous présentons tout d'abord un protocole d'authentification basée sur l’utilisation conjointe d’un mot de passe et de la CBI. En effet, nous proposons d'utiliser le serveur d’authentification de notre réseau maillé comme GCP. Ensuite, nous étudions une liste de mécanismes qui permettent de contrer l’attaque de l’escroc qui caractérise le GCP / Nowadays, authentication in Wireless Mesh Networks (WMNs) refers to IEEE802.1X standard authentication methods or a pre-shared key authentication, and makes use of certificates or shared secrets. In wireless environments, management of certificates is disadvantageous. Certificates require deploying a Public Key Infrastructure (PKI) and a Certification Authority (CA). The CA defines a certificate management policy to control the generation, transmission and revocation of certificates. Management of certificates is a cumbersome task and does not match the limited (power and memory) resources available at wireless nodes. Moreover, it does not match the non permanent connectivity to the CA. In order to get rid of PKI disadvantages, we investigate in this thesis; the use of ID-Based Cryptography (IBC) for authentication in WMNs. IBC proposes to derive an entity public key from its identity directly. As such, IBC avoids the deployment of the PKI and the CA. IBC relies on a Private Key Generator (PKG) for the computation of stations private keys. As such, the PKG is able to impersonate as any station by illegally generating signature or deciphering encrypted traffic. For mitigating that Key Escrow Attack (KEA), a strong assumption is usually made necessary that the PKG is a trustworthy entity. In this thesis, we first present an ID-Based Password Authentication Protocol (IBPAP) that relies on IBC and a shared secret to authenticate mesh station to the network Authentication Server (AS). We propose to use the AS as a PKG. As such, the AS generates the ID-based private key of the supplicant station at the end of a successful authentication. Meanwhile, the supplicant station uses the shared secret to authenticate the AS and its ID-based public parameters. The latter are needed for the good usage of ID-based signature and encryption algorithms. Second, we propose a Key Escrow Resistant ID-Based Authentication Protocol (KERIBAP). That is, we make each supplicant station participate to the generation of its ID-based private key. We show how to change the existing ID-based signature and encryption algorithms to take into consideration the new format of private keys. We discuss also the possibility of distributing the private key generation between a set of ASs in order to avoid the key escrow attack. We verify that our authentication protocols are all secure in the formal model using the protocol verification tool ProVerif. In addition, we discuss their security resistance to some well-known attacks such as replay, collision and denial of service attacks. Finally, we propose some implementation results to confirm IBC advantages compared to PKI. We show how IBC usage reduces the memory consumption of stations
404

System Identification and Model-Based Control of Quadcopter UAVs

Szabo, Andrew P. 10 May 2019 (has links)
No description available.
405

The Regulation of Skeletal Myogenesis by C/EBPβ: Lessons from Small Muscles and Big Tumours

AlSudais, Hamood 22 June 2021 (has links)
Skeletal muscle associated disorders are correlated with significant morbidity, including frailty, fatigue, reduced mobility and poor resistance to treatments as well as mental health repercussions resulting from a loss of independence. Thus, conditions affecting skeletal muscle put considerable pressure on the health care system. In response to injury, skeletal muscle can regenerate and the molecular mechanisms underlying this unique process has been the subject of intense research with the goal of developing better treatment modalities for muscle-related diseases. Our laboratory has previously demonstrated that C/EBPβ is a negative regulator of postnatal myogenic differentiation. Expressed in muscle satellite cells (MuSCs), the primary source of regenerative potential in skeletal muscle, C/EBPβ inhibits entry into the myogenic differentiation program and is required for MuSC self-renewal after injury. Despite the important role of C/EBPβ in muscle homeostasis, little is known about the genes it regulates. To better understand how C/EBPβ regulates these processes, I used both a candidate-based approach to identify the inhibitor of DNA binding and differentiation protein ID3 as a C/EBPβ target gene that mediates inhibition of myogenic differentiation, and an unbiased approach using RNA-seq. I compared gene expression profiles from C2C12 myoblasts overexpressing C/EBPβ to control cells under growth and differentiation conditions. I observed that more than 20% of the molecular signature found in quiescent MuSCs is regulated by C/EBPβ. Caveolin- 1 was implicated as a direct target of C/EBPβ and part of the molecular mechanism by which C/EBPβ maintains MuSCs quiescence. Interestingly, the RNA-seq data identified numerous C/EBPβ-regulated secreted proteins including growth factors and cytokines. Co-culture experiments indicate that secreted proteins mediate the inhibition of cell differentiation and fusion, suggesting that C/EBPβ functions in an autocrine and paracrine fashion to influence activation of myoblasts in the absence of cell-to-cell contact. Given the role of C/EBPβ in regulating secretory proteins that inhibit myogenic differentiation, I examined the requirement of C/EBPβ in the expression of anti myogenic proteins secreted by cancer cells that affect MuSCs function and drive the development of cancer cachexia. Indeed, the expression of C/EBPβ in cancer cells was found to be required for the production of a cachexia-inducing secretome by tumours in vitro and in vivo. Furthermore, C/EBPβ was found to be sufficient to convert non-cachectic tumours into cachexia-inducing ones. In comparing differentially expressed C/EBPβ-regulated secreted protein transcripts from our RNA-seq data to that from 27 different types of human cancers revealed an ~18% similarity between C/EBPβ-regulated secreted proteins and those enriched in cachectic tumours including pancreatic, gastric and brain cancers. Three of these C/EBPβ-regulated secreted proteins (SERPINF1, TNFRSF11B and CD93) were tested further and found to be inducers of muscle atrophy. This work provides molecular insight into the role of C/EBPβ in the regulation of MuSC function and the regulation of cachexia-inducing factors by tumours, placing C/EBPβ as a novel therapeutic target for the treatment of cancer cachexia and other muscle-related diseases.
406

An Integrated Room Booking and Access Control System for Public Spaces

Kamil, Jaffar, Amer, Mohamed January 2023 (has links)
Public spaces, especially educational institutions like universities, encounter challenges with their room booking and access control systems. These challenges commonly manifest as overlapping bookings and unauthorized entry. The latter issue, unauthorized access, specifically stems from inadequate integration between the respective systems. This bachelor thesis introduces a proof-of-concept for a cohesive room booking and access control system to address these issues. The proposed solution encompasses two mobile applications, one as the room reservation platform and the other as the access control mechanism. By integrating the management of bookings and access control, this proof-of-concept aims to overcome the prevalent shortcomings in existing systems. Halmstad University's IT department was consulted during the requirement definition phase to ensure a comprehensive understanding of the common problems, their underlying causes, and possible solutions. The proposed system utilizes common technologies such as NodeJS, Android Studio, and PostgreSQL. Additionally, Mobile BankID is integrated as a unique feature for secure user authentication, providing a trusted and widely-accepted method to verify users' identities. The final results were tested in a simulated environment and indicate that the developed system satisfies the initial requirements, addressing the problems of double bookings and unauthorized access identified during the consultation with the IT department.
407

Next Level 365id Scanner : Improving the photo environment of the scanner.

Husari, Abdulrahman January 2022 (has links)
The development of smart ID cards necessitates the development of secure methods for verifying the authenticity of these cards by organizations, businesses, and government authorities. This motivated the development of such a scanner capable of reading several ID cards from various countries. 365id presented its solution in 2016 by introducing a unique scanner that can verify the authenticity of ID cards. The verification process works by capturing three images using the scanner's three distinct techniques to validate the ID cards' hidden features. After many years of the company's success and the services it provides, including the 365id scanner, it is now the time to take the scanner a step further and improve its services. Thus, this project was founded by the 365id company to research and generate various suggestions for improving the quality of the scanner's photo environment. Either by modifying the way light is reflected inside the scanner or by modifying the parameters that control the camera's operation and investigating the possibility of replacing the camera with a better alternative. This is to increase the image quality and accuracy of the verification procedure. The results proved that the desired effect could be achieved at the lowest costs by adjusting the camera settings and adding new materials to reduce and isolate the light's reflection inside the scanner. In comparison, the results proved that it is not feasible to replace the camera at present. Nevertheless, it is an option that may be available soon.
408

HL-DRIP: A Blockchain-based Remote Drone ID Protocol registry management : Evaluation of a Hyperledger Fabric-based solution to manage DRIP registries

Basaez Serey, Juan January 2023 (has links)
On January 15, 2021, the Federal Aviation Administration published the Unmanned Aircraft System Remote Identification rule with the intention of improving airspace security regarding the use of Unmanned Aircraft. According to the rule, UAs in flight must provide the public with information such as their identification, location, and altitude. After the publication of this rule, the IETF DRIP Working Group has been working on the creation of DRIP, a protocol that meets the requirements stipulated in the rule and that guarantees that all the communication involved in the protocol is made trustworthy.  This document presents a thesis project in which Hyperledger Fabric has been studied and evaluated as an alternative to replace DRIP's DNS-based registry management. A vast research procedure combined with experiments has aided in creating a novel Blockchain-based Drone ID architecture called HL-DRIP. The designed system proposes not only how blockchain could be integrated into DRIP, but also how the rest of the Remote ID protocol could be designed, and how each of the protocol's components and participants should interact with each other to make the protocol compliant with the rule. HL-DRIP is a blockchain-based system designed to replace DRIP registry management leveraging Hyperledger Fabric and IPFS. HL-DRIP leverages x.509 and DRIP-based certificates to manage participant registration and authentication. A private IPFS network is deployed by the system's smart contract to manage participants' personal data and mitigate well-known blockchain storage issues, allowing the system to be GDPR-compliant. HL-DRIP supports i) participant registration by using certificates and HIP-based unique IDs, ii) lookups of participants' personal data, and iii) permission management.  HL-DRIP's main functionality has been prototyped and tested. The results have shown that an average of 783 participants are registered with a throughput of 8.1 transactions per second. Furthermore, an average of 648 IPFS data requests are executed with a throughput of 12.8 transactions per second.
409

Geometric and Computational Aspects of Manipulation Rules for Graph-Based Engineering Diagrams

Bayer, Johannes, Li, Yakun, Marquardt, Sebastian, Dengel, Andreas 07 July 2022 (has links)
The digitization of graph-based engineering diagrams like P&IDs or circuit drawings from optical sources as well as their subsequent processing involves both image understanding and semantic technologies. More precisely, after a raw graph has been obtained by an object detection and line extraction pipeline, semantic gaps (like resolving material flow directions) need to be overcome to retain a comprehensive, semantically correct graph. Likewise, the graph representation often needs to be altered to achieve interoperability with established CAE systems and to accommodate customer-specific requirements. Semantic technologies provide powerful tools to manipulate such data but usually require rather complicated implementation. Graphically presentable graph based rules provide a code-free mean to ease the interaction with domain experts. In order to be applicable in real-world applications, both geometric and computational aspects need to be considered. This paper explores these aspects and demonstrates use cases of such rule graphs.
410

Estimating ancestry in South Africa: a comparison of geometric morphometrics and traditional craniometrics

King, Rebecca Elizabeth 03 November 2015 (has links)
In ancestry estimation of South African individuals, non-metric morphological trait assessment has not proven useful and previous results in FORDISC 3.0 leave room for improvement. The accuracy rates of software programs FORDISC 3.1 and 3D-ID were compared for ancestry estimation based on cranial data of black and white South Africans using discriminant function analysis. Cranial landmarks were digitized using a Microscribe G2 for geometric morphometric analysis in 3D-ID, and traditional craniometric measurements for use in FORDISC were calculated using the data collection software 3Skull. Data was collected from a total of 385 individuals (186 black and 199 white crania) from the Pretoria Bone Collection. Overall accuracy rates of 75.6% using FORDISC 3.1 and 63.1% using 3D-ID were obtained for black and white South Africans. Incorrect estimates were more often due to misclassifications of sex rather than ancestry, reflecting the decreased amount of sexual dimorphism in South African populations when compared against American populations, discussed previously. Black South Africans were more often classified correctly in FORDISC 3.1, and white South Africans were more often classified correctly in 3D-ID. Low sample size in comparative databases and broad ancestral differences between South Africans and the proxy populations used (American, European, and African) likely explain the low accuracy rates. The use of FORDISC and 3D-ID in conjunction can help South African anthropologists in estimating ancestry and ensuring correct classifications.

Page generated in 0.0267 seconds