• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 187
  • 39
  • 26
  • 3
  • Tagged with
  • 255
  • 133
  • 63
  • 55
  • 45
  • 38
  • 36
  • 32
  • 32
  • 27
  • 25
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Espectro de Fucik para un sistema acoplado

Rojas Romero, Santiago César January 2017 (has links)
Estudia el Espectro de Fucik para un sistema acoplado de ecuaciones diferenciales ordinarias con valores en la frontera, donde λ+, λ−, μ− ∈ R+ ∪{0} , w+ = max{w, 0 } , w− = max{−w, 0 } y Bw = 0 representa las condiciones de frontera tipo Dirichlet o Neumann. Obtiene familias explícitas de puntos (λ+, λ−, μ−) del espectro de Fucik y construye familias explícitas de soluciones no triviales (u, v) para el problema dado. Demuestra que el espectro de Fucik está formado por superficies y describe explícitamente la parte trivial del espectro, correspondiente a soluciones que no cambian de signo, probando que para el problema Dirichlet está compuesto por un plano y un cilindro hiperbólico, y para el problema Neumann está compuesto por los tres planos coordenados. Luego, usando el Teorema de la Función Implícita, prueba la existencia de superficies en la parte no trivial del espectro, correspondiente a soluciones que cambian de signo. / Tesis
72

Entire solutions to the inhomogeneous allen-cahn equation in R^2, with a transition on a noncompact curve

Zúñiga Munizaga, Andrés Jahir January 2012 (has links)
Ingeniero Civil Matemático / Este trabajo de memoria de título presenta un estudio de la ecuación de perturbación singular de Allen-Cahn con inhomogeneidad: \begin{equation}\ep^2\div\left(a(x)\cdot\nabla_{x}u(x)\right)+a(x)f(u(x))=0,\quad\text{ en }\quad\R^2 \label{AllenCahnEq}\end{equation} donde $\varepsilon>0$ es un parámetro pequeño, $a(x)$ es un potencial uniformemente positivo y suave, que induce una forma de medir distancias para puntos en $\R^2$, y $f$ es la nolinealidad dada por $f(u)=u-u^3$. El estudio aborda la construcción de soluciones enteras de~\eqref{AllenCahnEq}, bajo la condición que $u$ se anule cerca de una curva $\Gamma\subset \R^2$. El enfoque propuesto asume que $\Gamma$ es una curva no acotada, geodésica no-degenerada relativa al funcional de longitud de arco $\int_{\Gamma}a(\vec{x})$, con curvatura $k_{\Gamma}$ suave que decae a una tasa polinomial. Es de interés el estudio de la ecuación de Allen-Cahn con presencia de un término de inhomogeneidad $a(x)\not\equiv 1$, ya que esto conlleva el estudio de curvas geodésicas para una métrica no trivial de $\R^2$. Además, es relevante considerar que el conjunto nodal de $u$ yace cerca de una curva no acotada, pues esto se refleja en el estudio de ecuaciones diferenciales en contextos no compactos. El resultado principal asegura la existencia de una solución de~\eqref{AllenCahnEq}, la cual converge exponencialmente a $\pm 1$ cuando $x$ se aleja de $\Gamma$. Un segundo resultado entrega ejemplos de potenciales $a(x)$ y curvas $\Gamma$, para los cuales es posible construir una solución $u$ con el comportamiento antes descrito. La demostración de este resultado está basada en una técnica conocida como reducción infinito dimensional de Lyapunov-Schmidt, la cual motiva a la elección de un candidato a solución del tipo $u = w + \phi$, donde $w$ en coordenadas adecuadas resuelve $w''+f(w)=0$, y determina el perfil de $u$ a orden principal. Además $\phi$ es una función de corrección, con el fin de convertir a $u$ en solución exacta de~\eqref{AllenCahnEq}, lo que obliga a $\phi$ a resolver una ecuación diferencial no lineal. De ahí en más, el problema consiste en estudiar la existencia y unicidad de la última ecuación en un espacio funcional adecuado. Esto se realizó analizando el operador linealizado asociado a la ecuación de Allen-Cahn, y luego el problema no-lineal que es resuelto mediante un esquema de punto fijo. Para el ultimo análisis, fue necesario ajustar $\Gamma$ en un parámetro de perturbación $h$, lo que equivale a una EDO no lineal en $h$ donde participa la segunda variación del funcional de largo $l_{a,\Gamma}$ asociado a $\int_{\Gamma}a(\vec{x})$. Finalmente, el método utilizado no sólo provee la existencia de una solución $u$ de~\eqref{AllenCahnEq}, sino que además entrega una caracterizacón completa de ésta, tanto en tamaño como en comportamiento cualitativo en coordenadas relacionadas a la curva $\Gamma$.
73

Convergencia asintótica en esquemas adaptativos con operadores fraccionarios

Gallegos Veliz, Javier Andrés January 2015 (has links)
Magíster en Ciencias de la Ingeniería, Mención Eléctrica / Se realiza un análisis teórico de estabilidad, acotamiento, convergencia y propiedades de sistemas de orden no entero con la elección de derivada no entera según Caputo. En las deducciones se emplea fundamentalmente el principio de comparación y el método de funciones de Lyapunov. Se diseñan esquemas adaptables de orden entero o no entero, entendidos como ajustes de parámetros que buscan minimizar una función objetivo y que incluye un operador de cálculo general (no entero o entero). El diseño consta de dos etapas: en la primera se recurre a métodos conocidos o propuestos de carácter general para obtener leyes de ajuste, mientras que en la segunda se analizan la convergencia de tales leyes, las cuales resultan ser sistemas de orden no entero. El énfasis es puesto en el método del gradiente por su simplicidad y amplio uso. En este contexto, una generalización de excitación persistente es propuesta para incluir el caso no entero. Se aplican parte de los desarrollos precedentes a un problema práctico relevante en la disciplina de Control de Sistemas, como es la identificación de parámetros y la estimación de estados para un sistema lineal desconocido. Para ello se diseña un esquema identificador y se presentan ejemplos ilustrativos y simulaciones. Como parte de los resultados obtenidos indirectamente en la tesis se profundizan aspectos elementales del cálculo no entero.
74

Contribution to inverse problems and controllability issues of hyperbolic and parabolic partial diferential equations

Morales Ponce, Roberto Alejandro January 2019 (has links)
Memoria para optar al grado de Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / El objetivo de esta tesis consiste principalmente en el estudio teórico de algunos resultados de problemas inversos y de controlabilidad en ecuaciones hiperbólicas y parabólicas. En el Capítulo 1 presentamos una breve introducción de los tópicos tratados en este trabajo. Principalmente, centramos nuestra atención en las de niciones clásicas de controlabilidad y problemas inversos. Posteriormente, indicamos cuáles son los resultados generales obtenidos en esta tesis. En el Capítulo 2, describimos los resultados de estabilidad obtenida para la reconstrucci ón de potenciales en un sistema de ecuaciones hiperbólicas acopladas en cascada. Para probar este resultado, nos inspiramos en el método de Bukhgeim-Klibanov combinado con un tipo especial de desigualdades conocidas como estimaciones de Carleman. Estas dos herramientas, junto con el hecho que las ecuaciones del sistema están acopladas en cascada, nos permiten obtener un resultado de estabilidad Lipschitz para la recuperación de todos los potenciales del sistema utilizando mediciones de algunas componentes accesibles de él. En el Capítulo 3, nos centramos en el estudio de la controlabilidad a cero de una ecuación del calor con condiciones de borde dinámicas. Este problema se puede ver como una ecuación del calor acoplada con una ecuación diferencial ordinaria actuando en un extremo del borde. Nuestros resultados apuntan en dos direcciones. En primer lugar, probamos que este tipo de problemas se puede controlar a cero en una región que está lejos de la interacción entre las dos dinámicas. Usando la dualidad entre observabilidad y controlabilidad, la prueba de este resultado está basado en la construcción de una estimación de Carleman adecuada. En segundo lugar, probamos que una modi cación de este tipo de problemas puede ser visto como el problema límite de una familia de problemas parabólicos con coe cientes de difusión discontinuos en donde la difusión es muy alta en una parte del dominio. Adicionalmente, estudiamos el efecto que tiene el control del problema límite en la sucesión de problemas aproximados. Finalmente, en el Capítulo 4 desarrollamos una manera de obtener una estimación de tipo Carleman para una ecuación del calor con coe cientes de difusión discontinuos. La novedad en esta estrategia están basadas en las ideas del análisis microlocal desarrollado por L. Robbiano y J. Le Rousseau et al. para ecuaciones parabólicas, con la ventaja de que podemos obtener información de la constante de observabilidad. / Beca CMM, Beca Doctorado Nacional Conicyt 2015, CMM Conicyt PIA AFB170001 y Fondecyt 1151512-1191903
75

Soluciones oscilatorias en ecuaciones diferenciales con retardo

Bel, Andrea Liliana 19 June 2014 (has links)
Las ecuaciones diferenciales con retardo son utilizadas frecuentemente para modelar problemas en física, ingeniería o biolog´ıa entre otros. Estas ecuaciones son un ejemplo de ecuaciones diferenciales funcionales y la complejidad que presentan sus soluciones es mucho mayor que la observada en ecuaciones diferenciales ordinarias, incluso para ecuaciones de primer orden. Por la dependencia temporal con el retardo, una solución queda determinada a partir de una función inicial definida en un intervalo de tiempo, el problema que resulta es infinito-dimensional. Muchas herramientas teóricas conocidas para el estudio de ecuaciones diferenciales ordinarias se adaptan o generalizan para el estudio de ecuaciones diferenciales con retardo. Es especialmente interesante, tanto desde el punto de vista teórico como práctico, el estudio de soluciones oscilatorias en este tipo de ecuaciones. A lo largo de esta tesis desarrollamos metodologías que nos permite calcular soluciones periódicas y determinar su comportamiento dinámico. La primer metodología presentada en esta tesis combina la utilización del método de análisis homotópico y un método de colocación para calcular la estabilidad de los ciclos periódicos existentes. Las ventajas que presenta este procedimiento y las distintas adaptaciones que hemos realizado a los métodos, nos permiten describir escenarios dinámicos interesantes en distintas ecuaciones con retardo. En primer lugar, analizamos una ecuación de van der Pol realimentada con retardo, observamos distintas bifurcaciones y resonancias en las que intervienen uno o varios ciclos periódicos. Por otra parte, utilizamos el método de análisis homotópico como herramienta teórica para probar la existencia de ramas de bifurcaciones de Hopf isocrónicas. Otro método que permite el estudio de soluciones oscilatorias en ecuaciones diferenciales con y sin retardo, es la metodología en frecuencia. En esta tesis presentamos una metodología iterativa en frecuencia que generaliza los resultados existentes y permite, utilizando teoría de singularidades, describir distintos escenarios dinámicos relacionados con bifurcaciones de Hopf generalizadas. Por último, usamos el método en frecuencia para estudiar sistemas discretos, demostramos la existencia de bifurcaciones de gran interés y determinamos en forma analítica la interacción de las mismas. / Delay differential equations are often used to model problems in physics, engineering and biology among others. These equations are examples of functional differential equations and their solutions have a much higher complexity than that observed in ordinary differential equations, even for first order equations. By the time dependence with the delay, a solution is determined from an initial function defined in an interval of time, the problem then it is infinite-dimensional. Many theoretical tools developed for the study of ordinary differential equations are adapted or generalized to analyze delay differential equations. It is particularly interesting from both theoretical and practical point of view, the study of oscillatory solutions in this type of equations. Throughout this thesis we develop methodologies that allow us to calculate periodic solutions and determine its dynamic behavior. The first methodology presented in this thesis combines the use of homotopy analysis method and a collocation method for calculating the stability of existing periodic cycles. The advantages of this procedure and the adaptations we have made to the methods, permit us to describe interesting dynamic scenarios in different equations with delay. First, we analyzed a van der Pol equation with time–delay feedback, we observed different bifurcations and resonances, which involved one or more periodic cycles. Also, we use the homotopy analysis method as a theoretical tool to prove the existence of branches of isochronous Hopf bifurcations. Another method used in the study of oscillatory solutions in differential equations with or without delay, is the frequency–domain approach. In this thesis we present a frequency–domain iterative methodology that generalizes existing results and, if it is combined with the use of singularity theory, allows us to describe various dynamic scenarios related to generalized Hopf bifurcations. Finally, we use the frequency– domain approach to analyze discrete systems with delay, we show the existence of bifurcations of great interest and we determine analytically the interaction of these bifurcations.
76

Modelos de criminalidad basados en ecuaciones diferenciales

Reyes Riffo, Sebastián Alexis January 2013 (has links)
Ingeniero Civil Matemático / La presente memoria busca ser un aporte en el estudio matemático de las ecuaciones de Pitcher, cuya finalidad es predecir la dinámica delictual asociada a robos residenciales. Los supuestos involucrados en su formulación muestran que este modelo constituye una aproximación en el análisis de esta realidad, lejos aún de reflejar a cabalidad su naturaleza. En el modelo están involucradas dos variables. La primera hace referencia a la atractividad de la región, mientras la segunda es la densidad de población criminal presente en el medio. La interacción entre ambas es gobernada por un sistema de ecuaciones diferenciales parabólicas del tipo reacción-difusión, que incluyen términos no lineales. Pitcher también propone incluir como una tercera variable al efecto disuasivo que produce la presencia de una fuerza policial en el medio, pero tal situación no se considerará debido a los alcances de este trabajo. Entender como se comportan las soluciones asociadas a las ecuaciones de Pitcher es fundamental por varios motivos, entre los cuales está situar los focos delictivos (hot spots) dentro de una región. Por ello, dotando al problema de condiciones de borde Neumann, la motivación central de esta memoria es contribuir a un estudio riguroso de la existencia de soluciones no constantes en el caso estacionario. El primer capítulo consta de una revisión y análisis de los modelos de Short et al., Pitcher, y Jones, Brantingham y Chayes, donde se establecen sus principales similitudes y diferencias. A continuación, en el segundo capítulo se presentan y demuestran los dos resultados centrales obtenidos en este trabajo: la existencia de ramas de bifurcación, que dependen tanto de los valores propios simples y positivos del operador $-\lap$ como de los parámetros del problema; y la estabilidad de tales ramas. Ambos resultados se derivan del uso de la teoría de bifurcaciones desarrollada por Shi y Wang y los teoremas clásicos de estabilidad de Crandall y Rabinowitz, y en conjunto proveen mayor información respecto al uso de inestabilidades de Turing en el caso no estacionario. Finalmente, se incluyen algunas simulaciones numéricas que, usando el método de elementos finitos y un algoritmo de punto fijo alternante, permiten visualizar el origen de tales ramas.
77

Contributions to local and nonlocal elliptic differential equations

Wang, Ying January 2015 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / Esta tesis doctoral está dividida en cuatro partes. La primera parte está dedicada al estudio de la simetría radial y las propiedades de monotonicidad de soluciones positivas de ecuaciones elípticas fraccionarias en la bola unitaria o en todo el espacio, usando el método de planos móviles. En la segunda parte, se consideran propiedades de decaimiento y simetría de las soluciones positivas para ecuaciones integro-diferenciales en todo el espacio. Estudiamos el decaimiento, construyendo super y subsoluciones apropiadas y usamos el método de los planos móviles para probar las propiedades de simetría. La tercera parte es investigar la existencia y unicidad de soluciones débiles de la ecuación del calor fraccionaria, involucrando medidas de Radon. Más aún, analizamos el comportamiento asintótico de la solución débil cuando la medida de Radon es la masa de Dirac. En la cuarta parte, estudiamos la existencia de soluciones a problemas elípticos no lineales que provienen del modelamiento de dispositivos de sistemas micro-electromecánicos en el caso en que la membrana elástica entra en contacto con la placa inferior en la frontera. Mostramos, en este caso, como el decaimiento de la membrana afecta la existencia de soluciones y la tensión pull-in.
78

Source time reversal methods for acoustic and elastic waves

Brevis Vergara, Rodrigo Ignacio January 2018 (has links)
Tesis para optar al grado de Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / Esta tesis estudia la detección y reconstrucción del término espacial de una fuente de variables separables en problemas de onda acústica y elástica. Para esto, estudiamos el método time-reversal mirror, el cual explota una invariancia intrínseca de la física a nivel microscópico que se observa también a nivel macroscópico en las ecuaciones de ondas. Esto significa que es posible recuperar la condición inicial de una ecuación de ondas homogénea revirtiendo la onda a través del tiempo. Para localizar y reconstruir el término espacial de la fuente, desarrollamos un método llamado source time reversal. La aplicación subyacente aquí es la detección de fuentes sísmicas en la minería. Es sabido que la actividad minera induce temblores dentro de las minas [50]. Esto se vuelve bastante peligroso si no se toman las precauciones adecuadas. Conocer sobre el origen de las actividades sísmicas puede ser utilizado para reducir el peligro de derrumbes y mejorar la seguridad dentro de las minas. Este trabajo se divide en tres capítulos; cada uno de ellos constituye un documento autocontenido para ser presentado como artículo. El primer capítulo aborda el problema de reconstrucción de fuente para ondas acústicas. Para esto introducimos el método source time reversal, la cual reconstruye el término espacial de una fuente de la forma f(x)g(t), donde f(x) entrega la forma y g(t) representa la distribución en tiempo de la fuente. Además, presentamos una estimación del error de la reconstrucción para el caso cuando f es una función de cuadrado integrable. Aquí, proponemos un método de regularización para implementar la reconstrucción de la fuente numéricamente. Adicionalmente, analizamos las principales características y limitaciones del método propuesto cuando se aplica a ondas acústicas. El capítulo dos estudia el problema de reconstrucción de fuente para ondas elásticas. Extendemos el método source time reversal para problemas elásticos. Además, introducimos un nuevo método de regularización para implementar la reconstrucción del término espacial de la fuente numéricamente para grandes volúmenes de datos. El nuevo método de regularización elimina las altas frecuencias presentes en la señal procesada, lo que permite utilizar mallas numéricas más gruesas y reduce el costo computacional. Finalmente, este capítulo presenta diversos experimentos numéricos para probar que el método es válido en el caso elástico. El último capítulo analiza un problema de reconstrucción de fuente diferente. Aquí consideramos una fuente compuesta por una suma finita de funciones de variable separable, donde cada término temporal de la fuente es una función delta de Dirac actuando a un tiempo diferente. Basado en una propiedad de tiempo reverso, la fuente puede ser localizada observando el desplazamiento y la velocidad de desplazamiento en el problema reverso [31]. Nosotros extendemos esta idea a sistemas de ondas elásticas. Adicionalmente, proponemos un algoritmo para la implementación numérica. / CONICYT, CMM - Conicyt PIA AFB170001 y el proyecto GEAGAM
79

Operadores de control admisibles para sistemas dinámicos lineales en dimensión infinita

Serna Giraldo, Ivan Junnior January 2018 (has links)
Publicación a texto completo no autorizada por el autor / Presenta un estudio de ciertas ecuaciones diferenciales lineales sobre espacios de Hilbert. Estas ecuaciones son sistemas dinámicos lineales en dimesión infinita descritas por z(t) = Az(t) + Bu(t), donde A es el generador infinitesimalo de un semigrupo T, B es un operador no acotado y u es una función de entrada. Prueba la existencia y unicidad de soluciones de la ecuación diferencial anterior y continua investigando las propiedades que hacen de B un operador de control admisible para el semigrupo T. Se obtiene bajo la admisibilidad del operador B una mejor localización de la solución y luego, con hipótesis débiles sobre la función de entrada u, se obtiene un resultado de regularidad de la solución. / Tesis
80

Existencia y estabilidad asintótica para una ecuación viscoelástica no lineal con amortiguamiento fuerte

Huamán Oriundo, Carole January 2019 (has links)
Desarrolla en forma didáctica y explícita la existencia de solución y la estabilidad asintótica, esto es, el decaimiento exponencial de la energía asociada al sistema viscoelástico no lineal con amortiguamiento fuerte. El estudio de problemas viscoelástico que se caracterizan por el término memoria que, es representado por el término integral y que tiene mucho que ver con la disipación de la ecuación. El desenvolvimiento de la teoría de viscoelasticidad se dio en primer lugar, debido al uso de materiales poliméricos en diversos campos. La investigación de las propiedades viscoelástico de los polímeros es grandemente estimulada por la importancia práctica del comportamiento mecánico en el procesamiento y utilización de cauchos, fibras plásticas, entre otros. / Tesis

Page generated in 0.0841 seconds