• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 11
  • 11
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'étude de l'anisotropie induite par l'effet Mullins dans les élastomères silicones chargés

Machado, Guilherme 12 May 2011 (has links) (PDF)
The present work studies the experimental characterization and modeling of the anisotropy induced by Mullins effect, i.e., the loss of stiffness in the first loading cycles, often observed in rubber-like materials. After a description of the mechanical characteristics of the particular silicone material used in our study, experimental tests are developed to create original and complex loading histories. First, successions of conventional uniaxial tensile tests are performed with changing directions of loading. Second, the state of heterogeneous stress and strain obtained in circular membrane swelling tests was completely characterized by means of kinematic field measurements made by the 3D image correlation method, and the loadings are then biaxial tension followed by uniaxial traction. The key parameters for modeling the Mullins effect were able to be identified, including its isotropic and anisotropic parts. A model was thus developed based on the double-network theory taking into account the experimentally motivated criteria. A suitable version with simple implementation in a finite element computer code was finally developed to allow the calculation of a structural part.
2

Structures élastomères sous chargement cyclique : comportement, fatigue, durée de vie

Raoult, Ida 24 January 2005 (has links) (PDF)
L'industrie automobile utilise de nombreuses pièces en caoutchouc aux fonctions antivibratoires, dont il faut garantir la tenue en service. L'objectif de ce travail de thèse est de proposer une méthode pour prévoir la durée de vie en fatigue d'une structure en caoutchouc naturel chargé au noir de carbone. La démarche proposée consiste à découpler l'évolution du comportement mécanique et l'endommagement sous chargement cyclique. On suppose qu'il existe un cycle stabilisé et que la durée de vie, définie comme l'amorçage d'une fissure détectable, ne dépend que des grandeurs mécaniques évaluées sur celui-ci. Les élastomères soumis à un chargement cyclique présentent un adoucissement associé à l'effet Mullins, qui se produit surtout pendant les premiers cycles, après lesquels la réponse du matériau reste identique. On propose un modèle capable de décrire cette réponse stabilisée, ne dépendant que des variables mécaniques en régime établi. Ses paramètres sont les élongations maximales dans un nombre fini de directions matérielles, de façon à décrire l'anisotropie induite par l'effet Mullins. Ce modèle est ensuite utilisé pour analyser un grand nombre d'essais d'endurance uniaxiaux et multiaxiaux, réalisés sur éprouvettes axisymétriques. On montre qu'il permet de prendre en compte efficacement l'influence du type de contrôle ou d'une précharge. L'analyse des essais multiaxiaux ne mettant pas en jeu de renforcement, c'est-à-dire passant par l'état de déformation nul, montre que la contrainte principale maximale est suffisante pour représenter tous les cas de chargement, à l'exception de ceux qui font intervenir des phénomènes de cumul multi-plans. On propose alors une loi de cumul d'endommagement pour représenter ce type de chargement.
3

Modélisation du comportement des structures et des matériaux élastomères

Verron, Erwan 24 October 2003 (has links) (PDF)
Dans le deuxième chapitre, intitulé Soufflage de membranes en grandes transformations, sont présentés les travaux relatifs à la modélisation et à la simulation du comportement des membranes hyperélastiques. Le cadre général de ces travaux est la simulation du soufflage de membranes souples soumises à de très grandes déformations. La pression de gonflage est supposée uniforme à l'intérieur de la membrane. Les matériaux considérés se comportent comme le caoutchouc : ils sont supposés isotropes et incompressibles, et les lois de comportement utilisées sont hyperélastiques. Ce type d'études est nécessaire à la compréhension des phénomènes mis en jeu dans des domaines divers, comme par exemple la biomécanique pour comprendre la réponse des membranes biologiques aux sollicitations mécaniques ou pour la simulation de la mise en forme des corps creux en plastique. Ces travaux ne portent pas sur une application particulière, mais plutôt sur le problème général de la simulation du phénomène de soufflage. Plus précisément, on s'intéresse ici au développement de nouveaux éléments finis adaptés aux difficultés engendrées par les grandes déformations aussi bien pour les problèmes axisymétriques que non-axisymétriques, ainsi qu'à l'étude de la stabilité de ces structures. En premier lieu, un bref état de l'art du domaine est proposé. Les travaux recensés se limitent strictement aux trois aspects du problème qui nous intéressent : les formulations axisymétriques et non-axisymétriques, ainsi que les problèmes d'instabilité. Dans la deuxième partie sont présentées deux formulations de type éléments finis adaptées aux problèmes de soufflage. L'objectif de ces deux modèles est la réduction du nombre de degrés de liberté nécessaires à l'étude des membranes en grandes transformations en améliorant les méthodes d'interpolation. La première formulation concerne l'utilisation de fonctions splines pour interpoler les membranes axisymétriques, et la seconde enrichit l'élément fini Q4 classique afin d'assurer la continuité de la métrique pour les applications non-axisymétriques. Finalement, la troisième et dernière partie présente quelques résultats relatifs aux problèmes d'instabilité et de bifurcation qui apparaissent lors du gonflage de membranes souples. La seconde thématique de mes travaux revêt un caractère plus " matériau " que la première. En effet, ce deuxième axe de recherche s'intéresse à la prédiction de la durée de vie en fatigue des pièces élastomères. Au travers de collaborations industrielles et universitaires, le Groupe de Travail en Fatigue des Elastomères (GTFE) a été mis en place en 2000. Ce groupe de travail regroupe des universitaires, des industriels et un centre de transfert. La variété des acteurs intervenant dans le GTFE a permis de définir précisément les objectifs visés par les partenaires industriels, et d'élaborer les stratégies scientifiques nécessaires pour les atteindre. Du point de vue industriel, l'objectif principal de ces travaux est l'élaboration d'outils de simulation permettant la prédiction de la durée de vie en fatigue des pièces anti-vibratoires du secteur automobile (supports moteur, supports d'échappement, ...). Du point de vue scientifique, la question de la fatigue des élastomères est un problème ouvert. Pour s'attaquer à ce problème, trois voies d'étude ont été ouvertes : la première vise à se doter de lois de comportement efficaces pour les élastomères, la deuxième concerne le phénomène d'initiation et plus particulièrement la détermination des causes physiques de cette fissuration, et finalement le troisième domaine d'étude s'intéresse à la fatigue proprement dite et a pour objectif la détermination des facteurs endommageants sous chargement cyclique.
4

CONTRIBUTION A L'ETUDE DES ELASTOMERES ET DES MEMBRANES SOUFFLEES

Marckmann, Gilles 07 June 2004 (has links) (PDF)
Dans le présent travail, deux aspects complémentaires de la modélisation mécanique des élastomères sont abordés. Le premier concerne le choix d'un modèle de comportement adapté aux élastomères et le second concerne le développement d'un élément fini spécifique pour l'étude des membranes élastomères soufflées. <br />Après une description des caractéristiques mécaniques particulières de ces matériaux, une méthodologie d'identification des paramètres matériels est proposée. A cette fin, un outil spécifique est développé. Celui-ci permet d'identifier un matériau suivant plusieurs cas de chargement simultanément. Une des originalités de ce travail est l'utilisation des algorithmes génétiques et d'une programmation proche de l'orienté objet. Cet outil a permis d'établir un bilan des performances respectives de différents modèles hyperélastiques de la littérature. <br />Notre attention s'est ensuite portée sur la construction d'un nouveau modèle permettant de modéliser l'effet Mullins, perte de raideur dans les premiers cycles de chargement, caractéristique des élastomères. Sur la base de concepts physiques, le modèle huit-chaînes est modifié afin de rendre compte des modifications des caractéristiques de réseau. <br />Enfin, la comparaison des modèles de comportement est vue au travers du soufflage de structures membranes. Un élément fini utilisant une interpolation de type B-spline est développé afin d'étudier la réponse fortement non-linéaire de structures simples axisymétriques. Puis, une étude comparative est menée sur les modèles récents fondés sur la statistique de chaînes afin de mettre en évidence l'influence du choix du modèle constitutif sur la réponse globale de la structure.
5

Du modèle matériau à la mécanique des systèmes : étude dynamique d'une liaison souple en silicone chargé de silice

Vincent, Florence 20 January 2011 (has links) (PDF)
Grâce à leur propriété d'amortissement, les élastomères chargés sont couramment utilisés dans l'industrie pour réaliser des pièces anti-vibratoires. Cependant, des phénomènes complexes et couplés, comme l'effet Mullins et l'effet Payne, rendent le comportement de ces matériaux fortement non-linéaire. Peu de modèles permettent de prédire la réponse dynamique de ces pièces quelle que soit la sollicitation appliquée.<br/ >L'objectif principal de cette étude est de proposer un modèle de comportement mécanique du matériau intégrant la prise en compte de l'effet Payne afin de mieux prévoir la réponse dynamique de pièces anti-vibratoires en élastomère chargé et de permettre notamment une meilleure conception de ces pièces en fonction de leur utilisation (fréquence à atténuer, charge statique supportée ...). Ensuite, nous avons développé une chaîne de modèles allant du modèle de comportement matériau au modèle de substitution de la liaison souple intégrable dans un modèle dynamique de grand système, comme un avion par exemple. Pour cela, une méthode de réduction d'ordre de modèle a notamment été développée pour résoudre efficacement le problème paramétrique relatif à la construction du modèle de substitution.<br/ >Ainsi, dans un premier temps, une campagne d'essais dynamiques, caractérisés par une fréquence, une amplitude de déformation et une déformation statique, sur éprouvettes à la fois en cisaillement puis en compression a été menée. Ceux-ci ont notamment permis de caractériser l'effet Payne vis à vis de ces différents paramètres.<br/ >Ensuite, nous avons cherché à développer un modèle de comportement matériau permettant de simuler ces essais et donc de prédire la réponse dynamique de la liaison souple, notamment en terme de rigidité et de dissipation, quelles que soient les sollicitations statiques et dynamiques appliquées. Pour cela, un modèle de comportement hyperviscoplastique : le modèle DyMPPlEC, basé sur celui de Qi-Boyce, a été enrichi au Centre des Matériaux. Les paramètres matériau, associés au modèle développé, ont été identifiés à partir des données expérimentales sur un élément de volume représentatif puis le modèle a été validé sur une structure réelle.<br/ >Enfin, la capacité de ce modèle à prévoir l'effet Payne même pour des sollicitations dynamiques de déformation statique non nulle tout en intégrant l'effet Mullins a été mise en avant.
6

Contribution à l'étude de l'anisotropie induite par l'effet Mullins dans les élastomères silicones chargés / A contribution to the study of induced anisotropy by Mullins effect in silicone rubber

Machado, Guilherme 12 May 2011 (has links)
Le présent travail étudie la caractérisation expérimentale et la modélisation de l'anisotropie induite par effet Mullins, i.e., la perte de raideur après les premiers cycles de chargement, très souvent observée dans les matériaux de type élastomère. Après une description des caractéristiques mécaniques du matériau silicone utilisé dans notre étude, des essais expérimentaux originaux sont développés pour créer des historiques de chargement complexes. D'une part, des successions d'essais de traction uniaxiale classiques sont réalisées, avec changement de directions de chargement. D'autre part, des états hétérogènes de contrainte et déformation obtenus lors d'essais de gonflement de membrane circulaire ont été complètement caractérisés grâce à des mesures de champs cinématiques réalisées par la méthode de corrélations d'images 3D ; les chargements effectués sont alors de type traction biaxiale-traction simple. Les paramètres clés pour la modélisation de l'effet Mullins ont ainsi pu être mis en évidence, avec notamment ses parts isotrope et anisotrope. Un modèle a ainsi été développé à partir d'une théorie de double réseau prenant en compte des critères expérimentalement motivés. Une version adaptée à une implantation simple dans un code de calculs éléments finis est finalement développée pour la réalisation de calculs de structures. / The present work studies the experimental characterization and modeling of the anisotropy induced by Mullins effect, i.e., the loss of stiffness in the first loading cycles, often observed in rubber-like materials. After a description of the mechanical characteristics of the particular silicone material used in our study, experimental tests are developed to create original and complex loading histories. First, successions of conventional uniaxial tensile tests are performed with changing directions of loading. Second, the state of heterogeneous stress and strain obtained in circular membrane swelling tests was completely characterized by means of kinematic field measurements made by the 3D image correlation method, and the loadings are then biaxial tension followed by uniaxial traction. The key parameters for modeling the Mullins effect were able to be identified, including its isotropic and anisotropic parts. A model was thus developed based on the double-network theory taking into account the experimentally motivated criteria. A suitable version with simple implementation in a finite element computer code was finally developed to allow the calculation of a structural part.
7

NANOCOMPOSITES POLY(DIMETHYLSILOXANE) - SILICE OU OXYDE DE TITANE GENERE IN SITU : SYNTHESE, STRUCTURE ET PROPRIETES

Diop, Amadou Lamine 15 March 2010 (has links) (PDF)
La présente étude examine et compare le comportement de deux nanocomposites à base de particules sphériques (SiO2 et TiO2) générées in situ au sein d'une matrice PDMS par le procédé sol-gel. La synthèse des réseaux PDMS-SiO2 et PDMS-TiO2 a été effectuée en utilisant plusieurs catalyseurs pour obtenir des morphologies différentes. Pour le suivi des réactions de synthèse et la détermination des taux de silice ou d'oxyde de titane, la pesée et la spectroscopie infrarouge ont été utilisées. La morphologie, l'état de dispersion, l'interaction polymère-charge, la dégradation thermique et les propriétés mécaniques ont été caractérisés et comparés au travers de plusieurs méthodes : 1) La spectroscopie IR à transmission pour la présence d'eau dans les nanocomposites ; 2) La MET et le SANS pour la dispersion et la morphologie ; 3) La DSC, la RMN du proton, la TSDC et le gonflement pour l'interaction polymère-charge ; 4) L'ATG pour la dégradation thermique ; 5) La Traction unixiale et la mesure dynamique pour les propriétés mécaniques. Des différences et des similitudes ont été observées entre les réseaux PDMS-SiO2 et PDMS-TiO2. Les deux types de réseaux aboutissent à un bon renforcement avec une amélioration des modules élastiques et des propriétés de rupture selon le catalyseur utilisé. Des différences apparaissent sur la forme des courbes de traction (avec un comportement plastique plus marqué sur les échantillons TiO2) et on note l'absence d'effet Payne pour les réseaux PDMS-SiO2 contrairement aux réseaux PDMS-TiO2. Les systèmes PDMS-SiO2 montrent une amélioration des propriétés thermiques par rapport au réseau non-chargé. De plus cette amélioration est liée aux conditions de synthèse et notamment à la nature du catalyseur. En effet, l'amélioration des propriétés thermiques est meilleure dans les échantillons catalysés avec le DEA. Pour les échantillons PDMS-TiO2, on a plutôt une dégradation des propriétés thermiques, les échantillons chargés de TiO2 se dégradant plus vite que le réseau non chargé et à plus faible température. Toutes les différences et similitudes observées ont pu être reliées à la nature de la charge, à la différence de morphologie (taille des particules, existence d'un réseau percolant de charge etc...) et à la qualité de l'interface PDMS-SiO2 ou PDMS-TiO2.
8

Etude du comportement du néoprène et d'appareils d'appui parasismiques en néoprène fretté / Study of mechanical behaviour of elastomer and of high damping rubber bearings

Nguyen, Quang Tam 28 November 2013 (has links)
Selon l’Eurocode 8 et la norme EN 1337-3, le comportement de l’Appareil d'Appui en Néoprène Fretté (AANF) est considéré comme élastique linéaire ou hystérétique linéaire. En réalité, les comportements mécaniques de l’AANF sont très complexes et sont essentiellement ceux du néoprène tels que l’élasticité non linéaire, la viscosité, la plasticité, l’effet Payne, l’effet Mullins, etc. Toutefois, très peu d’études de l’effet Mullins et de la piezo-dépendance existent, et aucun modèle par éléments finis ne permet de modéliser ces phénomènes dans l’AANF. L’objectif de cette thèse est donc l’étude de ces phénomènes sur le néoprène et sur l’AANF. Pour atteindre ces objectifs, la caractérisation de ces phénomènes sur le néoprène est tout d’abord réalisée avec différents types de chargements tels que la relaxation, la traction cyclique, la compression cyclique, le couplage compression statique – cisaillement cyclique. De plus, un dispositif biaxial original est fabriqué afin de caractériser l’AANF sous le chargement de compression statique couplé au cisaillement cyclique. Grâce à ces résultats expérimentaux, un nouveau modèle est développé, permettant de modéliser simultanément l’effet Mullins, la piezo-dépendance ainsi que la viscoélasticité non linéaire du néoprène. / High Damping Rubber Bearings (HDRB) composed of alternating thin horizontal layers of elastomer bonded to steel plates are used to support permanent static loading in compression and cyclic shear in case of earthquakes. The behaviour of HDRB is considered to be linear elastic or linear hysteretic according to The European Standard Eurocode 8 and The Standard EN 1337 - 3. The mechanical behaviour of HDRB under loading is actually very complex and essentially linked to the behaviour of elastomer such as nonlinear elasticity, viscosity, plasticity, Payne effect, and Mullins effect. However, the coupling of Mullins effect and nonlinear viscosity as well as influence of hydrostatic stress on viscoelasticity of elastomer or of HDRB has not been studied yet. The aim of this thesis is thus the study of these effects on elastomer and on HDRB. In order to reach these objectives, characterization of these effects on elastomer is firstly performed with different types of loading such as relaxation test, cyclic tensile test, cyclic compression test and combined static compression – cyclic shear test. Furthermore, an original biaxial device is designed and manufactured in order to characterize the behaviour of HDRB under combined static compression – cyclic shear. Based on these experiments a new finite model is developped to simulate simultaneously Mullins effect, nonlinear viscosity and influence of hydrostatic stress on viscoelasticity of elastomer. Subsequently, this model is used to simulate the response of the HDRB under combined static compression - cyclic shear.
9

Effet élastocalorique dans le caoutchouc naturel et le terpolymère : Mécanismes responsables de la variation de température et bilan énergétique sous déformation / Elastocaloric effect on natural rubber and terpolymer : Temperature variation mechanism, morphology and energy balance during deformation

Yoshida 1988-...., Yukihiro 08 July 2016 (has links)
Les effets électrocaloriques, qui se traduisent par une variation de température induite par une variation d’entropie ont été étudiés comme alternative aux systèmes de réfrigération utilisant un cycle de compression/détente. Le travail de thèse se focalise sur l’étude de l’effet élastocalorique dans le caoutchouc naturel et le terpolymère (P(VDF-TrFE-CTFE). En premier lieu, l’effet élastocalorique dans le caoutchouc naturel qui compte parmi les meilleurs candidats, a été évalué pour des cycles de déformation réalisés avec différentes valeurs d’allongement. Une variation de température de 4 °C a pu être observée. Il est usuel d’utiliser la relation déformation/contrainte en fonction de la variation de température pour évaluer l’effet élastocalorique. Il a été démontré que cette méthode ne peut pas être utilisée dans le cas du caoutchouc naturel et qu’elle doit être remplacée par la mesure de la variation de l’énergie mécanique en fonction de la température. Et dans ce cas, une variation linéaire entre ces deux dernières grandeurs a été observée. En réalisant un bilan d’énergie pendant l’essai, non seulement, le rendement énergétique a pu être évalué mais il a été aussi possible de prendre en compte l’effet Mullins et la cristallisation induite par la déformation pour le caoutchouc naturel. Dans un second temps, l’effet élastocalorique a été étudié sur le terpolymère (P(VDF-TrFE-CTFE), ce qui a permis de montrer qu’il était possible d’obtenir une variation de température de 2.1 °C sous réserver de pré-déformer le terpolymère à plus de 1050 % avant. Par comparaison avec d’autres matériaux présentant une bonne conversion élastocalorique, le fort potentiel de ce matériau a pu être mis en évidence. Enfin, il a été mis en évidence que la plus grande partie de l’énergie mécanique était bien convertie en énergie thermique. / Caloric effects (CEs), which are the phenomena that temperature variation is caused by entropy change, have been investigated for the novel system which might be able to replace conventional vapor compression refrigeration system. In the present thesis, the elastocaloric effect (ElCE) of natural rubber (NR) and terpolymer, poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)), was focused. First of all, NR, which is an excellent candidate material for ElCE, was evaluated in cyclic deformation with different strain levels. It was found that NR exhibits temperature variation of around 4.0 °C. In general, the relation between stress/strain versus temperature variation is used to evaluate ElCE. The unsuitability of such evaluation method for NR was demonstrated. The evaluation method for ElCE which uses energy balance was then proposed. A linear relation between the temperature variation caused by ElCE and the applied mechanical energy by deformation was experimentally found. This fact verifies the suitability of the proposed method. Using the energy balance, besides, not only the conversion efficiency but also the influences of the Mullins effect and the strain-induced crystallization on the ElCE of NR were discussed. ElCE of P(VDF-TrFE-CTFE) was also evaluated in order to find out the potential of polymer. It was found that present terpolymer which is not one of the elastomers can also exhibit a large temperature variation, 2.1 °C, caused by ElCE if a large pre-stretch such as more than 1050 % is applied in advance. By comparison with other materials for ElCE, it was demonstrated that P(VDF-TrFE-CTFE) can be a high potential material for ElCE. It was also shown that P(VDF-TrFE-CTFE) converts most of the applied mechanical energy into the heat energy.
10

Analyse thermomécanique du comportement cyclique des élastomères par mesure de champs / Thermomechanical analysis of the cyclic behavior of elastomers using full field measurements

Samaca Martinez, José Ricardo 13 December 2013 (has links)
De nombreux phénomènes à l’oeuvre dans le processus de déformation et d’endommagement des élastomères sont étudiés à partir de la réponse mécanique de ces matériaux. Cependant, la plupart de ces phénomènes dépendent de la température et ont des signatures calorimétriques qui pourraient permettre de mieux les comprendre. Dans le contexte industriel de la manufacture de pneumatiques, les élévations de température induites par le chargement peuvent fortement impacter les performances physiques des pneumatiques ainsi que la tenue en fatigue des constituants caoutchoutiques. L’objectif de cette thèse est donc de caractériser le comportement thermomécanique des élastomères chargés et non chargés sous divers types de chargement mécanique. Pour ce faire, des mesures de champs thermiques et cinématiques couplées ont été mises en oeuvre lors d’essais mécaniques à température ambiante. Dans un premier temps, des essais de traction uniaxiale sur éprouvettes indemnes ont permis de confirmer que l’hystérésis mécanique observée lors d’un cycle de traction sur un caoutchouc naturel non chargé est essentiellement due au phénomène de cristallisation et non à des phénomènes dissipatifs. Par ailleurs, la construction de bilans énergétiques sur un cycle mécanique a permis de distinguer la contribution des différents mécanismes dissipatifs (viscosité, effet Mullins) des couplages thermomécaniques (élasticité entropique, cristallisation). Dans un second temps, des essais de cisaillement pur ont été menés sur des éprouvettes préalablement entaillées. Les analyses thermomécaniques menées à l’échelle de la zone d’influence de la fissure ont montré que les phénomènes dissipatifs aux très grandes déformations ne s’expriment pas de la même manière qu’aux déformations plus faibles. En particulier, pour les mélanges considérés dans cette étude, les effets du couplage entropique et de la viscosité sont du même ordre à la décharge, si bien que le matériau n’absorbe pas de chaleur à la décharge. Ces résultats sont très prometteurs à la fois pour la compréhension des phénomènes physiques impliqués dans le processus de déformation et pour la modélisation du comportement thermomécanique des élastomères. / Usually, most of the physical phenomena involved in the deformation of elastomers are studied from purely mechanical approaches. However, almost all of such phenomena depend on temperature and have distinguishable calorimetric signatures, which can enable us to better understand them. Furthermore, in the tire industrial context, the temperature increase induced by loading and self-heating may strongly impact the physical performances of tires as well as the fatigue life of the rubber components. Consequently, the aim of this PHD thesis was to characterize the thermomechanical behavior of rubbers, filled and unfilled, subjected to different mechanical loadings. For this purpose, coupled thermal and kinetic full field measurements have been performed during mechanical tests at ambient temperature. First, homogeneous uniaxial tensile tests have enabled us to confirm that the hysteresis loop in terms of the stress-strain relationship is mainly induced by crystallization phenomenon in natural rubber, not to dissipative phenomena. In the same way, energetic balances over one mechanical cycle have enabled us to distinguish the contribution of different dissipative phenomena (viscosity, Mullins effect) and the thermomechanical couplings (entropic elasticity, crystallization). Second, the analysis of the pure shear tests with pre-cracked specimens has enabled us to analyze, for the first time, the calorimetric response of rubbers in the zone of crack influence. Results have shown that dissipative phenomena at large strains differ from those involved at smaller strains. More especially, for the materials considered in the present study, the effects of the entropic coupling and viscosity are of the same order of magnitude during unloading, so that the material does not absorb any heat during unloading. These results are promising and motivate further work in this field in order to better understand the physical phenomena involved in the deformation processes as well as to more relevantly model the thermomechanical behavior of elastomers.

Page generated in 0.0665 seconds