• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 723
  • 31
  • 18
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 1065
  • 516
  • 377
  • 368
  • 345
  • 100
  • 91
  • 91
  • 91
  • 81
  • 68
  • 66
  • 66
  • 65
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities

Hafiz, Shopan d 01 January 2016 (has links)
InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1−xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving more efficient visible light emitters and terahertz generating nanocavities and in colloidal Ge1−xSnx quantum dots (QDs) for developing efficient silicon compatible optoelectronics. To alleviate the electron overflow, which through strong experimental evidence is revealed to be the dominating mechanism responsible for efficiency degradation at high injection in InGaN based blue LEDs, different strategies involving electron injectors and optimized active regions have been developed. Effectiveness of optimum electron injector (EI) layers in reducing electron overflow and increasing quantum efficiency of InGaN based LEDs was demonstrated by photoluminescence (PL) and electroluminescence spectroscopy along with numerical simulations. Increasing the two-layer EI thickness in double heterostructure LEDs substantially reduced the electron overflow and increased external quantum efficiency (EQE) by three fold. By incorporating δ p-doped InGaN barriers in multiple quantum well (MQW) LEDs, 20% enhancement in EQE was achieved due to improved hole injection without degrading the layer quality. Carrier diffusion length, an important physical parameter that directly affects the performance of optoelectronic devices, was measured in epitaxial GaN using PL spectroscopy. The obtained diffusion lengths at room temperature in p- and n-type GaN were 93±7 nm and 432±30 nm, respectively. Moreover, near field scanning optical microscopy was employed to investigate the spatial variations of extended defects and their effects on the optical quality of semipolar and InGaN heterostructures, which are promoted for higher efficiency light emitters owing to reduced internal polarization fields. The near-field PL from the c+ wings in heterostructures was found to be relatively strong and uniform across the sample but the emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations and basal plane stacking faults. In case of heterostructures, striated regions had weaker PL intensities compared to other regions and the meeting fronts of different facets were characterized by higher Indium content due to the varying internal field. Apart from being the part and parcel of blue LEDs, InGaN heterostructures can be utilized in generation of coherent lattice vibrations at terahertz frequencies. In analogy to LASERs based on photon cavities where light intensity is amplified, acoustic nanocavity devices can be realized for sustaining terahertz phonon oscillations which could potentially be used in acoustic imaging at the nanoscale and ultrafast acousto-optic modulation. Using In0.03Ga0.97N/InxGa1-xN MQWs with varying x, coherent phonon oscillations at frequencies of 0.69-0.80 THz were generated, where changing the MQW period (11.5 nm -10 nm) provided frequency tuning. The magnitude of phonon oscillations was found to increase with indium content in quantum wells, as demonstrated by time resolved differential transmission spectroscopy. Design of an acoustic nanocavity structure was proposed based on the abovementioned experimental findings and also supported by full cavity simulations. Optical gap engineering and carrier dynamics in colloidal Ge1−xSnx QDs were investigated in order to explore their potential in optoelectronics. By changing the Sn content from 5% to 23% in 2 nm-QDs, band-gap tunability from 1.88 eV to 1.61 eV, respectively, was demonstrated at 15 K, consistent with theoretical calculations. At 15 K, time resolved PL spectroscopy revealed slow decay (3 − 27 μs) of luminescence, due to recombination of spin-forbidden dark excitons and effect of surface states. Increase in temperature to 295 K led to three orders of magnitude faster decay (9 − 28 ns) owing to the effects of thermal activation of bright excitons and carrier detrapping from surface states. These findings on the effect of Sn incorporation on optical properties and carrier relaxation and recombination processes are important for future design of efficient Ge1−xSnx QDs based optoelectronic devices. This thesis work represents a comprehensive optical study of InGaN heterostructures and colloidal Ge1−xSnx QDs which would pave the way for more efficient InGaN based LEDs, realization of terahertz generating nanocavities, and efficient Ge1−xSnx based silicon compatible optoelectronic devices.
472

ULTRA–LOW POWER STRAINTRONIC NANOMAGNETIC COMPUTING WITH SAW WAVES: AN EXPERIMENTAL STUDY OF SAW INDUCED MAGNETIZATION SWITCHING AND PROPERTIES OF MAGNETIC NANOSTRUCTURES

Sampath, Vimal G. 01 January 2016 (has links)
A recent International Technology Roadmap for Semiconductors (ITRS) report (2.0, 2015 edition) has shown that Moore’s law is unlikely to hold beyond 2028. There is a need for alternate devices to replace CMOS based devices, if further miniaturization and high energy efficiency is desired. The goal of this dissertation is to experimentally demonstrate the feasibility of nanomagnetic memory and logic devices that can be clocked with acoustic waves in an extremely energy efficient manner. While clocking nanomagnetic logic by stressing the magnetostrictive layer of a multiferroic logic element with with an electric field applied across the piezoelectric layer is known to be an extremely energy-efficient clocking scheme, stressing every nanomagnet separately requires individual contacts to each one of them that would necessitate cumbersome lithography. On the other hand, if all nanomagnets are stressed simultaneously with a global voltage, it will eliminate the need for individual contacts, but such a global clock makes the architecture non-pipelined (the next input bit cannot be written till the previous bit has completely propagated through the chain) and therefore, unacceptably slow and error prone. Use of global acoustic wave, that has in-built granularity, would offer the best of both worlds. As the crest and the trough propagate in space with a velocity, nanomagnets that find themselves at a crest are stressed in tension while those in the trough are compressed. All other magnets are relaxed (no stress). Thus, all magnets are not stressed simultaneously but are clocked in a sequentially manner, even though the clocking agent is global. Finally, the acoustic wave energy is distributed over billions of nanomagnets it clocks, which results in an extremely small energy cost per bit per nanomagnet. In summary, acoustic clocking of nanomagnets can lead to extremely energy efficient nanomagnetic computing devices while also eliminating the need for complex lithography. The dissertation work focuses on the following two topics: Acoustic Waves, generated by IDTs fabricated on a piezoelectric lithium niobate substrate, can be utilized to manipulate the magnetization states in elliptical Co nanomagnets. The magnetization switches from its initial single-domain state to a vortex state after SAW stress cycles propagate through the nanomagnets. The vortex states are stable and the magnetization remains in this state until it is ‘reset’ by an external magnetic field. 2. Acoustic Waves can also be utilized to induce 1800 magnetization switching in dipole coupled elliptical Co nanomagnets. The magnetization switches from its initial single-domain ‘up’ state to a single-domain ‘down’ state after SAW tensile/compressive stress cycles propagate through the nanomagnets. The switched state is stable and non-volatile. These results show the effective implementation of a Boolean NOT gate. Ultimately, the advantage of this technology is that it could also perform higher order information processing (not discussed here) while consuming extremely low power. Finally, while we have demonstrated acoustically clocked nanomagnetic memory and logic schemes with Co nanomagnets, materials with higher magnetostriction (such as FeGa) may ultimately improve the switching reliability of such devices. With this in mind we prepared and studied FeGa films using a ferromagnetic resonance (FMR) technique to extract properties of importance to magnetization dynamics in such materials that could have higher magneto elastic coupling than either Co or Ni.
473

Non-Linear Electromechanical System Dynamics

Ganapathy Annadurai, Shathiyakkumar 16 May 2014 (has links)
Electromechanical systems dynamics analysis is approached through nonlinear differential equations and further creating a state space model for the system. There are three modules analyzed and validated, first module consists two magnet coupled with a mass spring damper system as a band-pass system, Low-pass equivalent system and Low-pass equivalent system through perturbation analysis. Initially Band Pass frameworks for the systems are formulated considering the relation between the mechanical forcing and current. Using Mathematical tools such as Hilbert transforms, Low-Pass equivalent of the systems are derived. The state equations of the systems are then used to design a working model in MATLAB and simulations investigated completely. The scope of the modules discussed for further development of tools various applications.
474

[en] NUMERICAL ANALYSIS OF ELECTROMAGNETIC WELL-LOGGING TOOLS BY USING FINITE VOLUME METHODS / [pt] ANÁLISE NUMÉRICA DE SENSORES ELETROMAGNÉTICOS DE PROSPECÇÃO PETROLÍFERA UTILIZANDO O MÉTODO DOS VOLUMES FINITOS

MARCELA SILVA NOVO 25 March 2008 (has links)
[pt] O objetivo principal deste trabalho é o desenvolvimento de modelos computacionais para analisar a resposta eletromagnética de ferramentas de perfilagem LWD/MWD em formações geofísicas arbitrárias. Essa modelagem envolve a determinação precisa de campos eletromagnéticos em regiões tridimensionais (3D) complexas e, conseqüentemente, a solução de sistemas lineares não-hermitianos de larga escala. A modelagem numérica é realizada através da aplicação do método dos volumes finitos (FVM) no domínio da freqüência. Desenvolvem-se dois modelos computacionais, o primeiro válido em regiões isotrópicas e o segundo considerando a presença de anisotropias no meio. As equações de Maxwell são resolvidas através de duas formulações distintas: formulação por campos e formulação por potenciais vetor e escalar. A discretização por volumes finitos utiliza um esquema de grades entrelaçadas em coordenadas cilíndricas para evitar erros de aproximação de escada da geometria da ferramenta. Os modelos desenvolvidos incorporam quatro técnicas numéricas para aumentar a eficiência computacional e a precisão do método. As formulações por campos e por potenciais vetor e escalar são comparadas em termos da taxa de convergência e do tempo de processamento em cenários tridimensionais. Os modelos foram validados e testados em cenários tridimensionais complexos, tais como: (i) poços horizontais ou direcionais; (ii) formações não homogêneas com invasões de fluído de perfuração; (iii) formações anisotrópicas e (iv) poços excêntricos. Motivado pela flexibilidade dos modelos e pelos resultados numéricos obtidos em diferentes cenários tridimensionais, estende-se a metodologia para analisar a resposta de ferramentas LWD que empregam antenas inclinadas em relação ao eixo da ferramenta. Tais ferramentas podem prover dados com sensibilidade azimutal, assim como estimativas da anisotropia da formação, auxiliando o geodirecionamento de poços direcionais e horizontais. / [en] The main objective of this work is to develop computational models to analyze electromagnetic logging-while-drilling tool response in arbitrary geophysical formations. This modeling requires the determination of electromagnetic fields in three- dimensional (3-D) complex regions and consequently, the solution of large scale non-hermitian systems. The numerical modeling is done by using Finite Volume Methods (FVM) in the frequency domain. Both isotropic and anisotropic models are developed. Maxwell's equations are solved by using both the field formulation and the coupled vector-scalar potentials formulation. The proposed FVM technique utilizes an edge-based staggered-grid scheme in cylindrical coordinates to avoid staircasing errors on the tool geometry. Four numerical techniques are incorporated in the models in order to increase the computational efficiency and the accuracy of the method. The field formulation and the coupled vector-scalar potentials formulation are compared in terms of their accuracy, convergence rate, and CPU time for three-dimensional environments. The models were validated and tested in 3-D complex environments, such as:(i) horizontal and directional boreholes; (ii) multilayered geophysical formations including mud-filtrate invasions; (iii) anisotropic formations and (iv)eccentric boreholes. The methodology is extended to analyze LWD tools that are constructed with the transmitters and/or receivers tilted with respect to the axis of the drill collar. Such tools can provide improved anisotropy measurements and azimuthal sensitivity to benefit geosteering.
475

A Novel Non-Acoustic Voiced Speech Sensor: Experimental Results and Characterization

Keenaghan, Kevin Michael 14 January 2004 (has links)
Recovering clean speech from an audio signal with additive noise is a problem that has plagued the signal processing community for decades. One promising technique currently being utilized in speech-coding applications is a multi-sensor approach, in which a microphone is used in conjunction with optical, mechanical, and electrical non-acoustic speech sensors to provide greater versatility in signal processing algorithms. One such non-acoustic glottal waveform sensor is the Tuned Electromagnetic Resonator Collar (TERC) sensor, first developed in [BLP+02]. The sensor is based on Magnetic Resonance Imaging (MRI) concepts, and is designed to detect small changes in capacitance caused by changes to the state of the vocal cords - the glottal waveform. Although preliminary simulations in [BLP+02] have validated the basic theory governing the TERC sensor's operation, results from human subject testing are necessary to accurately characterize the sensor's performance in practice. To this end, a system was designed and developed to provide real-time audio recordings from the sensor while attached to a human test subject. From these recordings, executed in a variety of acoustic noise environments, the practical functionality of the TERC sensor was demonstrated. The sensor in its current evolution is able to detect a periodic waveform during voiced speech, with two clear harmonics and a fundamental frequency equal to that of the speech it is detecting. This waveform is representative of the glottal waveform, with little or no articulation as initially hypothesized. Though statistically significant conclusions about the sensor's immunity to environmental noise are difficult to draw, the results suggest that the TERC sensor is considerably more resistant to the effects of noise than typical acoustic sensors, making it a valuable addition to the multi-sensor speech processing approach.
476

Reducing Radio Frequency Susceptibilities in Commercial-Off-the-Shelf Camera Equipment for use in Electromagnetic Compatibility Testing

Mainini, Kevin 01 May 2015 (has links)
The Technical Testing and Analysis Center (TTAC) Group at Oak Ridge National Laboratory performs electromagnetic compatibility testing on various radiation detection units. These tests require remote viewing of the equipment’s display to monitor its compliance with national and international standards. The Commercial-Off-the-Shelf (COTS) camera equipment that is used to monitor the displays exhibits radio frequency susceptibilities causing issues when determining the actual susceptibilities of the device under test. In order to mitigate this issue, a COTS camera was placed in two common test positions and cycled through three angled orientations with various radio frequency shielding methods applied. The development of these shielding methods was investigated in this thesis. The goal was to reduce the number of susceptible frequencies. The reduction of susceptibilities would greatly increase the viewing capacity of the cameras during testing. The techniques discovered have allowed for other COTS camera equipment to be modified and used effectively during electromagnetic compatibility testing.
477

Vector Sensors and User Based Link Layer QoS for 5G Wireless Communication Applications

January 2019 (has links)
abstract: The commercial semiconductor industry is gearing up for 5G communications in the 28GHz and higher band. In order to maintain the same relative receiver sensitivity, a larger number of antenna elements are required; the larger number of antenna elements is, in turn, driving semiconductor development. The purpose of this paper is to introduce a new method of dividing wireless communication protocols (such as the 802.11a/b/g/n and cellular UMTS MAC protocols) across multiple unreliable communication links using a new link layer communication model in concert with a smart antenna aperture design referred to as Vector Antenna. A vector antenna is a ‘smart’ antenna system and as any smart antenna aperture, the design inherently requires unique microwave component performance as well as Digital Signal Processing (DSP) capabilities. This performance and these capabilities are further enhanced with a patented wireless protocol stack capability. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
478

Polar Field Oriented Control with 3rd Harmonic Injection

Hess, Martin Todd 01 February 2012 (has links)
Abstract POLAR FIELD-ORIENTED CONTROL with 3RD HARMONIC INJECTION Martin Todd Hess Field Oriented Control (FOC), also known as vector control, is a widely used and well documented method for controlling Permanent-Magnet Synchronous Motors (PMSM) and induction motors. Almost invariably the orientation of the stator and rotor (field) fluxes are described in rectangular coordinates. In this thesis we explore the practicality of using polar coordinates. Third harmonic injection is also a well-known technique that allows full utilization of the bus (DC-link), thus allowing the motor to run to full base speed without the use of field weakening. This technique potentially allows a 15.4% improvement in the available bus. It has fallen out of use since it requires direct knowledge of the terminal voltage vector angle. The use of polar FOC permits the use of third-harmonic injection. We believe the combination of FOC and third-harmonic injection to be unique, and we present this paper as a novel contribution to the literature on the subject of motor control.
479

3-D Terahertz Synthetic-Aperture Imaging and Spectroscopy

Henry, Samuel C. 07 February 2013 (has links)
Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most practical configuration for standoff detection, especially for objects with high water content (like human tissue) which are opaque at THz frequencies. In this research, reflection-based THz synthetic-aperture (SA) imaging is investigated as a potential imaging solution. THz SA imaging results presented in this dissertation are unique in that a 2-D planar synthetic array was used to generate a 3-D image without relying on a narrow time-window for depth isolation [1]. Novel THz chemical detection techniques are developed and combined with broadband THz SA capabilities to provide concurrent 3-D spectral imaging. All algorithms are tested with various objects and pressed pellets using a pulsed THz time-domain system in the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).
480

Zero-Group-Velocity Propagation Of Electromagnetic Wave Through Nanomaterial

Fan, Taian 01 January 2016 (has links)
This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (Á?10Á?^(-6) m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3ÁÁ?10Á?^8 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.

Page generated in 0.0883 seconds