Spelling suggestions: "subject:"energieeinsparung""
1 |
Control of Polymorphism in Molecular Cocrystals by MechanochemistryLinberg, Kevin 04 October 2024 (has links)
Im Vergleich zu herkömmlichen, lösungsmittelbasierten Methoden bietet die Mechanochemie eine einzigartige Möglichkeit, die entstehende Kristallstruktur zu kontrollieren und neue sowie metastabile Kristallstrukturen zu erhalten. Frühere Studien haben gezeigt, dass die Mechanochemie zur selektiven Synthese von Polymorphen unter Verwendung verschiedener Lösungsmittel eingesetzt werden kann. Um den Prozess umweltfreundlicher zu gestalten, ist es erforderlich, auf den Einsatz von Lösungsmitteln zur selektiven Herstellung von Polymorphen mittels Mechanochemie zu verzichten. Bisher wurde nicht systematisch untersucht, ob eine mechanochemische Polymorphkontrolle ohne den Zusatz von Lösungsmitteln möglich ist. Um zu untersuchen, ob eine Kontrolle von Polymorphen ohne Lösungsmittel Zusatz erreicht werden kann, wurden verschiedene Kokristallsysteme unter Verwendung unterschiedlicher Mahlparameter (Energieeintrag, Bechermaterial und Mühlentemperatur) getestet. Zu diesem Zweck wurde die Cokristalle von drei pharmazeutischen Modellsystemen untersucht. Die untersuchten Systeme waren: (1) Isonicotinamid + Carbamazepin, (2) Isonicotinamid + Glutarsäure sowie (3) Nicotinamid + Pimelinsäure. Jedes System bildet polymorphe Kokristallprodukte. Im Verlauf dieser Arbeit wurde die Stabilität der Polymorphe mittels DFT-Simulationen,
DSC und VT-PXRD-Experimenten untersucht. Es wurde gezeigt, dass der Energieeintrag und die Mühlentemperatur eine wichtige Rolle für das mechanochemische Produkt spielen. Eine Kombination aus Energieeintrag und Mühlentemperatur kann sogar hoch Temperatur Polymorphe bei niedriger Temperatur stabilisieren. Basierend auf diesen Ergebnissen können die mechanochemischen Parameter genutzt werden, um die Energiebarrieren für Festkörperübergänge zu senken. Diese Erkenntnisse werden für künftige Untersuchungen von mechanochemischen Prozessen in verschiedenen Materialien und deren Erscheinungsformen wertvoll sein. / Mechanochemistry provides a unique opportunity to control the emerging crystal structure and obtain new and metastable crystal structures, compared to conventional solvent-based methods. However, many factors in mechanochemistry remain largely unexplored despite its potential for polymorph control. Polymorphs can be synthesized selectively using different solvents via mechanochemistry. To achieve environmentally friendly processes, it is necessary to explore methods for producing selective polymorphs through mechanochemical reactions without the use of solvents. It has not yet been systematically investigated whether mechanochemical polymorph control is possible without the addition of solvents. The purpose of this study was to investigate whether polymorph control can be achieved without solvents. To achieve this, different cocrystal systems were tested using various milling parameters (energy input, jar material, and milling temperature). Specifically, the cocrystallisation of three pharmaceutical model systems was investigated by ball milling. These systems included: (1) isonicotinamide + carbamazepine, (2) isonicotinamide + glutaric acid, and (3) nicotinamide + pimelic acid. Each system produces polymorphic cocrystal products. In the process of this work, the stability of the polymorphs were investigated using DFT simulations, DSC and VTPXRD experiments to determine the stability at elevated temperatures. Mechanochemical outcomes of ball milling reactions are influenced by both energy input and milling temperature. The combination of energy input and milling temperature can also stabilize high-temperature polymorphs at low temperatures. These results suggest that mechanochemical parameters can lower the energy barriers for solid-state transitions and provide new insights into controlling polymorphism through mechanochemistry. These findings will be useful for future investigations of mechanochemical processes in various materials and their manifestations.
|
2 |
Advanced doping techniques and dehydrogenation properties of transition metal-doped LiAlH 4 for fuel cell systemsFu, Jie 20 January 2015 (has links) (PDF)
Hydrogen is an efficient, carbon-free and safe energy carrier. However, its compact and weight-efficient storage is an ongoing subject for research and development. Among the intensively investigated hydrogen storage materials, lithium aluminum hydride (LiAlH4) is an attractive candidate because of its high theoretical hydrogen density (volumetric: 96.7g H2/l material; gravimetric: 10.6 wt.%-H2) in combination with rather low decomposition temperatures (onset temperature <100°C after doping). Although the reversible dehydrogenation of LiAlH4 must be carried out with the help of organic solvent, LiAlH4 can serve as single-use hydrogen storage material for various special applications, for example, hydrogen fuel cell systems.
This thesis deals with transition metal (TM)-doped LiAlH4 aiming at tailored dehydrogenation properties. The crystal structure and morphology of TM-doped LiAlH4 is characterized by XRD and SEM respectively. The positive effects of four dopants (NiCl2, TiCl3, ZrCl4 and TiCl4) on promoting the dehydrogenation kinetics of LiAlH4 are systematically studied by thermal analysis. Based on the state of each TM chloride (solid or liquid), three low-energy-input doping methods (1. ball-milling at low rotation speed; 2. manual grinding or magnetic stirring; 3. magnetic stirring in ethyl ether) are compared in order to prepare LiAlH4 with the maximum amount of hydrogen release in combination with fast dehydrogenation kinetics. The dehydrogenation properties of the TM-doped LiAlH4 powders are measured under isothermal conditions at 80°C at a H2 pressure of 1 bar, which is within the operating temperature range of proton exchange membrane (PEM) fuel cells, aiming at applications where the exhaust heat of the fuel cell is used to trigger the dehydrogenation of the hydrogen storage material. Furthermore, the mid-term dehydrogenation behavior of TM-doped LiAlH4 was monitored up to a few months in order to test its mid-term storability.
In addition, the pelletization of TM-doped LiAlH4 is investigated aiming at a higher volumetric hydrogen storage capacity. The effects of compaction pressure, temperature and the H2 back-pressure on the dehydrogenation properties of TM-doped LiAlH4 pellets are systematically studied. Moreover, the volume change through dehydrogenation and the short-term storage of the TM-doped LiAlH4 pellets are discussed in view of practical applications for PEM fuel cell systems. / Wasserstoff ist ein effizienter, kohlenstofffreier und sicherer Energieträger. Jedoch die kompakte und gewichtseffiziente Speicherung ist ein permanentes Forschungs- und Entwicklungsthema. Unter den intensiv untersuchten Materialien für die Wasserstoffspeicherung ist aufgrund der hohen theoretischen Speicherdichte (volumetrisch: 96,7 g H2/L, gravimetrisch: 10.6 Gew.%-H2) in Kombination mit sehr niedrigen Zersetzungstemperaturen (Anfangstemperatur < 100°C nach Dotierung) Lithium Aluminiumhydrid (LiAlH4) ein vielversprechender Kandidat. Obwohl die reversible Dehydrierung von LiAlH4 mit Hilfe von organischen Lösungsmitteln durchgeführt werden muss, kann LiAlH4-Pulver als Einweg-Speichermaterial für verschiedene Anwendungen dienen, beispielsweise für Wasserstoff/Brennstoffzellensysteme.
Diese Doktorarbeit beschäftigt sich mit LiAlH4 dotiert mit Übergangsmetall, mit dem Ziel maßgeschneiderte Dehydrierungseigenschaften zu erreichen. Die Kristallstruktur und die Morphologie der mit Übergangsmetallen dotierten LiAlH4-Pulver wurden mit Röntgenbeugung (XRD) und Rasterelektronenmikroskopie (REM) charakterisiert. Weiterhin wurde der positive Effekt der Dotanden auf die reaktionsfördernde Dehydrierung von LiAlH4 systematisch mit Hilfe thermoanalytischer Methoden untersucht. Für jedes Übergangsmetall, welches in Form von Übergangsmetallchloriden vorlag, wurden drei Dotierungsmethoden mit niedrigem Energieeintrag (Kugelmahlen mit geringer Rotations-geschwindigkeit, manuelles Schleifen/Magnetrühren, Magnetrühren mit Ethylether) verglichen, um LiAlH4-Pulver mit einer maximalen Wasserstofffreisetzungsmenge in Kombination mit einer schnellen Dehydrierungskinetik zu erzielen. Die Dehydrierung des dotierten LiAlH4-Pulvers wurde unter isothermen Bedingungen bei 80°C und einem H2-Druck von 1 bar gemessen, was im Bereich der Betriebstemperatur von PEM-Brennstoffzellen (Proton Exchange Membran) liegt. Dadurch sollen Anwendungen anvisiert werden, bei denen die entstehende Abwärme der Brennstoffzelle genutzt wird, um die Dehydrierung des Wasserstoffspeichermaterials auszulösen. Zudem wurde das Dehydrierungsverhalten des dotierten LiAlH4 bis zu einigen Monaten kontrolliert, um die mittelfristige Haltbarkeit zu testen.
Weiterhin wurde die Pelletierung des mit Übergangsmetallen dotierten LiAlH4 mit dem Ziel untersucht, eine hohe volumetrische Speicherkapazität zu erreichen. Der Einfluss des Pressdrucks, der Dehydrierungstemperatur und des H2-Gegendrucks auf die Dehydrierungseigenschaften der mit Übergangsmetallen dotierten LiAlH4-Presslinge wurde systematisch analysiert. Außerdem wird die Volumenveränderung durch die Dehydrierung und die Kurzzeitspeicherung der mit Übergangsmetallen dotierten LiAlH4-Presslinge im Hinblick auf praktische Anwendungen unter Nutzung der Brennstoffzelle diskutiert.
|
3 |
Advanced doping techniques and dehydrogenation properties of transition metal-doped LiAlH 4 for fuel cell systemsFu, Jie 06 January 2015 (has links)
Hydrogen is an efficient, carbon-free and safe energy carrier. However, its compact and weight-efficient storage is an ongoing subject for research and development. Among the intensively investigated hydrogen storage materials, lithium aluminum hydride (LiAlH4) is an attractive candidate because of its high theoretical hydrogen density (volumetric: 96.7g H2/l material; gravimetric: 10.6 wt.%-H2) in combination with rather low decomposition temperatures (onset temperature <100°C after doping). Although the reversible dehydrogenation of LiAlH4 must be carried out with the help of organic solvent, LiAlH4 can serve as single-use hydrogen storage material for various special applications, for example, hydrogen fuel cell systems.
This thesis deals with transition metal (TM)-doped LiAlH4 aiming at tailored dehydrogenation properties. The crystal structure and morphology of TM-doped LiAlH4 is characterized by XRD and SEM respectively. The positive effects of four dopants (NiCl2, TiCl3, ZrCl4 and TiCl4) on promoting the dehydrogenation kinetics of LiAlH4 are systematically studied by thermal analysis. Based on the state of each TM chloride (solid or liquid), three low-energy-input doping methods (1. ball-milling at low rotation speed; 2. manual grinding or magnetic stirring; 3. magnetic stirring in ethyl ether) are compared in order to prepare LiAlH4 with the maximum amount of hydrogen release in combination with fast dehydrogenation kinetics. The dehydrogenation properties of the TM-doped LiAlH4 powders are measured under isothermal conditions at 80°C at a H2 pressure of 1 bar, which is within the operating temperature range of proton exchange membrane (PEM) fuel cells, aiming at applications where the exhaust heat of the fuel cell is used to trigger the dehydrogenation of the hydrogen storage material. Furthermore, the mid-term dehydrogenation behavior of TM-doped LiAlH4 was monitored up to a few months in order to test its mid-term storability.
In addition, the pelletization of TM-doped LiAlH4 is investigated aiming at a higher volumetric hydrogen storage capacity. The effects of compaction pressure, temperature and the H2 back-pressure on the dehydrogenation properties of TM-doped LiAlH4 pellets are systematically studied. Moreover, the volume change through dehydrogenation and the short-term storage of the TM-doped LiAlH4 pellets are discussed in view of practical applications for PEM fuel cell systems. / Wasserstoff ist ein effizienter, kohlenstofffreier und sicherer Energieträger. Jedoch die kompakte und gewichtseffiziente Speicherung ist ein permanentes Forschungs- und Entwicklungsthema. Unter den intensiv untersuchten Materialien für die Wasserstoffspeicherung ist aufgrund der hohen theoretischen Speicherdichte (volumetrisch: 96,7 g H2/L, gravimetrisch: 10.6 Gew.%-H2) in Kombination mit sehr niedrigen Zersetzungstemperaturen (Anfangstemperatur < 100°C nach Dotierung) Lithium Aluminiumhydrid (LiAlH4) ein vielversprechender Kandidat. Obwohl die reversible Dehydrierung von LiAlH4 mit Hilfe von organischen Lösungsmitteln durchgeführt werden muss, kann LiAlH4-Pulver als Einweg-Speichermaterial für verschiedene Anwendungen dienen, beispielsweise für Wasserstoff/Brennstoffzellensysteme.
Diese Doktorarbeit beschäftigt sich mit LiAlH4 dotiert mit Übergangsmetall, mit dem Ziel maßgeschneiderte Dehydrierungseigenschaften zu erreichen. Die Kristallstruktur und die Morphologie der mit Übergangsmetallen dotierten LiAlH4-Pulver wurden mit Röntgenbeugung (XRD) und Rasterelektronenmikroskopie (REM) charakterisiert. Weiterhin wurde der positive Effekt der Dotanden auf die reaktionsfördernde Dehydrierung von LiAlH4 systematisch mit Hilfe thermoanalytischer Methoden untersucht. Für jedes Übergangsmetall, welches in Form von Übergangsmetallchloriden vorlag, wurden drei Dotierungsmethoden mit niedrigem Energieeintrag (Kugelmahlen mit geringer Rotations-geschwindigkeit, manuelles Schleifen/Magnetrühren, Magnetrühren mit Ethylether) verglichen, um LiAlH4-Pulver mit einer maximalen Wasserstofffreisetzungsmenge in Kombination mit einer schnellen Dehydrierungskinetik zu erzielen. Die Dehydrierung des dotierten LiAlH4-Pulvers wurde unter isothermen Bedingungen bei 80°C und einem H2-Druck von 1 bar gemessen, was im Bereich der Betriebstemperatur von PEM-Brennstoffzellen (Proton Exchange Membran) liegt. Dadurch sollen Anwendungen anvisiert werden, bei denen die entstehende Abwärme der Brennstoffzelle genutzt wird, um die Dehydrierung des Wasserstoffspeichermaterials auszulösen. Zudem wurde das Dehydrierungsverhalten des dotierten LiAlH4 bis zu einigen Monaten kontrolliert, um die mittelfristige Haltbarkeit zu testen.
Weiterhin wurde die Pelletierung des mit Übergangsmetallen dotierten LiAlH4 mit dem Ziel untersucht, eine hohe volumetrische Speicherkapazität zu erreichen. Der Einfluss des Pressdrucks, der Dehydrierungstemperatur und des H2-Gegendrucks auf die Dehydrierungseigenschaften der mit Übergangsmetallen dotierten LiAlH4-Presslinge wurde systematisch analysiert. Außerdem wird die Volumenveränderung durch die Dehydrierung und die Kurzzeitspeicherung der mit Übergangsmetallen dotierten LiAlH4-Presslinge im Hinblick auf praktische Anwendungen unter Nutzung der Brennstoffzelle diskutiert.
|
4 |
Energieeintrag langsamer hochgeladener Ionen in Festkörperoberflächen / Energy dissipation of highly charged ions interacting with solid surfacesKost, Daniel 11 October 2007 (has links) (PDF)
Motiviert durch die in der Literatur bisher unvollständige Beschreibung der Relaxation hochgeladener Ionen vor Festkörperoberflächen, besonders in Bezug auf den Eintrag potenzieller Energie in Oberflächen und der Aufstellung einer vollständigen Energiebilanz, werden in dieser Arbeit komplementäre Studien präsentiert, die sowohl die Ermittlung des Anteils der deponierten potenziellen Energie als auch die Ermittlung der emittierten potenziellen Energie ermöglichen. Zum Einen wird zur Bestimmung des eingetragenen Anteils der potenziellen Energie eine kalorimetrische Messanordnung verwendet, zum Anderen gelingt die Bestimmung der emittierten potenziellen Energie mittels doppeldifferenzieller Elektronenspektroskopie. Für vertiefende Studien werden Materialien unterschiedlicher elektronischer Strukturen (Cu, n-Si, p-Si und SiO2 ) verwendet. Im Falle der Kalorimetrie wird festgestellt, dass die eingetragene potenzielle Energie linear mit der inneren potenziellen Energie der Ionen wächst. Dabei bleibt das Verhältnis zwischen der eingetragenen potenziellen Energie und der inneren potenziellen Energie nahezu konstant bei etwa (80 ± 10) %. Der Vergleich von Cu, n-Si und p-Si zeigt im Rahmen der Messfehler keine signifikanten Unterschiede in diesem Verhältnis. Es liegen jedoch deutlich unter jenem von SiO2. Die Elektronenspektroskopie liefert ein dazu komplementäres Ergebnis. Für Cu und Si konnte ebenfalls eine lineare Abhängigkeit zwischen emittierter Energie und innerer potenzieller Energie festgestellt werden. Das Verhältnis wurde hierfür bis zum Ladungszustand bis Ar7+ zu etwa (10 ± 5) % unabhängig vom Ladungszustand bestimmt. Im Gegensatz dazu liefert SiO2 eine nahezu verschwindende Elektronenausbeute. Für Ar8+ und Ar9+ steigt die Elektronenausbeute wegen der Beiträge der LMM-Augerelektronen für alle untersuchten Materialien leicht an. Der Anteil der emittierten Energie eines Ar9+ -Ions wird für Cu und Si zu etwa 20 % und für SiO2 zu etwa 10 % angegeben. Diese Ergebnisse sind in guter Übereinstimmung mit den Kalorimetrieexperimenten und erfüllen die Energiebilanz. Zusätzlich werden die experimentellen Ergebnisse mit einer Computersimulation modelliert, welche auf dem erweiterten dynamischen klassischen Barrierenmodell basiert. Aus diesen Rechnungen kann zudem jener Anteil der deponierten potenziellen Energie erhalten werden, welcher durch Bildladungsbeschleunigung vor der Oberfläche in kinetische Energie umgewandelt wurde. / Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the re-emitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO2 . In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 ± 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO2 targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar7+ was also observed. The ratio of the re-emitted energy is about (10 ± 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO2 and for charge states below q=7. For Ar8+ and Ar9+, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO2 .These results are in good agreement with the calorimetric values. In addition, the experimental results are compared with computer simulations based on the extended dynamical over-the-barrier model. From these calculations, the ratio of deposited potential energy that is transformed into kinetic energy before deposition due to the image charge acceleration can be maintained.
|
5 |
Energieeintrag langsamer hochgeladener Ionen in FestkörperoberflächenKost, Daniel 26 April 2007 (has links)
Motiviert durch die in der Literatur bisher unvollständige Beschreibung der Relaxation hochgeladener Ionen vor Festkörperoberflächen, besonders in Bezug auf den Eintrag potenzieller Energie in Oberflächen und der Aufstellung einer vollständigen Energiebilanz, werden in dieser Arbeit komplementäre Studien präsentiert, die sowohl die Ermittlung des Anteils der deponierten potenziellen Energie als auch die Ermittlung der emittierten potenziellen Energie ermöglichen. Zum Einen wird zur Bestimmung des eingetragenen Anteils der potenziellen Energie eine kalorimetrische Messanordnung verwendet, zum Anderen gelingt die Bestimmung der emittierten potenziellen Energie mittels doppeldifferenzieller Elektronenspektroskopie. Für vertiefende Studien werden Materialien unterschiedlicher elektronischer Strukturen (Cu, n-Si, p-Si und SiO2 ) verwendet. Im Falle der Kalorimetrie wird festgestellt, dass die eingetragene potenzielle Energie linear mit der inneren potenziellen Energie der Ionen wächst. Dabei bleibt das Verhältnis zwischen der eingetragenen potenziellen Energie und der inneren potenziellen Energie nahezu konstant bei etwa (80 ± 10) %. Der Vergleich von Cu, n-Si und p-Si zeigt im Rahmen der Messfehler keine signifikanten Unterschiede in diesem Verhältnis. Es liegen jedoch deutlich unter jenem von SiO2. Die Elektronenspektroskopie liefert ein dazu komplementäres Ergebnis. Für Cu und Si konnte ebenfalls eine lineare Abhängigkeit zwischen emittierter Energie und innerer potenzieller Energie festgestellt werden. Das Verhältnis wurde hierfür bis zum Ladungszustand bis Ar7+ zu etwa (10 ± 5) % unabhängig vom Ladungszustand bestimmt. Im Gegensatz dazu liefert SiO2 eine nahezu verschwindende Elektronenausbeute. Für Ar8+ und Ar9+ steigt die Elektronenausbeute wegen der Beiträge der LMM-Augerelektronen für alle untersuchten Materialien leicht an. Der Anteil der emittierten Energie eines Ar9+ -Ions wird für Cu und Si zu etwa 20 % und für SiO2 zu etwa 10 % angegeben. Diese Ergebnisse sind in guter Übereinstimmung mit den Kalorimetrieexperimenten und erfüllen die Energiebilanz. Zusätzlich werden die experimentellen Ergebnisse mit einer Computersimulation modelliert, welche auf dem erweiterten dynamischen klassischen Barrierenmodell basiert. Aus diesen Rechnungen kann zudem jener Anteil der deponierten potenziellen Energie erhalten werden, welcher durch Bildladungsbeschleunigung vor der Oberfläche in kinetische Energie umgewandelt wurde. / Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the re-emitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO2 . In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 ± 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO2 targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar7+ was also observed. The ratio of the re-emitted energy is about (10 ± 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO2 and for charge states below q=7. For Ar8+ and Ar9+, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO2 .These results are in good agreement with the calorimetric values. In addition, the experimental results are compared with computer simulations based on the extended dynamical over-the-barrier model. From these calculations, the ratio of deposited potential energy that is transformed into kinetic energy before deposition due to the image charge acceleration can be maintained.
|
Page generated in 0.0759 seconds