• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Label‑free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues

Herbig, Maik, Tessmer, Karen, Nötzel, Martin, Nawaz, Ahsan Ahmad, Santos‑Ferreira, Tiago, Borsch, Oliver, Gasparini, Sylvia J., Guck, Jochen, Ader, Marius 16 May 2024 (has links)
Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells’ properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.
2

N-Terminale Glykierung von Proteinen in Lebensmitteln und unter physiologischen Bedingungen

Löbner, Jürgen 06 March 2018 (has links) (PDF)
Kohlenhydrate und Proteine gehören neben Wasser und Fetten zu den quantitativ bedeutendsten Grundbestandteilen biologischer Systeme und der Lebensmittel. Unter milden Bedingungen in lebenden Organismen oder unter thermischer Belastung bei der Lebensmittelverarbeitung können reduzierende Kohlenhydrate amin-katalysiert durch die Abspaltung von Wasser und Fragmentierungen des Kohlenstoffgerüsts abgebaut werden, wobei die noch reaktiveren 1,2-Dicarbonylverbindungen entstehen. Aus der Reaktion der N-α-Aminogruppe und funktioneller Gruppen der Seitenketten von Aminosäuren mit Kohlenhydraten bzw. 1,2-Dicarbonylverbindungen können stabile Endprodukte entstehen. In vivo können proteingebundene Maillard-Produkte (MRPs) aus der Reaktion mit Glucose (Amadori-Produkte) oder 1,2-Dicarbonylverbindungen (Advanced Glycation Endproducts: AGEs) entstehen. Beispielsweise ist das „N-terminale“ N-α-Fructosylderivat der β-Kette des Hämoglobins ein etablierter Parameter zur Diagnose von Diabetes mellitus (HbA1c-Wert). Diese nicht-enzymatische, posttranslationale Modifizierung von Proteinen wird allgemein als Glykierung bezeichnet und kann die Funktionalität von Proteinen beeinträchtigen. Deshalb wird untersucht, ob die Trübung der Augenlinsen, die Versteifung von Blutgefäßen oder Schädigungen von Nervenzellen durch eine erhöhte Glykierung verursacht werden. Diese Veränderungen treten im Alter und bei Stoffwechselkrankheiten wie Diabetes mellitus und Urämie auf, die durch eine erhöhte Glucosekonzentration bzw. die Anreicherung von 1,2-Dicarbonylverbindungen im Blut gekennzeichnet sind. Zwar gibt es Publikationen zum Vorkommen N-terminaler Amadori-Produkte an Hämoglobin und in Lebensmitteln, aber die Bildung N-terminaler AGEs wurde bisher nur in wenigen Studien untersucht. Deshalb waren die Bildung und das Vorkommen N-terminaler AGEs im physiologischen Modell, in Hämoglobin und in Backwaren Gegenstand der vorliegenden Arbeit. In der vorliegenden Arbeit wurde erstmals systematisch die Sequenzabhängigkeit der Bildung der Fructosylderivate bzw. der CM-Derivate in Konkurrenz zu den Glyoxal-2(1H)-Pyrazinonen am N-Terminus von Peptiden unter physiologischen und backtechnologischen Bedingungen untersucht. Dabei wurde nachgewiesen, dass die Variation der C-terminalen Aminosäure in Dipeptiden den Glykierungsgrad und das Produktspektrum erheblich beeinflusst. Mit dem konsequenten Nachweis der N-terminalen von Glyoxal und Methylglyoxal ableitbaren Carboxyalkylderivate und 2(1H)-Pyrazinone in humanen Hämoglobin wurde die Relevanz der N-terminalen Glykierung in vivo untermauert. Damit wird eine umfassendere Beurteilung des Dicarbonylstresses und der Glykierung insbesondere bei Urämikern und Diabetikern ermöglicht. Am Beispiel von Backwaren wurde für Lebensmittel gezeigt, dass unter trockenen Reaktionsbedingungen die 2(1H)-Pyrazinone und in wasserhaltigen Systemen die Carboxyalkylderivate bevorzugt zu erwarten sind.
3

N-Terminale Glykierung von Proteinen in Lebensmitteln und unter physiologischen Bedingungen

Löbner, Jürgen 26 January 2018 (has links)
Kohlenhydrate und Proteine gehören neben Wasser und Fetten zu den quantitativ bedeutendsten Grundbestandteilen biologischer Systeme und der Lebensmittel. Unter milden Bedingungen in lebenden Organismen oder unter thermischer Belastung bei der Lebensmittelverarbeitung können reduzierende Kohlenhydrate amin-katalysiert durch die Abspaltung von Wasser und Fragmentierungen des Kohlenstoffgerüsts abgebaut werden, wobei die noch reaktiveren 1,2-Dicarbonylverbindungen entstehen. Aus der Reaktion der N-α-Aminogruppe und funktioneller Gruppen der Seitenketten von Aminosäuren mit Kohlenhydraten bzw. 1,2-Dicarbonylverbindungen können stabile Endprodukte entstehen. In vivo können proteingebundene Maillard-Produkte (MRPs) aus der Reaktion mit Glucose (Amadori-Produkte) oder 1,2-Dicarbonylverbindungen (Advanced Glycation Endproducts: AGEs) entstehen. Beispielsweise ist das „N-terminale“ N-α-Fructosylderivat der β-Kette des Hämoglobins ein etablierter Parameter zur Diagnose von Diabetes mellitus (HbA1c-Wert). Diese nicht-enzymatische, posttranslationale Modifizierung von Proteinen wird allgemein als Glykierung bezeichnet und kann die Funktionalität von Proteinen beeinträchtigen. Deshalb wird untersucht, ob die Trübung der Augenlinsen, die Versteifung von Blutgefäßen oder Schädigungen von Nervenzellen durch eine erhöhte Glykierung verursacht werden. Diese Veränderungen treten im Alter und bei Stoffwechselkrankheiten wie Diabetes mellitus und Urämie auf, die durch eine erhöhte Glucosekonzentration bzw. die Anreicherung von 1,2-Dicarbonylverbindungen im Blut gekennzeichnet sind. Zwar gibt es Publikationen zum Vorkommen N-terminaler Amadori-Produkte an Hämoglobin und in Lebensmitteln, aber die Bildung N-terminaler AGEs wurde bisher nur in wenigen Studien untersucht. Deshalb waren die Bildung und das Vorkommen N-terminaler AGEs im physiologischen Modell, in Hämoglobin und in Backwaren Gegenstand der vorliegenden Arbeit. In der vorliegenden Arbeit wurde erstmals systematisch die Sequenzabhängigkeit der Bildung der Fructosylderivate bzw. der CM-Derivate in Konkurrenz zu den Glyoxal-2(1H)-Pyrazinonen am N-Terminus von Peptiden unter physiologischen und backtechnologischen Bedingungen untersucht. Dabei wurde nachgewiesen, dass die Variation der C-terminalen Aminosäure in Dipeptiden den Glykierungsgrad und das Produktspektrum erheblich beeinflusst. Mit dem konsequenten Nachweis der N-terminalen von Glyoxal und Methylglyoxal ableitbaren Carboxyalkylderivate und 2(1H)-Pyrazinone in humanen Hämoglobin wurde die Relevanz der N-terminalen Glykierung in vivo untermauert. Damit wird eine umfassendere Beurteilung des Dicarbonylstresses und der Glykierung insbesondere bei Urämikern und Diabetikern ermöglicht. Am Beispiel von Backwaren wurde für Lebensmittel gezeigt, dass unter trockenen Reaktionsbedingungen die 2(1H)-Pyrazinone und in wasserhaltigen Systemen die Carboxyalkylderivate bevorzugt zu erwarten sind.
4

Muschel-inspirierte Polymerisation: Synthetische Bioadhäsive für wasserbasierte Klebstoffe und meerwasserresistente Beschichtungen

Horsch, Justus 09 January 2020 (has links)
Miesmuscheln inspirieren zur nächsten Generation von wasserbasierten Nassklebstoffen. Muschelfußproteine (mfps) ermöglichen es den Muscheln, sich an jede Oberfläche zu haften und zeigen bemerkenswerte Eigenschaften, die insbesondere durch das Aminosäurederivat 3,4 Dihydroxyphenylalanin (Dopa) verursacht werden. Da der Einfluss von Wasser nach wie vor eine große Herausforderung für Klebeanwendungen darstellt und die Herstellung und Reinigung von Klebeproteinen viel Zeit und Kosten erfordert, ist ein einfacher Zugang zu biomimetischen Klebstoffen von großem Interesse. Die vorliegende Arbeit untersucht einen neuartigen Muschel-inspirierten Polymerisationsansatz zur Herstellung von adhäsiven Proteinanaloga aus Oligopeptiden (Unimeren). Der Polymerisationsmechanismus nutzt einen Reaktionsweg, der in Miesmuscheln auftritt und beruht auf einer enzymatischen Oxidation von Tyrosin zu Dopachinon, das mit freien Thiolen aus Cystein Cysteinyldopa bildet, wodurch Unimere verknüpft und adhäsive Funktionalitäten erzeugt werden. Innerhalb weniger Minuten entstehen hochmolekulare Polymere, die ein vielseitiges Adsorptions- und starkes Adhäsionsverhalten demonstrieren. Die Proteinanaloga weisen eine signifikante Multischicht-Adsorption auf hydrophilen sowie hydrophoben Oberflächen auf und sind resistent gegenüber Spülschritten mit hochkonzentrierten Salz-Lösungen. Die beobachteten Adhäsionsenergien liegen im Bereich von kommerziellen mfp-Extrakten und überschreiten sogar berichtete Werte für isolierte mfps. Die Arbeit präsentiert eine einfache Synthese künstlicher mfp-Analoga, die in der Lage sind Aspekte natürlicher mfps nachzuahmen und potenziell zur Entwicklung von wasserresistenten Universalklebstoffen beitragen. Um die Bedingungen für eine kostengünstige, großtechnische Produktion zu verbessern, werden zusätzlich alternative Synthesewege für die enzymfreie Herstellung Muschel-inspirierter Polymere untersucht, die auf der chemischen Oxidation von Dopa-haltigen Unimeren beruhen. / Marine mussels provide inspiration for the next generation of water-based, wet adhesives. Mussel foot proteins (mfps) enable them to attach to any surface and exhibit remarkable properties, notably due to the amino acid derivative 3,4-dihydroxyphenylalanine (Dopa). Since the influence of water still constitutes a major challenge for gluing applications and large-scale production and purification of adhesive proteins is time-consuming and costly, an easy access route toward biomimetic adhesives is of high interest. This thesis investigates a novel mussel-inspired polymerization approach for the production of adhesive protein analogues from oligopeptides (unimers). The polymerization mechanism exploits a distinct reaction pathway, occurring in mussels and relies on enzyme-mediated oxidation of tyrosine to Dopaquinone in the unimers, which forms cysteinyldopa with free thiols from cysteine, thereby linking unimers and generating adhesive moieties. Within a few minutes high molecular weight polymers are obtained that show versatile adsorption and strong adhesion behaviour. The protein analogues exhibit significant multilayer adsorption onto hydrophilic as well as hydrophobic surfaces and resist rinsing with highly saline solutions. Comparative adhesion studies on silica reveal adhesion energies that are in the same range as commercial mussel foot protein extracts and even exceed reported values for isolated foot proteins that constitute the gluing interfaces. The approach offers facile access toward artificial mussel foot proteins that are capable of mimicking aspects of the natural ideal and potentially helps to develop next-generation universal water resistant glues. In order to further improve the conditions regarding cost-efficient and large-scale production in the future, alternative synthesis routes for the enzyme-free generation of mussel-inspired polymers based on chemical oxidation of Dopa containing unimers are additionally explored.

Page generated in 0.0863 seconds