• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 18
  • 11
  • 9
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recycling of titanium alloys from machining chips using equal channel angular pressing

Shi, Qi (Alex) January 2015 (has links)
During the traditional manufacturing route, there are large amount of titanium alloys wasted in the form of machining chips. The conventional recycling methods require high energy consumption and capital cost. Equal channel angular pressing (ECAP), one of the severe plastic deformation techniques, has been developed to recycle the metallic machining chips. The purpose of the PhD work is to realize the ECAP recycling of titanium alloys, in particular Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn, and investigate the effects of processing parameters on the resultant relative density, microstructure evolution, texture development and microhardness homogeneity. The microstructures of Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn machining chips obtained from conventional turning (CT) and ultrasonically assisted turning (UAT) were initially investigated. It was found that ultrafine grains were formed in the primary and secondary shear zones. For Ti-6Al-4V chips, the β phase in the shear zones was refined into nano-sized equiaxed grains and aligned up to form banded structures. For Ti-15V-3Cr-3Al-3Sn chips, the nano-crystalline grains were enveloped in the shear zones and have clear boundaries to the surrounding matrix. It was observed that in terms of microstructure, there is no significant difference between CT and UAT chips. Recycling of Ti-6Al-4V machining chips was carried out at moderate temperatures with various back-pressures. For single-pass samples, the relative density was increased with the applied back-pressure and operating temperature. It was found that after multiple passes, near fully dense recycled Ti-6Al-4V can be fabricated. The microstructure observations showed that the nano-sized equiaxed and elongated grains co-existed with relatively coarser lamellar structures which were initially refined after the first pass. In the subsequent passes, the fraction of equiaxed nano-grains increased with the number of passes. The original β phase banded structures were fragmented into individual nano-sized grains randomly distributed within α matrix. The chip boundaries were eliminated and nano-crystalline microstructure region was observed at the chip/chip interface after multiple passes. In the sample processed at 550 °C, < a →+c → > type dislocations were observed and oxide layer at chip/chip interface was detected. The texture evolution was investigated using electron backscatter diffraction. It was found that the recycled samples performed a strong basal texture along the normal to ECAP inclination direction after the first pass. After multiple passes, in addition to the normal to inclination direction, the recycled Ti-6Al-4V exhibits a basal texture towards the transverse direction. Microhardness mapping showed that the average hardness and degree of homogeneity were increased with number of passes, while the imposed back-pressure had little effect on the average value and homogeneity. Recycling of Ti-15V-3Cr-3Al-3Sn machining chips was implemented using similar ECAP conditions. The effects of processing parameters, such as back-pressure, operating temperature and number of passes, on the relative density were similar to those for Ti-6Al-4V. Microstructural characterization showed that equiaxed instead of needle shaped α precipitates formed in the β matrix due to the high dislocation density and sub-grain boundaries introduced during ECAP. In terms of microhardness, the maximum hardness was obtained at the specimen pressed at 450 °C. It was found that the applied back-pressure and number of passes enabled to improve the homogeneity, but had little effect on the average hardness.
2

Mechanical and corrosion properties of ultrafine-grained low C, N Fe-20%Cr steel produced by equal channel angular pressing / ECAP法により作製した超微細結晶組織を有する極低C, N Fe-20%Cr 合金の機械的性質と耐食性 / ECAPホウ ニヨリ サクセイシタ チョウビサイ ケッショウ ソシキ オ ユウスル キョクテイC, N Fe-20%Cr ゴウキン ノ キカイテキ セイシツ ト タイショクセイ

リファイ ムハマド, Muhammad Rifai 22 March 2015 (has links)
Equal-channel angular pressing (ECAP) is one of the severe plastic deformation (SPD) to produce ultra-fine grain (UFG) material, and its principle and microstructural developments. The majority of papers on SPD materials have been devoted to the face centered cubic (FCC) structure materials such as Al, Cu and Ni. The UFG of high alloy ECAP processing has been difficult up to now, but we were successful in this study. Fe-20%Cr steel with extremely low C and N has different slip behavior from the FCC. The mechanical properties and corrosion resistance were investigated in term microstructural evolution during ECAP processing. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
3

Mechanical Properties and Radiation Tolerance of Ultrafine Grained and Nanocrystalline Metals

Sun, Cheng 03 October 2013 (has links)
Austenitic stainless steels are commonly used in nuclear reactors and have been considered as potential structural materials in fusion reactors due to their excellent corrosion resistance, good creep and fatigue resistance at elevated temperatures, but their relatively low yield strength and poor radiation tolerance hinder their applications in high dose radiation environments. High angle grain boundaries have long been postulated as sinks for radiation-induced defects, such as bubbles, voids, and dislocation loops. Here we provide experimental evidence that high angle grain boundaries can effectively remove radiation-induced defects. The equal channel angular pressing (ECAP) technique was used to produce ultrafine grained Fe-Cr-Ni alloy. Mechanical properties of the alloy were studied at elevated temperature by tensile tests and in situ neutron scattering measurements. Enhanced dynamic recovery process at elevated temperature due to dislocation climb lowers the strain hardening rate and ductility of ultrafine grained Fe-Cr-Ni alloy. Thermal stability of the ultrafine grained Fe-Cr-Ni alloy was examined by ex situ annealing and in situ heating within a transmission electron microscope. Abnormal grain growth at 827 K (600°C) is attributed to deformation-induced martensite, located at the triple junctions of grains. Helium ion irradiation studies on Fe-Cr-Ni alloy show that the density of He bubbles, dislocation loops, as well as irradiation hardening are reduced by grain refinement. In addition, we provide direct evidence, via in situ Kr ion irradiation within a transmission electron microscope, that high angle grain boundaries in nanocrystalline Ni can effectively absorb irradiation-induced dislocation loops and segments. The density and size of dislocation loops in irradiated nanocrystalline Ni were merely half of those in irradiated coarse grained Ni. The results imply that irradiation tolerance in bulk metals can be effectively enhanced by microstructure refinement.
4

Modelling stain rate sensitive nanomaterials' mechanical properties: the effects of varying definitions

Sob, Peter Baonhe 06 1900 (has links)
M. Tech. (Mechanical Engineering, Faculty of Engineering and Technology): Vaal University of Technology / Presently there exist a lot of controversies about the mechanical properties of nanomaterials. Several convincing reasons and justifications have been put forward for the controversies. Some of the reasons are varying processing routes, varying ways of defining equations, varying grain sizes, varying internal constituent structures, varying techniques of imposing strain on the specimen etc. It is therefore necessary for scientists, engineers and technologists to come up with a clearer way of defining and dealing with nanomaterials’ mechanical properties. The parameters of the internal constituent structures of nanomaterials are random in nature with random spatial patterns. So they can best be studied using random processes, specifically as stochastic processes. In this dissertation the tools of stochastic processes have been used as they offer a better approach to understand and analyse random processes. This research adopts the approach of ascertaining the correct mathematical models to be used for experimentation and modelling. After a thorough literature survey it was observed that size and temperature are two important parameters that must be considered in selecting the relevant mathematical definitions for nanomaterials’ mechanical properties. Temperature has a vital role to play during grain refinement since all severe plastic deformation involves thermomechanical processes. The second task performed in this research is to develop the mathematical formulations based on the experimental observation of 2-D grains and 3-D grains deformed by Accumulative Roll-Bonding and Equal Channel Angular Pressing. The experimental observations revealed that grains deformed by Accumulative Roll-Bonding and Equal Channel Angular Pressing are elongated when observed from the rolling direction, and transverse direction, and equiaxed when observed from the normal direction. In this dissertation, the different experimental observations for the grain size variants during grain refinement were established for 2-D and 3-D grains. This led to the development of a stochastic model of grain-elongation for 2-D and 3-D grains. The third task was experimentations and validation of proposed models. Accumulative Roll-Bonding, Equal Channel Angular Pressing and mechanical testing (tensile test) experiments were performed. The effect of size on elongation and material properties were studied to validate the developed models since size has a major effect on material’s properties. The fourth task was obtaining results and discussion of theoretical developed models and experimental results. The following facts were experimentally observed and also revealed by the models. Different approaches of measuring grain size reveal different strains that cannot be directly obtained from plots of the corresponding grain sizes. Grain elongation evolved as small values for larger grains, but became larger for smaller grains. Material properties increased with elongation reaching a maximum and started decreasing as is evident in the Hall-Petch to the Reverse Hall-Petch Relationship. This was alluded to the fact that extreme plastic straining led to distorted structures where grain boundaries and curvatures were in “non-equilibrium” states. Overall, this dissertation contributed new knowledge to the body of knowledge of nanomaterials’ mechanical properties in a number of ways. The major contributions to the body of knowledge by his study can be summarized as follows: (1) The study has contributed in developing a model of elongation for 2-D grain and 3-D grains. It has been generally reported by researchers that materials deformed by Accumulative Roll-Bonding and Equal Channel Angular Pressing are generally elongated but none of these researchers have developed a model of elongation. Elongation revealed more information about “size” during grain refinement. (2) The Transmission Electron Microscopy revealed the grain shape in three directions. The rolling direction or sliding direction, the normal direction and the transverse direction. Most developed models ignored the different approaches of measuring nanomaterials’ mechanical properties. Most existing models dealt only with the equivalent radius measurement during grain refinement. In this dissertation, the different approaches of measuring nanomaterials’ mechanical properties have been considered in the developed models. From this dissertation an accurate correlation can be made from microscopy results and theoretical results. (3) This research has shown that most of the published results on nanomaterials’ mechanical properties may be correct although controversies exist when comparing the different results. This research has also shown that researchers might have considered different approaches to measure nanomaterials’ mechanical properties. The reason for different results is due to different approaches of measuring nanomaterials’ mechanical properties as revealed in this research. Since different approaches of measuring nanomaterials’ mechanical properties led to different obtained results, this justify that most published results of nanomaterials’ mechanical properties may be correct. This dissertation revealed more properties of nanomaterials that are ignored by the models that considered only the equivalent length. (4) This research has contributed to the understanding of nanomaterials controversies when comparing results from different researchers.
5

Combinatorial Study Of Hydrogen Storage Alloys

Olmez, Rabia 01 May 2009 (has links) (PDF)
A combinatorial study was carried out for hydrogen storage alloys which involve processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. Material library was obtained in a post annealing treatment carried out at elevated temperatures which brings about solid state reactions between the powders yielding equilibrium phases in the respective alloy system. A sample comprising the material library was then pulverized and screened for hydrogen storage composition. X-ray diffraction was used as a screening tool, the sample having been examined both in as-processed and hydrogenated state. The method was successfully applied to Mg-Ni, and Mg-Ni-Ti yielding the well known Mg2Ni as the storage composition. It is concluded that partitioning of the alloy system into regions of similar solidus temperature would be required to enrich the material library.
6

Fließspannungsverhalten ultrafeinkörniger Aluminiumwerkstoffe unter besonderer Berücksichtigung der Dehnrate

Hockauf, Matthias 04 December 2009 (has links) (PDF)
Aufgrund ihrer herausragenden Eigenschaften haben ultrafeinkörnige Werkstoffe, die aus konventionellen normalkörnigen Halbzeugen über eine extrem große Kaltverformung hergestellt wurden, in den letzten zwei Jahrzehnten zunehmend an Bedeutung erlangt. In der vorliegenden Arbeit wird das Fließspannungsverhalten eines Reinaluminiumwerkstoffes (EN AW-1070 – Al99,7) und einer ausscheidungshärtbaren Aluminiumlegierung (EN AW-6060 – AlMgSi) mit Korngrößen von bis zu 660 nm und 310 nm in einem weiten Bereich von Dehnungen und Dehnraten analysiert und mit den zzt. existierenden Modellvorstellungen zu den mikrostrukturellen Abläufen in Verbindung gebracht. Um die Voraussetzung zur Herstellung von ultrafeinkörnigen Werkstoffen zu schaffen, wurden mehrere Werkzeugprototypen für die ECAP-Umformung im Labormaßstab entwickelt und erprobt. Die Untersuchungen zum Fließspannungsverhalten erfolgten anhand von Zug- und Druckversuchen über insgesamt sieben Dekaden der Dehnrate bis in den Bereich der hochdynamischen Belastung von 10^3 s^-1. Die Tests zeigen, dass das Fließspannungsverhalten ultrafeinkörniger Aluminiumwerkstoffe vollständig mithilfe der thermisch aktivierbaren Mechanismen erklärbar ist, wobei Ausscheidungen eine wichtige Rolle spielen. / Because of their exceptional properties ultrafine-grained materials, processed from conventional polycrystalline materials by severe plastic deformation, have gained increasing scientific and industrial interest during the last two decades. Based on the concept of work-hardening for f.c.c. metals the commercially pure aluminium AA1070 (Al99,7 – soft annealed) and the aluminium alloy AA6060 (AlMgSi – peak aged) were investigated. ECAP was used to introduce very high strains and an ultrafine-grained microstructure with grain sizes down to 660 nm and 310 nm. Subsequently compression and tensile tests were performed in a wide range of strain rates over seven decades up to the range of impact loading of 10^3 s^-1. The results indicate that strain path and the corresponding dislocation structure is important for the post-ECAP yielding and the following hardening response. Furthermore the precipitates of the AA6060 clearly constrain the interactions of dislocations in work-hardening stage III – causing lower strain rate sensitivity. If compared to the AA1070 they avoid hardening in stage V where an additional rate and temperature depending effect contributes – caused by the interaction of deformation induced vacancies and dislocations. The results indicate that the strain-hardening behavior can be described by thermal activated mechanisms.
7

Efeito do processo ECAP sobre a microestrutura e as propriedades mecânicas da liga Ti-35Nb-0,15Si e do Ti CP / Effect of the ECAP process on the microstructure and mechanical properties of Ti-35Nb-0,15Si alloy and Ti CP

Silva, Késia Filadélfia Dionizio 04 October 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work investigated the effect of different types of homogenization on the microstructure and the cold deformation behavior of Ti-35Nb-0,15Si alloy. Homogenization was performed under two conditions. Condition 1: treatment in ambient air at 1000 °C for 8, 24, 48, 72, 96 and 120 hours. Condition 2: treatment in argon atmosphere at 1000 °C for 8 hours. For the cold deformation study samples of the Ti-35Nb-0,15Si alloy and samples of Ti CP were deformed by ECAP with up to 8 passes, using the routes A and BC in a matrix with angle of intersection between the channels of Φ = 120º. The microstructural characterization was performed in the internal and external regions with the aid of optical microscopy, scanning electron microscopy and X-ray diffractograms. Vickers microhardness measurements were performed to evaluate the changes caused by deformation. In the ambient air atmosphere the samples showed the presence of the oxide layer influencing the hardness and the level of cold deformation. With the deformation of Ti-35Nb-0,15Si by ECAP it was possible to refine the structure and increase the hardness with increasing the number of passes. XRD analysis showed the presence of the α” phase induced by deformation. With the Ti CP deformed by ECAP, it was possible to analyze the microstructural evolution throughout the sample. / Este trabalho investigou o efeito de diferentes tipos de homogeneização sobre a microestrutura e o comportamento em deformação a frio da liga Ti-35Nb-0,15Si. A homogeneização foi realizada em duas condições. Condição 1: tratamento em atmosfera de ar ambiente na temperatura 1000 °C por 8, 24, 48, 72, 96 e 120 horas. Condição 2: tratamento em atmosfera inerte de argônio de 1000 °C por 8 horas. Para o estudo de deformação a frio, amostras da liga Ti-35Nb-0,15Si e amostras de Ti CP foram deformadas via ECAP com até 8 passes, utilizando as rotas A e BC numa matriz com ângulo de intersecção entre os canais de Φ = 120º. A caracterização microestrutural foi realizada nas regiões internas e externas com o auxílio de microscopia óptica, microscopia eletrônica de varredura e difratogramas de raios-X. Medidas de microdureza Vickers foram realizadas para avaliar as mudanças ocasionadas pela deformação. Em atmosfera de ar ambiente as amostras apresentaram a presença da camada de óxido influenciando na dureza e no nível de deformação a frio. Com a deformação de Ti-35Nb-0,15Si por ECAP foi possível refinar a estrutura e aumentar a dureza com o aumento do número de passes. A análise de DRX mostrou a presença da fase α’’ induzida por deformação. Com o Ti CP deformado por ECAP foi possível analisar a evolução microestrutural ao longo da amostra. / São Cristóvão, SE
8

Ermüdungs- und Rissfortschrittsverhalten ausscheidungshärtbarer ultrafeinkörniger Aluminiumlegierungen

Hockauf, Kristin 14 October 2011 (has links) (PDF)
Ultrafeinkörnige metallische Werkstoffe haben verstärkt wissenschaftliche Bedeutung erlangt. Um dieser neuartigen Werkstoffklasse über die grundlagenorientierte Forschung hinaus einen Einsatz in technischen Anwendungen zu ermöglichen, ist es notwendig, deren Verhalten unter verschiedenen einsatzrelevanten Belastungsbedingungen vorhersagen zu können. In der vorliegenden Arbeit wird das Schädigungsverhalten einer ultrafeinkörnigen Aluminiumlegierung in den Bereichen der hochzyklischen (HCF) und niedrigzyklischen (LCF) Ermüdung sowie des Rissfortschritts untersucht. Im Mittelpunkt steht dabei die Identifikation der mikrostrukturell wirksamen Mechanismen bei der Entstehung und Ausbreitung von Ermüdungsrissen. Es werden ein homogen ultrafeinkörniger und ein bimodaler Zustand sowie verschiedene duktilitätsoptimierte Zustände betrachtet und systematisch der Einfluss der Korngröße, der Korngrößenverteilung, der Ausscheidungscharakteristik sowie der Festigkeit und Duktilität auf das Ermüdungs- und Rissfortschrittsverhalten ermittelt. Die Untersuchungen zeigen, dass das Schädigungsverhalten der ultrafeinkörnigen Aluminiumlegierung insbesondere durch die Korngröße und Korngrößenverteilung sowie den Kohärenzgrad der festigkeitssteigernden Ausscheidungen beeinflusst wird.
9

Caracterização elétrica e mecânica da liga de alumínio AA 1050, com estrutura ultrafina processada pela técnica de deformação plástica intensa (DPI) / Electrical and mechanical characterization of aluminum alloy AA 1050, with ultrafine structure processed by the technique of severe plastic deformation (SPD)

Guerra, Maria Claudia Lopes 12 June 2015 (has links)
Made available in DSpace on 2016-03-15T19:36:54Z (GMT). No. of bitstreams: 1 Maria Claudia Lopes Guerra.pdf: 9968717 bytes, checksum: 7d0e4986884ffa382a835b641ed76573 (MD5) Previous issue date: 2015-06-12 / Fundo Mackenzie de Pesquisa / The ECAP (Equal Channel Angular Pressing) is a mechanical process of Severe Plastic Deformation (SPD) where a sample is subjected to a shearing force when passing through the region of intersection of two channels. The main goal of this method is Severe Plastic Deformation achieve a microstructure with ultrafine grains, which have much higher than the equivalent coarse grain materials physical properties, such as an increase in strength and toughness simultaneously. What makes this increasingly interesting technique is that as there is no reduction cross section is possible to obtain plastic strain accumulation and therefore gain in grain order of nanometer scale. The great advantage of ECAP is to achieve a much higher degree of strain hardening than obtained by conventional methods of plastic deformation, and consequently a grain refining much higher as well. The importance of the study of severe plastic deformation process is on improving the mechanical performance of the materials and the possibility of a better understanding of the mechanisms of strain hardening, which may indicate a new path for producing high-strength materials, possibly scaled industrial. In this work are presented the microstructural, mechanical and electrical analysis of the aluminum alloy AA 1050 samples, commonly used for electrical purposes, with ultrafine grains (typical grain size below a micron) resulting from processing by ECAP, based on the method of SPD. / A PCE (Prensagem em Canais Equiangulares) consiste num processo mecânico de Deformação Plástica Intensa (DPI) onde um corpo de prova é sujeito a um esforço de cisalhamento ao passar pela região de intersecção de dois canais. Os principais objetivos desse método de Deformação Plástica Intensa é alcançar uma microestrutura com grãos ultrafinos, os quais possuem propriedades físicas muito superiores aos equivalentes materiais de grãos grosseiros, como um aumento em resistência mecânica e tenacidade simultâneas. O que torna esta técnica cada vez mais interessante é que como não há redução da seção transversal é possível obter acumulo de deformação plástica e com isso obter grãos na ordem de escala nanométrica. A grande vantagem do PCE é alcançar um grau de encruamento muito superior do que obtido por métodos convencionais de deformação plástica, e consequentemente, um refino de grão muito superior também. A importância do estudo do processo de deformação plástica intensa está na melhoria do desempenho mecânico dos materiais e na possibilidade de uma melhor compreensão dos mecanismos de encruamento, fato que pode indicar um novo caminho para a produção de materiais de alta resistência mecânica, possivelmente em escala industrial. Nesse trabalho são apresentadas as análises microestruturais, mecânicas e elétricas de amostras de ligas de alumínio AA 1050, comumente utilizadas para fins elétricos, com estrutura de grãos ultrafinos (tamanho de grão típico abaixo de um micrometro) resultantes do processamento por PCE, baseada no método de DPI.
10

Ermüdungs- und Rissfortschrittsverhalten ausscheidungshärtbarer ultrafeinkörniger Aluminiumlegierungen

Hockauf, Kristin 14 October 2011 (has links)
Ultrafeinkörnige metallische Werkstoffe haben verstärkt wissenschaftliche Bedeutung erlangt. Um dieser neuartigen Werkstoffklasse über die grundlagenorientierte Forschung hinaus einen Einsatz in technischen Anwendungen zu ermöglichen, ist es notwendig, deren Verhalten unter verschiedenen einsatzrelevanten Belastungsbedingungen vorhersagen zu können. In der vorliegenden Arbeit wird das Schädigungsverhalten einer ultrafeinkörnigen Aluminiumlegierung in den Bereichen der hochzyklischen (HCF) und niedrigzyklischen (LCF) Ermüdung sowie des Rissfortschritts untersucht. Im Mittelpunkt steht dabei die Identifikation der mikrostrukturell wirksamen Mechanismen bei der Entstehung und Ausbreitung von Ermüdungsrissen. Es werden ein homogen ultrafeinkörniger und ein bimodaler Zustand sowie verschiedene duktilitätsoptimierte Zustände betrachtet und systematisch der Einfluss der Korngröße, der Korngrößenverteilung, der Ausscheidungscharakteristik sowie der Festigkeit und Duktilität auf das Ermüdungs- und Rissfortschrittsverhalten ermittelt. Die Untersuchungen zeigen, dass das Schädigungsverhalten der ultrafeinkörnigen Aluminiumlegierung insbesondere durch die Korngröße und Korngrößenverteilung sowie den Kohärenzgrad der festigkeitssteigernden Ausscheidungen beeinflusst wird.

Page generated in 0.509 seconds