• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 14
  • 10
  • 8
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 39
  • 37
  • 34
  • 25
  • 24
  • 23
  • 21
  • 21
  • 20
  • 18
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Role of Endoplasmic Reticulum Stress and Hepatic Stellate Cells in Inducing Chemoresistance in Hepatocellular Carcinoma / Den roll som endoplasmatiskt retikulumstress och stellatceller i levern spelar för att framkalla kemoresistens vid hepatocellulärt karcinom

Khaled, Jaafar January 2021 (has links)
Hepatocellular carcinoma (HCC) is the most common liver malignancy that usually develops in patients suffering from chronic liver diseases. One of the major problems faced in the treatment of HCC is severe chemoresistance. Endoplasmic reticulum (ER) stress and hepatic stellate cells play an important role in tumour survival and growth as well as fibrosis. This study further investigates the crosstalk between ER-stress and hepatic stellate cells in HCC resistant cells as well as their relation to chemoresistance markers expression. Mice with chemically induced HCC were divided in 3 different treatment group; one was only treated with doxorubicin, one only with pharmacological ER-stress inhibitor 4μ8C, and one was treated with a combination of doxorubicin and 4μ8C. Tumour burden, fibrosis and cell proliferation were assessed through histological analysis and ImageJ processing. Chemoresistance markers expression was evaluated through mRNAs determination using real-time qPCR. While the combined treatment consisting of doxorubicin and pharmacological ER-stress inhibitor (4μ8C) has shown to positively reduce tumour progression, ferroptosis and collagen deposition, consequently decreasing fibrosis, drug resistance markers’ expression, on the other hand, seems to be more intricate, thus indicating that further investigations are probably needed. / Hepatocellulärt karcinom (HCC) är den vanligaste maligniteten i levern som vanligtvis utvecklas hos patienter som lider av kroniska leversjukdomar. Ett av de största problemen vid behandling av HCC är svår kemoresistens. Stress i endoplasmatiska retikulum (ER) och hepatiska stellatceller spelar en viktig roll för tumörernas överlevnad och tillväxt samt för fibros. I denna studie undersöks vidare samspelet mellan ER-stress och hepatiska stellatceller i HCC-resistenta celler samt deras relation till uttryck av kemoresistensmarkörer. Möss med kemiskt inducerad HCC delades in i tre olika behandlingsgrupper; en behandlades enbart med doxorubicin, en enbart med den farmakologiska ER-stresshämmaren 4μ8C och en behandlades med en kombination av doxorubicin och 4μ8C. Tumörbörda, fibros och cellproliferation bedömdes genom histologisk analys och ImageJ-bearbetning. Kemoresistensmarkörernas uttryck utvärderades genom bestämning av mRNA med hjälp av qPCR i realtid. Medan kombinationsbehandlingen bestående av doxorubicin och farmakologisk ER-stresshämmare (4μ8C) har visat sig minska tumörprogressionen, ferroptos och kollagenavlagring och därmed minska fibros, verkar uttrycket av läkemedelsresistensmarkörer å andra sidan vara mer invecklat, vilket tyder på att det troligen behövs ytterligare undersökningar.
42

Identification and characterization of the endoplasmic reticulum (ER)-stress pathways in pancreatic beta-cells/Identification et caractérisation des voies de signalisation du stress du réticulum endoplasmique dans la cellule bêta pancréatique

Pirot, Pierre 26 November 2007 (has links)
The endoplasmic reticulum (ER) is the organelle responsible for synthesis and folding of secreted and membranous protein and lipid biosynthesis. It also functions as one of the main cellular calcium stores. Pancreatic beta-cells evolved to produce and secrete insulin upon demand in order to regulate blood glucose homeostasis. In response to increases in serum glucose, insulin synthesis represents nearly 50% of the total protein biosynthesis by beta-cells. This poses an enormous burden on the ER, rendering beta-cells vulnerable to agents that perturb ER function. Alterations of ER homeostasis lead to accumulation of misfolded proteins and activation of an adaptive response named the unfolded protein response (UPR). The UPR is transduced via 3 ER transmembrane proteins, namely PERK, IRE-1 and ATF6. The signaling cascades activated downstream of these proteins: a) induce expression of ER resident chaperones and protein foldases. Increasing the protein folding capacity of the ER; b) attenuate general protein translations which avoids overloading the stressed ER with new proteins; c) upregulate ER-associated degradation (ERAD) genes, which decreases the unfolded protein load of the ER. In severe cases, failure by the UPR to solve the ER stress leads to apoptosis. The mechanisms linking ER stress to apoptosis are still poorly understood, but potential mediators include the transcription factors Chop and ATF3, pro-apoptotic members of the Bcl-2 familly, the caspase 12 and the kinase JNK. Accumulating evidence suggest that ER stress contributes to beta-cell apoptosis in both type 1 and type 2 diabetes. Type 1 diabetes is characterized by a severe insulin deficiency resulting from chronic and progressive destruction of pancreatic beta-cells by the immune system. During this autoimmune assault, beta-cells are exposed to cytokines secreted by the immune cells infiltrating the pancreatic islets. Our group has previously shown that the pro-inflamatory cytokines interleukin-1beta (IL1-beta and interferon-gamma (IFN-gamma), via nitric oxide (NO) formation, downregulate expression and function of the ER Ca2+ pump SERCA2. This depletes beta-cell ER Ca2+ stores, leading to ER stress and apoptosis. Of note, IL1-beta alone triggers ER stress but does not induce beta-cell death, while IFN-gamma neither causes ER stress nor induces beta-cell death. Together, these cytokines cause beta-cell apoptosis but the mechanisms behind this synergistic effect were unknown. Type 2 diabetes is characterized by both peripheral resistance to insulin, usually as a result of obesity, and deficient insulin secretion secondary to beta cell failure. Obese patients have high levels of circulating free fatty acids (FFA) and several studies have shown that the FFA palmitate induces ER stress and beta-cell apoptosis. In the present work we initially established an experimental model to specifically activate the ER stress response in pancreatic beta-cells. For this purpose, insulinoma cells (INS-1E) or primary rat beta-cells were exposed to the reversible chemical SERCA pump blocker cyclopiazonic acid (CPA). Dose-response and time course experiments determined the best conditions to induce a marked ER stress without excessive cell death (<25%). The first goal of the work was to understand the synergistic effects of IL1-beta and IFN-gamma leading to pancreatic beta-cell apoptosis. Our group previously observed, by microarray analysis of primary beta-cells, that IFN-gamma down-regulates mRNAs encoding for some ER chaperones. Against this background, our hypothesis was that IFN-gamma aggravates beta-cell ER stress by decreasing the ability of these cells to mount an adequate UPR. To test this hypothesis, we investigated whether IFN-gamma pre-treatment augments CPA-induced ER stress and beta cell death. The results obtained indicated that IFN-gamma pre-treatment potentiates CPA-induced apoptosis in INS-1E and primary beta-cells. This effect was specific for IFN-gamma since neither IL1-beta nor a low dose CPA pre-treatment potentiated CPA-induced apoptosis in INS-1E cells. These effects of IFN-gamma were mediated via the down regulation of genes involved in beta cell defense against ER stress, including the ER chaperones BiP, Orp150 and Grp94 as well as Sec61, a component of the ERAD pathway. This had functional consequences as evidenced by a decreased basal and CPA-induced activity of a reporter construct for the unfolded protein response element (UPRE) and augmented expression of the pro-apoptotic transcription factor Chop. We next investigated the molecular regulation of the Chop gene in INS-1E cells in response to several pro-apoptotic and ER stress inducing agents, namely cytokines (IL1-beta and IFN-gamma), palmitate, or CPA. Detailed mutagenesis studies of the Chop promoter showed differential regulation of Chop transcription by these compounds. While cytokines (via NO production)- and palmitate-induced Chop expression was mediated via a C/EBP-ATF composite and AP-1 binding sites, CPA induction required the C/EBP-ATF site and the ER stress response element (ERSE). Cytokines, palmitate and CPA induced ATF4 protein expression and further binding to the C/EBP-ATF composite site, as shown by Western blot and EMSA experiments. There was also formation of distinct AP-1 dimers and binding to the AP-1 site after exposure to cytokines or palmitate. The third objective of this work was to obtain a broad picture of the pancreatic beta-cell molecular responses during and after (recovery period) a severe ER stress. For this purpose, we utilized an “in home” spotted microarray, the APOCHIP, containing nearly 600 probes selected for the study of beta-cell apoptosis. Time-dependent gene expression profiles were measured in INS-1E cells exposed to CPA. CPA-induced ER-stress modified expression of 183 genes in at least one of the time points studied. Most of theses genes returned to control levels 3h after CPA removal from the culture medium. We observed full beta-cell recovery and survival, indicating that these cells trigger efficient defenses against ER stress. Beta-cell recovery is associated with a sustained increase in the expression of ER chaperones and a rapid decrease of pro-apoptotic mRNAs following CPA removal. Two groups of genes were particularly affected by CPA, namely those related to the cellular responses to ER stress, which were mostly up-regulated, and those related to differentiated beta-cell functions, which were down-regulated. Among this last group, we observed a 40-90% decrease of the mRNAs for insulin-1 and -2. These findings were confirmed in INS-1E cells exposed to cytokines or thapsigargin (another SERCA blocker), and in primary beta-cells exposed to the same treatments. This decrease in insulin mRNA expression is due to transcript degradation, most probably caused by IRE-1 activation and triggering of its endoribonuclease activity, as recently described in Drosophila cells. In conclusion, our work enabled a better understanding of the pancreatic beta-cell responses to ER stress: 1.)We identified a sensitizing effect of IFN-gamma to ER stress in beta-cells via downregulation of key ER chaperones. 2.)We observed a differential regulation of Chop transcription by different treatments suggesting distinct responses of pancreatic beta-cells to diverse ER stress inducers. 3.)We provided the first global analysis of gene expression modifications in pancreatic beta-cells following ER stress. 4.)We demonstrated a high capacity of beta-cells to cope and recover from a severe ER stress. 5.)We identified a new protective mechanism against ER stress, namely the degradation of insulin mRNA which limits the load posed on the ER by insulin synthesis. This, coupled to a marked increase in ER chaperones and a fast degradation of pro-apoptotic mRNAs, enables beta cells to recover from ER stress after the causes of this stress are removed.
43

HIV Protease Inhibitors Trigger Lipid Metabolism Dysregulation Through Endoplasmic Reticulum Stress and Autophagy

Zha, Beth Shoshana 01 January 2011 (has links)
HIV protease inhibitors (PI) are core components of Highly Active Antiretroviral Therapy (HAART). HIV PIs are extremely effective at suppressing viral load, but have been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease. Recent studies indicate that activation of endoplasmic reticulum (ER) stress is an important cellular mechanism underlying HIV PI-induced dysregulation of lipid metabolism. However, the exact role of ER stress in HIV PI-associated lipodystrophy and dyslipidemia remains to be identified. Hepatocytes and adipocytes are important players in regulating lipid metabolism and the inflammatory state. Dysfunction of these two cell types is closely linked to various metabolic diseases. In this dissertation research, we aimed to define the role of activation of ER stress in HIV PI-induced dysregulation of lipid metabolism in adipocytes and hepatocytes and further identifty the potential molecular mechanisms. Both cultured and primary mouse adipocytes and hepatocytes were used to examine the effect of individual HIV PIs on ER stress activation and lipid metabolism. The results indicated that HIV PIs differentially activate ER stress through depletion of ER calcium stores, activating the unfolded protein response (UPR). UPR activation further lead to an alteration of cellular differentiation through downstream transcription factor CHOP. At the same time, HIV PIs also altered adipogenesis via differential regulation of the adipogenic transcription factor PPARγ. HIV PI-induced ER stress was closely linked to dysregulation of autophagy activation through CHOP, and upstream ATF-4, signaling pathways. In hepatocytes, the integrase inhibitor raltegravir abrogated HIV PI-induced lipid accumulation by inhibiting ER stress activation and dysregulation of autophagy pathway. Our studies suggest that both ER stress and autophagy are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes and hepatocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV HAART-treated patients.
44

The molecular and mechanical mechanisms of the age-associated increase in the severity of experimental ventilator induced lung injury

Herbert, Joseph Ames 01 January 2016 (has links)
Abstract Background The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and mortality. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Pulmonary edema is a hallmark of VILI and the severity of edema increases with age. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress (ARDS) patients, but has not been investigated in VILI. We hypothesized that age-associated increases in pulmonary edema promote age-related increases in ventilator-associated mortality. Endoplasmic reticulum (ER) stress can disrupt cellular functions and plays a key role in many disease states. The severity of ER stress also increases with age. We hypothesized that age-associated increases in ER stress also increase in the severity of VILI. Finally, serum Vitamin C (VitC) levels also decrease with age. VitC treatments have been shown to decrease mortality rates in murine models of ARDS by and attenuate pulmonary edema. We hypothesize that VitC treatments will attenuate ventilator induced pulmonary edema in our aged murine subjects. Methods Mechanical Ventilation: Young and old mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for with either liberal or conservative fluid support. One group received VitC treatment prior to ventilation. Cell Stretch: Alveolar epithelial cells (ATIIs) from young and old mice were harvested, cultured, and mechanically stretched. Treatment groups received ER stress inhibitor 4-PBA. Results Both advanced age and HVT ventilation significantly increased inflammation, injury, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema decreased mortality rates. VitC treatments significantly decreased pulmonary edema and improved pulmonary mechanics. Mechanical stretch promoted ER Stress and upregulated proinflammatory gene expression and secretion in aged ATIIs. ER stress inhibition attenuated all of these effects. Conclusion Conservative fluid management alone attenuated age-associated increases in ventilator-associated mortality. VitC treatments decreased pulmonary edema and partially restore pulmonary mechanics in old mice ventilated with HVT. ER stress inhibition decreased stretch induced proinflammatory gene expression and protein secretion in aged mechanically stretched ATII cells.
45

Aortic carboxypeptidase-like protein mutations and Ehlers-Danlos syndrome

Vishwanath, Neya 17 June 2019 (has links)
Ehlers-Danlos Syndrome (EDS) comprises a spectrum of heritable connective tissue disorders with varying genetic origins and clinical manifestations such as soft tissue fragility and skin hyperextensibility. There are multiple EDS subtypes, the first few of which were defined by collagen mutations. Many new EDS variants have been discovered involving mutations that do not necessarily implicate collagen biosynthesis but do involve extracellular matrix (ECM) proteins. One of these proteins, Aortic Carboxypeptidase-Like Protein (ACLP), is a large secreted protein encoded by the AEBP1 (adipocyte enhancer binding protein 1) gene. Previous research has shown that ACLP plays a vital role in binding collagen via its discoidin domain and therefore regulates connective tissue assembly. Thus far, individuals from 7 different families have been identified with different EDS-causing ACLP mutations. Some mutations are ACLP null whereas other mutations lead to expressed mutant ACLP. One of these mutations is characterized by a single-nucleotide deletion that causes the insertion of 40 amino acids in the discoidin domain of ACLP. It is therefore denoted “ACLP-Ins40”. The goal of this research was to characterize the ACLP-Ins40 protein and investigate how mutations in ACLP disrupt ECM homeostasis and cause EDS. We initially sought to determine if the ACLP-Ins40 mutation would alter ACLP’s ability to bind collagen. To achieve this goal we generated expression vectors of full length human ACLP carrying the Ins40 mutation. By western blot, it was determined that ACLP-Ins40 was not secreted from fibroblasts and was retained intracellularly. We then hypothesized that the retention of ACLP-Ins40 in the secretory pathway would induce ER stress due to misfolding. 3T3 fibroblasts were co-transfected with the ACLP-Ins40 expression vector and an XBP1u-EGFP sensor of ER stress. Immunofluorescence imaging revealed that in comparison to WT, fibroblasts expressing ACLP-Ins40 experienced ER stress with significantly increased spliced XBP1. This may then cause cell death, the improper secretion of other important ECM proteins, or defective collagen scaffolding, all which could contribute to symptoms of EDS. These studies contribute to our current understanding of how mutations in the AEBP1 gene and alterations in the ACLP protein cause EDS. This connection provides a framework for future research and for targeted interventions to treat EDS. / 2021-06-17T00:00:00Z
46

Rôle de la sirtuine 1 dans la modulation de la réponse des cardiomyocytes au stress RE et à l’apoptose / Role of the sirtuine 1 in the modulation of endoplasmic reticulum stress response and apoptosis in cardiomyocytes

Prola, Alexandre 30 June 2014 (has links)
Des altérations de fonctions physiologiques du réticulum endoplasmique (RE) induisent un processus appelé stress RE. Dans le domaine cardiovasculaire, plusieurs travaux ont montré que le stress RE contribue au développement de la majorité des pathologies cardiaques. En réponse au stress RE, la réponse UPR (Unfolded Protein Response) est activée afin de restaurer l’homéostasie du RE et de permettre la survie de la cellule. Néanmoins, dans le cas d’un stress RE excessif ou prolongé, les altérations ne pouvant plus être compensées, la cellule est éliminée par apoptose contribuant au développement de la pathologie cardiaque. Une thérapie prometteuse pour lutter contre ce type de pathologie consisterait donc à moduler la réponse au stress RE afin d’inhiber l’apoptose des cardiomyocytes. Au cours de ma thèse, je me suis intéressé aux modifications induites en réponse au stress RE dans le cœur et au rôle de la sirtuine 1 (SIRT1) dans la modulation de cette réponse. SIRT1 est une déacétylase activée par différents stress cardiaques et connue pour favoriser la survie cellulaire. D’une part, j’ai mis en évidence que le stress RE induit une modification importante de l’architecture des cardiomyocytes et en particulier une augmentation des contacts RE/mitochondries associée à une altération de la fonction mitochondriale. D’autre part, en utilisant une lignée cellulaire (H9c2), des cardiomyocytes de rat adulte et des souris invalidées pour SIRT1, j’ai démontré in vitro et in vivo (i) que SIRT1 est activée et joue un rôle cardioprotecteur en réponse au stress RE, (ii) que SIRT1 limite la réponse UPR en régulant spécifiquement la voie PERK, et (iii) que SIRT1 régule la voie PERK en déacétylant le facteur d’initiation de la traduction, eIF2 sur deux résidus lysine. Ces résultats montrent donc pour la première fois que SIRT1 est impliquée dans la régulation de la réponse apoptotique au stress RE des cardiomyocytes et suggèrent que cette déacétylase serait une cible thérapeutique intéressante pour prévenir l’apoptose dans les pathologies cardiaques liées au stress RE. / Impairment of physiological functions of the endoplasmic reticulum (ER) induces the so-called ER stress. ER stress has been implicated in many cardiovascular diseases including ischemic heart, hypertrophy and heart failure. To overcome the deleterious effect of ER stress, an evolutionarily conserved adaptive response known as Unfolded Protein Response (UPR) is activated in order to restore ER homeostasis and promote cell survival. Nevertheless, in the case of prolonged or severe ER stress, apoptotic cell death is ultimately activated to eliminate stressed cells, thus contributing to the development of the pathology. The modulation of ER stress response, in order to reduce cardiomyocyte apoptosis, thus appears as a promising therapeutic strategy for such pathologies. During my Ph.D thesis, I studied the modification that occur during ER stress response in the heart and the role of the sirtuine 1 (SIRT1) in the modulation of this response. SIRT1 is a deacetylase activated in response to many cardiac stresses to promote cell survival. First, we showed that ER stress induces important structural modifications of cardiomyocytes and in particular an increase in contact sites between ER and mitochondria associated with an alteration of the mitochondrial function. Secondly, using a cell line (H9c2), freshly isolated adult rat ventricular cardiomyocytes and SIRT1-KO mice, we demonstrated in vitro and in vivo (i) that SIRT1 is activated and plays a cardioprotective role in ER stress response, (ii) that SIRT1 attenuates the UPR by specifically regulating the PERK pathway, and (iii) that SIRT1 modulates PERK axis by deacetylating the translation initiation factor, eIF2on two lysine residues. Collectively, our results provide the first evidence that SIRT1 modulates ER stress-induced apoptosis in the heart and suggest that this deacetylase may represent a therapeutic target to prevent apoptosis in cardiac pathologies associated to ER stress.
47

Lien entre la Lysyl-ARNt-synthétase et la calréticuline dans le cadre de la mort tumorale immunogénique / Relation between lysyl-tRNA-synthetase and calreticulin in the context of immunogenic tumor cell death

Gdoura, Abdelaziz 06 June 2011 (has links)
En réponse aux inducteurs de la mort cellulaire immunogénique, la calréticuline (CRT) est transportée depuis sa localisation orthotopique dans la lumière du réticulum endoplasmique (RE) vers la surface cellulaire où elle va jouer un rôle de signal puissant d’endocytose à l’endroit des cellules présentatrices d’antigène. Ici nous rapportons qu’une autre protéine, la lysyl-ARNt-synthétase (KRS), est exposée à la surface des cellules stressées où elle colocalise avec la CRT au niveau des radeaux lipidiques. La déplétionde KRS à l’aide d’ARNs interférents annihile l’exposition de la CRT induit par les anthracyclines ou les rayonnements UVC. A l’inverse de la CRT, KRS est aussi retrouvée dans le surnageant des cellules stressées. De plus, la protéine KRS recombinante (KRSr) est ici incapable d’influencer la liaison de laCRT recombinante à la surface cellulaire. Et KRSr ne possède pas la capacité de stimuler des macrophages in vitro. Enfin nous révélons que le statut de phosphorylation d’eIF2α constitue un critère différentiel entre l’oxaliplatine et la cisplatine, capable de rendre compte de l’incapacité de cette dernière à entrainer l’exposition de la CRT, et ce malgré une très grande ressemblance chimique entre ces deux composés. Ces résultats mettent donc en exergue la contribution respective de KRS et du stress du RE dans l’émission du signal prototypique de la mort immunogénique. / In response to immunogenic cell death inducers, calreticulin (CRT) translocates from its orthotopiclocalization in the lumen of the endoplasmic reticulum (ER) to the surface of the plasma membrane where it serves as a potent engulfment signal for antigen-presenting cells. Here, we report that another protein, the lysyl-tRNA-synthetase (KRS), was exposed on the surface of stressed cells, on which KRS co-localized with CRT in lipid rafts. Depletion of KRS with small interfering RNAs suppressed CRT exposure induced by anthracyclines or UVC light. In contrast to CRT, KRS was also found in the supernatant of stressed cells. Recombinant KRS (rKRS) protein was unable to influence the binding of recombinant CRT to the cell surface. Moreover, rKRS protein was unable to stimulate macrophages invitro. Finally, we reveal that the phosphorylation status of eIF2α constitute a differential criteria between oxaliplatin and cisplatin (CDDP), accounting for the incapacity of CDDP to trigger the exposure ofCRT, despite their structural and chemical similarities. These results underscore the respective contribution of KRS and ER stress to the emission of the prototypic signal of immunogenic cell death.
48

Efeitos da elevada concentração de glicose sobre o retículo endoplasmático em fibroblastos. / Effects of high glucose concentration on the endoplasmic reticulum of fibroblasts.

Santos, Douglas Amaral dos 27 August 2015 (has links)
Fibroblastos são células essenciais na cicatrização da derme, sintetizando e degradando matriz extracelular (MEC) e sua função é alterada pela hiperglicemia. Demonstramos previamente uma deficiência na migração de fibroblastos de ratos diabéticos, acompanhada de dilatação das cisternas do retículo endoplasmático (RE) e aumento no número de mitocôndrias. Neste estudo avaliamos se a glicose elevada (HG) induz estresse do RE, resultando na ativação da via UPR (Unfolded Protein Response). Conforme observado por microscopia eletrônica de transmissão, fibroblastos NIH-3T3 expostos por 3 dias a HG apresentaram dilatação do RE e alteração na morfologia das mitocôndrias. A expressão dos marcadores de estresse do RE: BiP, XBP1 spliced (XBP1s) e CHOP não foi alterada pela HG. Resultados semelhantes foram observados em fibroblastos de ratos diabéticos. A marcação com um indicador fluorescente do potencial de membrana mitocondrial não foi modificada pela glicose elevada. Esses resultados sugerem que a disfunção de fibroblastos frente à HG não está relacionada a estresse de RE. / Fibroblasts are essential cells during dermis wound healing, synthesizing and degrading extracellular matrix (ECM); their function is altered by hyperglycemia. We have previously demonstrated an impairment of migration of fibroblasts derived from diabetic rats, accompanied by the enlargement of endoplasmic reticulum (ER) cisternae and an increase in the number of mitochondria. This study assessed whether high glucose (HG) induces stress of ER, resulting in the activation of UPR (Unfolded Protein Response). As observed by transmission electron microscopy, NIH-3T3 fibroblasts exposed for 3 days to HG showed enlargement of the ER cisternae and changes in the morphology of mitochondria. The expression of the ER stress markers: BiP, spliced XBP1 (XBP1s) and CHOP was not altered by HG. Similar results were observed in fibroblasts derived from diabetic rats. Labeling with a fluorescent indicator of mitochondrial membrane potential was not altered by high glucose. These results suggest that dysfunction of fibroblasts exposed to HG is not related to ER stress.
49

Die Rolle der Proteindisulfidisomerase ERp57 in der Chemoresistenz des Nierenzellkarzinoms / The impact of the proteine disulfite isomerase ERp57 in chemoresistance of renal cell carcinoma

Katzendorn, Olga 21 March 2019 (has links)
No description available.
50

Antioxidant properties of NQO2

Jumuddin, Farra Aidah January 2018 (has links)
Dihydronicotinamide riboside (NRH) quinone oxidoreductase 2 (NQO2) is involved in quinone metabolism reducing quinone to hydroquinone. Quinones are products of oestrogen metabolism and are responsible for the oestrogen-initiated breast carcinogenesis. It has been demonstrated that oestrogen quinones are endogenous biological substrates of NQO2 which acting as a detoxification enzyme catalyses the reduction of oestrogen quinones to hydroquinone. Hydroquinone can then be removed by conjugation to glutathione or glucuronic acid. In this study, the oestrogen dependent and oestrogen independent effects of NQO2 in a variety of networks implicated in breast tumorigenesis were investigated aiming to understand the potential role of NQO2 overexpression in mammary carcinomas. The use of NRH as a cofactor for NQO2 is being studied in parallel with the Î2-oestradiol and tamoxifen treatments. The MCF-7, T47D, MDA-MB-231 and MDA-MB-468 breast cancer cells were transfected with increasing amounts of NQO2 and its biological activity in regulating ERα transcriptional activity, reactive oxygen species (ROS) generation, cell cycle control, mitochondrial membrane potential and antioxidant activities including catalase activity, glutathione (GSH) levels and glutathione peroxidase (GPx) activity were studied. NQO2 overexpression in MDA-MB-231 and T47D cells reduced ROS generation. Increasing amounts of transfected NQO2 induced the ERα transcriptional activity in Î2-oestradiol treated MCF-7 and T47D cells and decreased cyclin D1 protein levels in these cells treated with Î2-oestradiol compared to untransfected cells. Reduction of catalase activity was detected in tamoxifen treated T47D cells overexpressing NQO2, an effect that was not evident in Î2-oestradiol treated cells, whereas NQO2 mediated reduction of GSH levels was detected in these cells treated with Î2-oestradiol but not with tamoxifen. Finally, NQO2 affected mitochondrial membrane depolarization in Î2-oestradiol treated MDA-MB-231 cells. Given the fact that NRH is not physiologically synthesized in humans, the results presented in this study are valuable from the fundamental science point of view indicating the existence of a potential link between NQO2 and estrogens affecting a number of biological pathways important for breast carcinogenesis and as such from the clinical angle it could be assumed that NQO2 effects could impact the design of personalised breast cancer treatment of oestrogen receptor positive and negative breast cancers.

Page generated in 0.0524 seconds