• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 82
  • 74
  • 51
  • 23
  • 19
  • 15
  • 13
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 607
  • 125
  • 97
  • 74
  • 67
  • 60
  • 56
  • 52
  • 50
  • 47
  • 47
  • 42
  • 39
  • 39
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Mechanisms of microstructural damage during rolling contact fatigue of bearing steels

Kang, JeeHyun January 2014 (has links)
Bearings are employed in a number of applications under extremely demanding conditions. During long operation times, the material undergoes rolling contact fatigue where microstructural damage manifests as dark-etching regions and white-etching areas, which display different properties from the surrounding region. The aim of this study is to identify the mechanisms for such damage and to suggest models that can explain the influence of the initial microstructure and test conditions. In order to appraise the stress state in rolling contacts, two testing techniques were employed and it was examined if the testing methods could reproduce the same damage as in bearing operation. During ball-on-rod fatigue testing, microcracks were generated adjacent to inclusions and some were decorated with white-etching areas. Repetitive push tests showed a similar extent of subsurface hardening compared to the ball-on-rod tests, and allowed the strain per stress cycle to be measured. The microstructural alterations in a white-etching area were studied both on a macroscale and on an atomic-scale. The degree of stress concentration near a microcrack was calculated employing a nite element method. The microstructure, as well as the segregation behaviour of alloying elements in the white-etching area, were investigated by employing transmission electron microscopy and atom probe tomography. A nanocrystalline structure with scattered carbide particles was observed in the white-etching area. Carbon and silicon segregation was highly pronounced in some boundaries of dislocation cell structures. Models were suggested to account for the microstructural alterations during rolling contact fatigue. Carbide coarsening in dark-etching regions was modelled by considering how carbon di usion is assisted by dislocation glide. The predicted hardness evolution was consistent with experimental observation. The kinetics of carbide dissolution in white-etching areas was calculated by taking two processes into account: deformation accumulation and carbon diffusion. These models suggest that the microstructural changes during bearing operation can be controlled by tailoring the initial microstructure and managing the test conditions.
112

Electrochemical Atomic Layer Etching of Copper and Ruthenium

Gong, Yukun 01 September 2021 (has links)
No description available.
113

A Study of Plasma-Induced Surface Roughness and Ripple Formation during Silicon Etching in Inductively Coupled Chlorine Plasmas / 誘導結合塩素プラズマを用いたシリコンエッチングにおけるプラズマ誘起表面ラフネスとリップル形成に関する研究

Nakazaki, Nobuya 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19687号 / 工博第4142号 / 新制||工||1639(附属図書館) / 32723 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 斧 髙一, 教授 稲室 隆二, 教授 青木 一生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
114

Microwave Assisted Chemical Etching of β-Ga2O3

Sowers, Elizabeth Ann 15 May 2023 (has links)
No description available.
115

Low-Loss Hollow Waveguide Platforms for Optical Sensing and Manipulation

Lunt, Evan J. 11 August 2010 (has links) (PDF)
This dissertation presents a method for fabricating integrated hollow and solid optical waveguides on planar substrates. These waveguides are antiresonant reflecting optical waveguides (ARROWs), where high-index cladding layers confine light to hollow cores through optical interference. Hollow waveguides that can be filled with liquids or gases are an important new building block for creating highly-integrated optical sensors. The method developed for fabricating these integrated waveguides employs standard processes and materials used in the microelectronics industry, allowing for parallel, low-cost fabrication. Dielectric cladding layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD). After the lower cladding layers have been deposited, a sacrificial material is deposited and patterned using photolithography to produce the hollow-core shape. After the sacrificial cores are defined, they are coated with additional PECVD dielectric layers to form the sides and tops of the waveguides. Integrated solid-core waveguides can be easily created by etching a ridge into the top dielectric cladding layer. Finally, the ends of the sacrificial cores are exposed and removed with an acid solution, resulting in hollow waveguides. Improved optical performance for integrated ARROW platforms can be achieved by only using a single over-coating for the cladding on the sides and top of the hollow waveguide. Such a structure resulted in 70% improvement in optical throughput for the platforms and increased sensitivity for optical manipulation and fluorescence detection of single particles, including viruses. Reduced loss for the hollow waveguides can be obtained by surrounding the core with a terminal layer of air on the sides and top of the waveguide. Such devices were created by forming the hollow waveguides on top of a pedestal on the silicon substrate. This process produces the ideal geometry for hollow ARROW waveguides, and loss measurements of waveguides with air-filled cores had loss coefficients of 1.54/cm, which is the lowest achieved for air-core ARROWs.
116

Two-Photon 3-Dimensional Photoelectrochemical Etching of Single Crystal Silicon Carbide

Nyholm, Peter Robert 12 October 2020 (has links)
This thesis presents the first use of a novel direct-write, non-line-of-sight, two-photon photoelectrochemical etching technique for etching of single crystal silicon carbide substrates. The use of this technique has resulted in structuring of 3-dimensional structures in high quality single crystal silicon carbide wafers. The 3-dimensional structures demonstrated cannot be formed by any single or combination of traditional silicon carbide machining techniques. This thesis outlines the development of the optical, electrical, and diagnostic components required to achieve two-photon photoelectrochemical etching in silicon carbide. The diagnostic sub-assemblies --a single pixel confocal detector assembly and an in-situ optical microscope assembly-- and their design is also discussed. Several etched structures using the two-photon photoelectrochemical etching technique are presented.
117

PARAMETRIC EXPLORATION OF AUTOMATED FABRICATION AND ANODIC BONDING OF CPS FOR LHP APPLICATIONS

PARIMI, SRINIVAS 17 April 2003 (has links)
No description available.
118

Study, Modelling and Implementation of the Level Set Method Used in Micromachining Processes

Montoliu Álvaro, Carles 09 December 2015 (has links)
[EN] The main topic of the present thesis is the improvement of fabrication processes simulation by means of the Level Set (LS) method. The LS is a mathematical approach used for evolving fronts according to a motion defined by certain laws. The main advantage of this method is that the front is embedded inside a higher dimensional function such that updating this function instead of directly the front itself enables a trivial handling of complex situations like the splitting or coalescing of multiple fronts. In particular, this document is focused on wet and dry etching processes, which are widely used in the micromachining process of Micro-Electro-Mechanical Systems (MEMS). A MEMS is a system formed by mechanical elements, sensors, actuators, and electronics. These devices have gained a lot of popularity in last decades and are employed in several industry fields such as automotive security, motion sensors, and smartphones. Wet etching process consists in removing selectively substrate material (e.g. silicon or quartz) with a liquid solution in order to form a certain structure. This is a complex process since the result of a particular experiment depends on many factors, such as crystallographic structure of the material, etchant solution or its temperature. Similarly, dry etching processes are used for removing substrate material, however, gaseous substances are employed in the etching stage. In both cases, the usage of a simulator capable of predicting accurately the result of a certain experiment would imply a significant reduction of design time and costs. There exist a few LS-based wet etching simulators but they have many limitations and they have never been validated with real experiments. On the other hand, atomistic models are currently considered the most advanced simulators. Nevertheless, atomistic simulators present some drawbacks like the requirement of a prior calibration process in order to use the experimental data. Additionally, a lot of effort must be invested to create an atomistic model for simulating the etching process of substrate materials with different atomistic structures. Furthermore, the final result is always formed by unconnected atoms, which makes difficult a proper visualization and understanding of complex structures, thus, usually an additional visualization technique must be employed. For its part, dry etching simulators usually employ an explicit representation technique to evolve the surface being etched according to etching models. This strategy can produce unrealistic results, specially in complex situations like the interaction of multiple surfaces. Despite some models that use implicit representation have been published, they have never been directly compared with real experiments and computational performance of the implementations have not been properly analysed. The commented limitations are addressed in the various chapters of the present thesis, producing the following contributions: - An efficient LS implementation in order to improve the visual representation of atomistic wet etching simulators. This implementation produces continuous surfaces from atomistic results. - Definition of a new LS-based model which can directly use experimental data of many etchant solutions (such as KOH, TMAH, NH4HF2, and IPA and Triton additives) to simulate wet etching processes of various substrate materials (e.g. silicon and quartz). - Validation of the developed wet etching simulator by comparing it to experimental and atomistic simulator results. - Implementation of a LS-based tool which evolves the surface being etched according to dry etching models in order to enable the simulation of complex processes. This implementation is also validated experimentally. - Acceleration of the developed wet and dry etching simulators by using Graphics Processing Units (GPUs). / [ES] El tema principal de la presente tesis consiste en mejorar la simulación de los procesos de fabricación utilizando el método Level Set (LS). El LS es una técnica matemática utilizada para la evolución de frentes según un movimiento definido por unas leyes. La principal ventaja de este método es que el frente está embebido dentro de una función definida en una dimensión superior. Actualizar dicha función en lugar del propio frente permite tratar de forma trivial situaciones complejas como la separación o la colisión de diversos frentes. En concreto, este documento se centra en los procesos de atacado húmedo y seco, los cuales son ampliamente utilizados en el proceso de fabricación de Sistemas Micro-Electro-Mecánicos (MEMS, de sus siglas en inglés). Un MEMS es un sistema formado por elementos mecánicos, sensores, actuadores y electrónica. Estos dispositivos hoy en día son utilizados en muchos campos de la industria como la seguridad automovilística, sensores de movimiento y teléfonos inteligentes. El proceso de atacado húmedo consiste en eliminar de forma selectiva el material del sustrato (por ejemplo, silicio o cuarzo) con una solución líquida con el fin de formar una estructura específica. Éste es un proceso complejo pues el resultado depende de muchos factores, tales como la estructura cristalográfica del material, la solución atacante o su temperatura. De forma similar, los procesos de atacado seco son utilizados para eliminar el material del sustrato, sin embargo, se utilizan sustancias gaseosas en la fase de atacado. En ambos casos, la utilización de un simulador capaz de predecir de forma precisa el resultado de un experimento concreto implicaría una reducción significativa del tiempo de diseño y de los costes. Existen unos pocos simuladores del proceso de atacado húmedo basados en el método LS, no obstante tienen muchas limitaciones y nunca han sido validados con experimentos reales. Por otro lado, los simuladores atomísticos son hoy en día considerados los simuladores más avanzados pero tienen algunos inconvenientes como la necesidad de un proceso de calibración previo para poder utilizar los datos experimentales. Además, debe invertirse mucho esfuerzo para crear un modelo atomístico para la simulación de materiales de sustrato con distintas estructuras atomísticas. Asimismo, el resultado final siempre está formado por átomos inconexos que dificultan una correcta visualización y un correcto entendimiento de aquellas estructuras complejas, por tanto, normalmente debe emplearse una técnica adicional para la visualización de dichos resultados. Por su parte, los simuladores del proceso de atacado seco normalmente utilizan técnicas de representación explícita para evolucionar, según los modelos de atacado, la superficie que está siendo atacada. Esta técnica puede producir resultados poco realistas, sobre todo en situaciones complejas como la interacción de múltiples superficies. A pesar de que unos pocos modelos son capaces de solventar estos problemas, nunca han sido comparados con experimentos reales ni el rendimiento computacional de las correspondientes implementaciones ha sido adecuadamente analizado. Las expuestas limitaciones son abordadas en la presente tesis y se han producido las siguientes contribuciones: - Implementación eficiente del método LS para mejorar la representación visual de los simuladores atomísticos del proceso de atacado húmedo. - Definición de un nuevo modelo basado en el LS que pueda usar directamente los datos experimentales de muchos atacantes para simular el proceso de atacado húmedo de diversos materiales de sustrato. - Validación del simulador comparándolo con resultados experimentales y con los de simuladores atomísticos. - Implementación de una herramienta basada en el método LS que evolucione la superficie que está siendo atacada según los modelos de atacado seco para habilitar la simulación de procesos comple / [CA] El tema principal de la present tesi consisteix en millorar la simulació de processos de fabricació mitjançant el mètode Level Set (LS). El LS és una tècnica matemàtica utilitzada per a l'evolució de fronts segons un moviment definit per unes lleis en concret. El principal avantatge d'aquest mètode és que el front està embegut dins d'una funció definida en una dimensió superior. D'aquesta forma, actualitzar la dita funció en lloc del propi front, permet tractar de forma trivial situacions complexes com la separació o la col·lisió de diversos fronts. En concret, aquest document es centra en els processos d'atacat humit i sec, els quals són àmpliament utilitzats en el procés de fabricació de Sistemes Micro-Electro-Mecànics (MEMS, de les sigles en anglès). Un MEMS és un sistema format per elements mecànics, sensors, actuadors i electrònica. Aquests dispositius han guanyat molta popularitat en les últimes dècades i són utilitzats en molts camps de la indústria, com la seguretat automobilística, sensors de moviment i telèfons intel·ligents. El procés d'atacat humit consisteix en eliminar de forma selectiva el material del substrat (per exemple, silici o quars) amb una solució líquida, amb la finalitat de formar una estructura específica. Aquest és un procés complex ja que el resultat de un determinat experiment depèn de molts factors, com l'estructura cristal·logràfica del material, la solució atacant o la seva temperatura. De manera similar, els processos d'atacat sec son utilitzats per a eliminar el material del substrat, no obstant, s'utilitzen substàncies gasoses en la fase d'atacat. En ambdós casos, la utilització d'un simulador capaç de predir de forma precisa el resultat d'un experiment en concret implicaria una reducció significativa del temps de disseny i dels costos. Existeixen uns pocs simuladors del procés d'atacat humit basats en el mètode LS, no obstant tenen moltes limitacions i mai han sigut validats amb experiments reals. Per la seva part, els simuladors atomístics tenen alguns inconvenients com la necessitat d'un procés de calibratge previ per a poder utilitzar les dades experimentals. A més, deu invertir-se molt d'esforç per crear un model atomístic per a la simulació de materials de substrat amb diferents estructures atomístiques. Així mateix, el resultat final sempre està format per àtoms inconnexos que dificulten una correcta visualització i un correcte enteniment d'aquelles estructures complexes, per tant, normalment deu emprar-se una tècnica addicional per a la visualització d'aquests resultats. D'altra banda, els simuladors del procés d'atacat sec normalment utilitzen tècniques de representació explícita per evolucionar, segons els models d'atacat, la superfície que està sent atacada. Aquesta tècnica pot introduir resultats poc realistes, sobretot en situacions complexes com per exemple la interacció de múltiples superfícies. A pesar que uns pocs models son capaços de resoldre aquests problemes, mai han sigut comparats amb experiments reals ni tampoc el rendiment computacional de les corresponents implementacions ha sigut adequadament analitzat. Les exposades limitacions son abordades en els diferents capítols de la present tesi i s'han produït les següents contribucions: - Implementació eficient del mètode LS per millorar la representació visual dels simuladors atomístics del procés d'atacat humit. - Definició d'un nou model basat en el mètode LS que puga utilitzar directament les dades experimentals de molts atacants per a simular el procés d'atacat humit de diversos materials de substrat. - Validació del simulador d'atacat humit desenvolupat comparant-lo amb resultats experimentals i amb els de simuladors atomístics. - Implementació d'una ferramenta basada en el mètode LS que evolucione la superfície que està sent atacada segons els models d'atacat sec per, d'aquesta forma, habilitar la simulació de processo / Montoliu Álvaro, C. (2015). Study, Modelling and Implementation of the Level Set Method Used in Micromachining Processes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58609
119

High Temperature Water as an Etch and Clean for SiO2 and Si3N4

Barclay, Joshua David 12 1900 (has links)
An environmentally friendly, and contamination free process for etching and cleaning semiconductors is critical to future of the IC industry. Under the right conditions, water has the ability to meet these requirements. Water becomes more reactive as a function of temperature in part because the number of hydronium and hydroxyl ions increase. As water approaches its boiling point, the concentration of these species increases over seven times their concentrations at room temperature. At 150 °C, when the liquid state is maintained, these concentrations increase 15 times over room temperature. Due to its enhanced reactivity, high temperature water (HTW) has been studied as an etch and clean of thermally grown SiO2, Si3N4, and low-k films. High temperature deuterium oxide (HT-D2O) behaves similarly to HTW; however, it dissociates an order of magnitude less than HTW resulting in an equivalent reduction in reactive species. This allowed for the effects of reactive specie concentration on etch rate to be studied, providing valuable insight into how HTW compares to other high temperature wet etching processes such as hot phosphoric acid (HPA). Characterization was conducted using Fourier transform infrared spectroscopy (FTIR) to determine chemical changes due to etching, spectroscopic ellipsometry to determine film thickness, profilometry to measure thickness change across the samples, scanning electron microscopy (SEM), contact angle to measure changes in wetting behavior, and UV-Vis spectroscopy to measure dissolved silica in post etch water. HTW has demonstrated the ability to effective etch both SiO2 and Si3N4, HT-D2O also showed similar etch rates of Si3N4 indicating that a threshold reactive specie concentration is needed to maximize etch rate at a given temperature and additional reactive species do not further increase the etch rate. Because HTW has no hazardous byproducts, high temperature water could become a more environmentally friendly etchant of SiO2 and Si3N4 thin films.
120

Simulation of polymer-deposition controlled trench etching in silicon

Sun, Chin-Yang, 1957- January 1988 (has links)
Reactive ion etching has been used to obtain anisotropic silicon trenches with small sidewall angles. This work demonstrates that the sidewall angle can be controlled by the wafer temperature and there exists an Arrhenius-type relationship among isotropic polymer deposition rate, thickness of polymer, and sidewall angle.

Page generated in 0.0681 seconds