• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 29
  • 25
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 153
  • 43
  • 30
  • 29
  • 29
  • 27
  • 27
  • 25
  • 23
  • 21
  • 20
  • 17
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Ultrafast dynamics of nanoscale systems: NaNbO3 nanocrystals, colloidal silver nanoparticles and dye functionalized TiO2 nanoparticles

ALMEIDA, Euclides Cesar Lins 30 July 2012 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-27T13:00:02Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Euclides_Almeida_Fisica.pdf: 5907240 bytes, checksum: 503a5b57e757a03f24206d4d3d26032c (MD5) / Made available in DSpace on 2017-04-27T13:00:02Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Euclides_Almeida_Fisica.pdf: 5907240 bytes, checksum: 503a5b57e757a03f24206d4d3d26032c (MD5) Previous issue date: 2012-07-30 / CNPQ / O principal objetivo deste trabalho foi investigar fenômenos ópticos ultrarrápidos em sistemas nanoestruturados empregando diferentes técnicas espectroscópicas não lineares, tanto no domínio do tempo quanto no domínio da frequência. Para fornecer uma base adequada que permita entender os experimentos feitos nessa tese, os princípios físicos das espectroscopias ópticas não lineares são apresentados. Inicialmente é apresentada uma descrição da função resposta não linear no domínio do tempo. A evolução temporal da polarização óptica, que gera o sinal espectroscópico, é descrita em detalhes usando uma teoria de perturbação diagramática. Técnicas ópticas não lineares são apresentadas, tais como eco de fótons, bombeamento-e-sonda e hole burning, assim como o comportamento dinâmico de um material pode ser interpretado a partir do sinal gerado. A técnica de mistura degenerada de quatro ondas com luz incoerente foi usada para investigar, pela primeira vez, o defasamento ultrarrápido de éxcitons em uma vitrocerâmica contendo nanocristais de niobato de sódio. O tempo de defasamento medido (T2 = 20 fs) indica qu empregada para investigar processos de transferência de carga em colóides com nanopartículas de TiO2 e rodamina 6G. O comportamento do sinal de depleção transiente é comparado com o observado para a rodamina livre suspensa em etanol. A análise dos resultados permitiu atribuir o comportamento de depleção à transferência de carga de estados excitados termalizados das moléculas de corante para a banda de condução do semicondutor e a transferência no sentido inverso do semicondutor para as moléculas. / The main objective of this work was the investigation of ultrafast optical phenomena in selected nanostructured systems employing different nonlinear spectroscopic techniques, either in the time or the frequency domain. To provide an appropriate background to understand the performed experiments the principles of nonlinear optical spectroscopies are presented. Initially a description of the nonlinear optical response function in the time domain is given. The time evolution of the optical polarization, that gives rise to the spectroscopic signal, is described in detail using a diagrammatic perturbation theory. Nonlinear optical techniques are discussed such as photon echoes, pump-and-probe and hole-burning, as well as how the dynamical behavior of a material can be interpreted from the generated signals. The degenerate four-wave mixing technique with incoherent light was used to investigate for the first time the ultrafast dephasing of excitons in a glass-ceramic containing sodium niobate nanocrystals. The short dephasing time measured (T2 = 20 fs) indicates that different dephasing channels contribute for the excitonic dephasing, namely: electron-electron scattering, electron-phonon coupling and fast trapping of electrons in defects on the nanocrystals interface. Low-temperature luminescence experiments were also performed to measure excitonic and trap states lifetimes. The persistent spectral holeburning technique was applied to measure localized surface plasmons dephasing times in colloidal silver nanoparticles capped with different stabilizing molecules. The dependence of T2 with three different stabilizers was demonstrated and theoretically analyzed. The results show that the dephasing times are shorter than the theoretically calculated T2 using the bulk dielectric functions of the metal. This discrepancy is attributed to changes in the electronic density of states at the nanoparticles interface caused by the presence of the stabilizers. Ab-initio calculations based on the Density Functional Theory were performed to further understand the interaction between the nanoparticles and stabilizing agents. The femtosecond transient absorption technique was employed to study the ultrafast dynamics of in-gap states in a glassceramics containing sodium niobate nanocrystals. Two main temporal components were found for the excited state absorption signal: a fast component, with decay time of ≈ 1 ps, and a slower component which is attributed to deep trap states. This slower component is responsible for the excited state absorption contribution in optical limiting experiments previously reported in the literature. The dynamics of the optical limiting in this sample was also studied, in the millisecond range, exciting the sample with a train of femtosecond pulses. The optical limiting behavior reflects the dynamics of population in the excited and trap states and this dynamics was modeled using rate equations for the electronic states’ populations. Finally, the pump-andprobe transient absorption technique was employed to investigate charge-transfer processes in colloids with rhodamine 6G and TiO2 nanoparticles. The transient bleaching signal behavior is compared with the one observed for unlinked rhodamine 6G dissolved in ethanol. The analysis of the results allowed the attribution of the bleaching behavior to charge-transfer from thermalized excited states of the dye molecules to the semiconductor conduction band and to the back charge-transfer from the semiconductor to the molecules.
132

Propriedades de pontos quânticos de InP/GaAs / Structural and optical properties of InP/GaAs type II quantum dots

Godoy, Marcio Peron Franco de 19 May 2006 (has links)
Orientador: Fernando Iikawa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-06T18:02:06Z (GMT). No. of bitstreams: 1 Godoy_MarcioPeronFrancode_D.pdf: 4057709 bytes, checksum: 0df1e56082150d4109dcf891f05d4da6 (MD5) Previous issue date: 2006 / Resumo: Neste trabalho estudamos as propriedade estruturais e ópticas de pontos quânticos auto-organizados de InP crescidos sobre o substrato de GaAs. Esta estrutura apresenta o alinhamento de bandas tipo-II na interface, confinando o elétron no ponto quântico, enquanto o buraco mantém-se na barreira, próximo à interface devido à interação coulombiana atrativa. As amostras foram crescidas por epitaxia de feixe químico (CBE) no modo Stranskii-Krastanov. Os pontos quânticos apresentam raio médio de 25 nm e grande dispersão de altura (1-5 nm) e ocorre a relaxação parcial do parâmetro de rede, chegando a 2 %, em pontos quânticos superficiais. Do ponto de vista de propriedades ópticas, a fotoluminescência de pontos quânticos superficiais exibe uma eficiente emissão óptica, devido a baixa velocidade de recombinação dos estados superficiais do InP, e reflete a densidade e distribuição bimodal de tamanhos. Além disso, sua emissão óptica em função da intensidade de excitação exibe comportamento diverso em comparação com pontos quânticos cobertos com uma camada de GaAs. Em pontos quânticos cobertos, determinamos a energia de ativação térmica, que varia de 6 a 8 meV, e é associada à energia de ligação do éxciton ou energia de ionização do buraco. O decaimento temporal da luminescência de pontos quânticos é de 1,2 ns, um tempo relativamente curto para um ponto quântico tipo-II. A análise das propriedades magneto-ópticas em pontos quânticos individuais, inédita em QDs tipo-II, permitiu verificar que o fator-g do éxciton é praticamente constante, independentemente do tamanho dos QDs, devido ao fato dos buracos estarem levemente ligados. Por fim, mostramos a versatilidade do sistema acoplando-o a um poço quântico de InGaAs. Este acoplamento introduz mudanças na superposição das funções de onda do par elétron-buraco que permitem a manipulação do tempo de decaimento da luminescência e da energia de ligação excitônica / Abstract: We have investigated structural and optical properties of InP self-assembled quantum dots grown on GaAs substrate. This system presents a type-II band lineup where only electrons are confined in the InP quantum dots. The InP/GaAs quantum dots were grown by chemical beam epitaxy in the Stranskii-Krastanov mode. Our quantum dots present a mean radius of 25 nm and large height dispersion, 1-5 nm, and a partial relieve of the strain up to 2 % is observed. The photoluminescence spectra of surface quantum dots show an efficient optical emission, which is attributed to the low surface recombination velocity in InP. We observed a bimodal dispersion of the dots size distribution, giving rise to two distinct emission bands. A remarkable result is the relatively large blue shift of the emission band from uncapped samples as compared to those for capped dots. In capped quantum dots, we obtained the thermal activation energy, from 6 to 8 meV, which is associated to the exciton binding energy or hole ionization energy. The observed luminescence decay time is about 1.2 ns, relatively short decay time for type II system. We investigated magneto-optical properties using single-dot spectroscopy. The values of the exciton g factor obtained for a large number of single InP/GaAs dots are mainly constant independent of the emission energy and, therefore, of the quantum dot size. The result is attributed to the weak confinement of the holes in InP/GaAs QDs. We have also investigated structures where InP quantum dots are coupled to a InGaAs quantum well. This system permits the manipulation of the wave function overlap between electron-hole in order to control the optical emission decay time and exciton binding energy / Doutorado / Física / Doutor em Ciências
133

Study of Optical Properties of Semiconductor Quantum Dot Based Hybrid Nano Assemblies

Mullapudi, Praveena January 2016 (has links) (PDF)
Over the last few decades, a vast research is going on, to study the optical properties of the nano particles i.e., metal and semiconductors thoroughly. Till date most of the optical studies are based on single particle measurement of a quantum dot (QD) or a chromophore under the influence of an external plasmonic field stimulus. In this the-sis, we tried to address the energy transfer at non local level on a layer of compact, monolayer QD assemblies over micro meter range. The energy transfer occurs in the presence of external field of metal particles or nanorods leads to the enhancement or quenching the emission from a layer of QDs. Chapter 1 is introduction to the basic theoretical aspects of excitons in semiconductor (QDs) and its optical properties under strong confinement regime. The discussion is followed with the optical properties of gold nanoparticles and rods, describing size and shape dependent variation of absorption properties, based on Mie and Mie-Gans theory. Theoretical background of collective effects in QD assemblies based on exciton-plasmonic interactions at single particle level as well as polarization based plasmo-nenhanced fluorescence has been subjected. Experimental techniques are explained in chapter 2 which contains the details of the synthesis of polymer capped nanoparticles with the respective characterization. A discussion on the synthesis methods for cadmium selenide QDs, gold nano particles and the rods with different polymer cap-ping legends and the related capping exchange methods. The thin film preparation of QD monolayers as well as hybrid nano assemblies using several techniques, i.e., Langmuir-Blodgett (LB), dip coat methods are provided. Further the details of surface morphology of the prepared thin films has been studied by different microscopic techniques i.e., atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The details of the PL emission measurements of these hybrid arrays using confocal, Raman and polarization based near field scanning optical microscope (NSOM) modes followed with the life time measurements. In third chapter, the substantial strong coupling and collective emission regime is engineered in the QD monolayer films embedded with tiny gold nano particles keeping the QD density same. Tuning the photoluminescence (PL) of semiconducting QD assemblies using small Au NPs in different ratio, different packing density and extent of spectral overlap between QD photoluminescence and the metal nanoparticle absorbance has been discussed. We provided possible experimental and theoretical evidence for the plasmon-mediated emergence of collective emission and enhanced quantum efficiency in these QD films with the consolidation of multiple emitters and multiple NPs. The quantum efficiency of these hybrid assemblies is further explored with different material as well as the size effect of metal nano particles. Chapter 4 comprises the experiment results of the self-assembled compact and partially aligned gold nano rod (GNR) arrays on QD monolayer films. We experimentally demonstrated the quantum efficiency of these QD hybrid assemblies is gaining max-imum when the longitudinal surface plasmon resonance (LSPR) absorption maxima of GNR arrays is resonant with the QD monolayer PL maxima and is always non-existent for the off resonant case. Further, we reported the variability in the size and morphology of these GNR domains leads to the maximum achieved enhancement as well as anisotropy value in comparison with isolated rods and the explored conditions to further enhance the efficiency in these QD hybrid assemblies.
134

Semiconductor-generated entangled photons for hybrid quantum networks

Zopf, Hartmut Michael 01 October 2020 (has links)
The deterministic generation and manipulation of quantum states has attracted much interest ever since the rise of quantum mechanics. Large-scale, distributed quantum states are the basis for novel applications such as quantum communication, quantum remote sensing, distributed quantum computing or quantum voting protocols. The necessary infrastructure will be provided by distributed quantum networks, allowing for quantum bit processing and storage at single nodes. Quantum states of light then allow for inter-node transmission of quantum information. Transmission losses in optical fibers may be overcome by quantum repeaters, the quantum equivalent of classical signal amplifiers. The fragility of quantum superposition states makes building such networks very challenging. Hybrid solutions combine the strengths of different physical systems: Efficient quantum memories can be realized using alkali atoms such as rubidium. Leading in the deterministic generation of single photons and polarization entangled photon pairs are semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method. Despite remarkable progress in the last twenty years, complex quantum optical protocols could not be realized due to low degree of entanglement, low brightness and broad wavelength distribution. In this work, an emerging family of epitaxially grown GaAs/AlGaAs quantum dots obtained by droplet etching and nanohole infilling is studied. Under pulsed resonant two-photon excitation, they emit single pairs of entangled photons with high purity and unprecedented degree of entanglement. Entanglement fidelities up to f = 0.94 are observed, which are only limited by the optical setup or a residual exciton fine structure. The samples exhibit a very narrow wavelength distribution at rubidium memory transitions. Strain tuning is applied via piezoelectric actuators to allow for reversible fine-tuning of the emission frequency. In a next step, active feedback is employed to stabilize the frequency of single photons emitted by two separate quantum dots to an atomic rubidium standard. The transmission of a rubidium-based Faraday filter serves as the error signal for frequency stabilization. A residual frequency deviation of < 30MHz is achieved, which is less than 1.5% of the quantum dot linewidth. Long-term stability is demonstrated by Hong-Ou-Mandel interference between photons from the two quantum dots. Their internal dephasing limits the expected visibility to V = 40%. For frequency-stabilized dots, V = (41 ± 5)% is observed as opposed to V = (31 ± 7)% for free-running emission. This technique reaches the maximally expected visibility for the given system and therefore facilitates quantum networks with indistinguishable photons from distributed sources. Based on the presented techniques and improved emission quality, pivotal quantum communication protocols can now be implemented with quantum dots, such as transferring entanglement between photon pairs. Embedding quantum dots in a dielectric antenna ensures a bright emission. For the first time, entanglement swapping between two pairs of photons emitted by a single quantum dot is realized. A joint Bell measurement heralds the successful generation of the Bell state Ψ+ with a fidelity of up to (0.81 ± 0.04). The state's nonlocal nature is confirmed by violating the CHSH-Bell inequality with S = (2.28 ± 0.13). The photon source is tuned into resonance with rubidium transitions, facilitating implementation of hybrid quantum repeaters. This work thus represents a major step forward for the application of semiconductor based entangled photon sources in real-world scenarios.
135

Einfluss der Mischkristallunordnung auf die Lumineszenz von wurtzitischem MgZnO

Müller, Alexander 22 May 2012 (has links)
Mittels Photolumineszenz(PL)-Spektroskopie werden die Lumineszenzeigenschaften von wurtzitischen MgZnO-Dünnfilmen mit Mg-Konzentrationen im Bereich von 0 ≤ x ≤ 0,35 experimentell untersucht und die gefundenen Zusammenhänge anhand mehrerer im Rahmen dieser Arbeit entwickelter Modelle theoretisch beschrieben. Dabei werden Erklärungen für verschiedene Auswirkungen der Mischkristallunordnung auf die Lumineszenz dieses ternären Mischhalbleiters vorgestellt, welche in der Literatur bisher nicht bzw. nur unvollständig untersucht wurden. Aufgrund der Mischkristallverbreiterung überlagern sich in MgZnO für x > 0,02 die Lumineszenzbeiträge von störstellengebundenen, freien und in Potentialmulden lokalisierten Exzitonen. Sie können daher mittels zeitintegrierter PL nicht spektral getrennt werden. In dieser Arbeit wird gezeigt, dass die verschiedenen Übergänge dennoch durch zeitaufgelöste PL-Messungen unterschieden und identifiziert werden können. Die gemessenen PL-Transienten werden angepasst und die Linienform der Lumineszenzabklingkurven in Abhängigkeit von der PL-Energie analysiert. Die Bewegung der Exzitonen im Mischkristall wird unter Verwendung eines Effektiv-Masse-Modells quantenmechanisch beschrieben und der Einfluss der Mischkristallunordnung auf die optischen Übergänge qualitativ untersucht. Dabei wird insbesondere auf die Mischkristallverbreiterung sowie auf das nichtexponentielle Abklingen der Lumineszenz eingegangen. Daneben wird ein Tunnelmodell vorgestellt, mit welchem die zeitverzögerten PL-Spektren von MgZnO quantitativ reproduziert werden können. Dabei wird die asymmetrische Linienform sowie die zeitabhängige Rotverschiebung des Emissionsmaximums modelliert und die Parameter auf mikroskopische Eigenschaften der Exzitonen zurückgeführt. Außerdem wird die für Mischkristalle typische S-förmige Verschiebung des temperaturabhängigen PL-Maximums durch ein modifiziertes Arrheniusmodell erklärt.
136

Non-instantaneous polarization in perovskite-like ferroelectrics revealed by correlated (ultra)fast luminescence and absorption spectroscopy. On the formation of self-trapped excitons in lithium niobate and their relation to small electron and hole polaron pairs

Krampf, Andreas 28 August 2020 (has links)
In this work the transient non-instantaneous polarization, i.e., laser-pulse injected small polarons and self-trapped excitons, is studied in the perovskite-like ferroelectric lithium niobate. The investigations span a time scale from femtoseconds to several hours. It is shown that the established small polaron picture is not able to describe transient absorption and photoluminescence of lithium niobate consistently. Several strong indications are presented demonstrating that the photoluminescence cannot be caused by geminate small polaron annihilation. Instead, the idea of radiatively decaying self-trapped excitons at the origin of the blue-green photoluminescence is revived. Excitons pinned on defect sites are proposed to lead to the already observed long-lived transient absorption in the blue spectral range in Mg- and Fe-doped crystals. Excitons pinned on iron-defects are studied in more detail. Their spectral fingerprint and absorption cross section is determined. Furthermore, it is shown that the occurrence of these pinned STEs can be tailored by chemical treatment of the samples and the experimental parameters such as the pump pulse intensity and photon energy. Based on the new experimental results and reviewing data published in literature, an atomistic picture of hopping and pinning of self-trapped excitons in lithium niobate is proposed. The question is addressed whether small polarons and self-trapped excitons in lithium niobate are coupled species in the sense that oppositely-charged polarons may merge into self-trapped excitons or STEs break into small polaron pairs. Decay kinetics of transient absorption and luminescence assigned to free small polarons and STEs indicate that this is not the case. For a more complete picture the ultrafast time scale is investigated as well. The formation times of small polarons and STEs are determined, which both lie in the range of 200 fs. No indications are found on the (sub)picosecond time scale indicating a coupling of both quasi-particle species either. In order to gain access to the formation of self-trapped excitons a custom-built femtosecond broadband fluorescence upconversion spectrometer is installed. Based on an already existing scheme, it is adapted to the inspection of weakly luminescent solid samples by changing to an all reflective geometry for luminescence collection. To avoid the necessity for an experimentally determined photometric correction of the used setup, an already established calculation method is extended considering the finite spectral bandwidth of the gate pulses. The findings presented here are important not only as fundamental research, but also regarding the technical application of lithium niobate and other similar nonlinear optical crystals. The simultaneous occurrence of both small polarons and self-trapped excitons is a rather rarely described phenomenon. Usually, the optical response of wide band gap oxide dielectrics is associated with only one of these quasi-particle species. This work may therefore be a stimulus to review the existing microscopic models for transient phenomena in other oxide dielectrics, which may help to improve their application in nonlinear optical and electro-optical devices. In this context the ultrafast transient photoluminescence spectroscopy established here for weakly luminescing solid samples may again provide valuable insight. With respect to lithium niobate, the results do not only resolve inconsistencies between the microscopic pictures described in literature, but also provide information regarding the extends to which the propagation of ultrashort laser pulses may be affected by (pinned-)STE absorption. It is shown that tailoring of the long-lived absorption center in the blue spectral range is possible, which may be used to avoid optical damage when high repetition rates are applied. It is important to emphasize that the microscopic model proposed in this work is mainly based on experimental indications. It is the task of further detailed theoretical investigations, e.g., via time-dependent density functional theory, to test whether the proposed model is justified. From an experimental perspective the important question remains whether (pinned-)STEs contribute to a photorefractive effect. In the experimentally easily accessible spectral range no absorption feature of mobile STEs is observed. As a complementary experimental technique, ultrafast holographic spectroscopy may reveal an excitonic contribution to photorefraction and provide further insight to STE transport and pinning phenomena.
137

Tuning of single semiconductor quantum dots and their host structures via strain and in situ laser processing

Kumar, Santosh 15 August 2013 (has links)
Single self-assembled semiconductor quantum dots (QDs) are able to emit single-photons and entangled-photons pairs. They are therefore considered as potential candidate building blocks for quantum information processing (QIP) and communication. To exploit them fully, the ability to precisely control their optical properties is needed due to several reasons. For example, the stochastic nature of their growth ends up with only little probability of finding any two or more QDs emitting indistinguishable photons. These are required for two-photon quantum interference (partial Bell-state measurement), which lies at the heart of linear optics QIP. Also, most of the as-grown QDs do not fulfil the symmetries required for generation of entangled-photon pairs. Additionally, tuning is required to establish completely new systems, for example, 87Rb atomic-vapors based hybrid semiconductoratomic (HSA) interface or QDs with significant heavy-hole (HH)-light-hole (LH) mixings. The former paves a way towards quantum memories and the latter makes the optical control of hole spins much easier required for spin- based QIP. This work focuses on the optical properties of a new type of QDs optimized for HSA experiments and their broadband tuning using strain. It was created by integrating the membranes, containing QDs, onto relaxor-ferroelectric actuators and was quantified with a spatial resolution of ~1 µm by combining measurements of the µ-photoluminescence of the regions surrounding the QDs and dedicated modeling. The emission of a neutral exciton confined in a QD usually consists of two fine-structure-split lines which are linearly polarized along orthogonal directions. In our QDs we tune the emission energies as large as ~23meV and the fine-structure-splitting by more than 90 µeV. For the first time, we demonstrate that strain is able to tune the angle between the polarization direction of these two lines up to 40° due to increased strain-induced HH-LH mixings up to ~55%. Compared to other quantum emitters, QDs can be easily integrated into optoelectronic devices, which enable, for example, the generation of non-classical light under electrical injection. A novel method to create sub-micrometer sized current-channels to efficiently feed charge carriers into single QDs is presented in this thesis. It is based on focused-laserbeam assisted thermal diffusion of manganese interstitial ions from the top GaMnAs layer into the underlying layer of resonant tunneling diode structures. The combination of the two methods investigated in this thesis may lead to new QDbased devices, where direct laser writing is employed to preselect QDs by creating localized current-channels and strain is used to fine tune their optical properties to match the demanding requirements imposed by QIP concepts.
138

Ultraschnelle Ladungsträger- und Spindynamik in II-VI und III-V Halbleitern mit weiter Bandlücke

Raskin, Maxim 10 October 2013 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von verdünnten magnetischen II-VI und III-V Halbleiter-Dünnschichten. Diese Systeme bieten vereinfachte optische kohärente Kontrolle von Spin-basierten Prozessen und eignen sich hervorragend für den Einsatz in zukünftigen opto-magnetischen Anwendungen. ZnO-, ZnXO-, GaN- und GaXN-Proben (X = Mangan, Cobalt) sind mit Hilfe der naßchemischen Sol-Gel Synthese hergestellt worden. Sie werden mit Hilfe der Photolumineszenzspektroskopie untersucht. Die spektrale Position der elektronischen Niveaus in der Nähe der Bandkante dieser Materialien wird bestimmt, um in weiteren Experimenten die freien und gebundenen Exzitonen einzeln abzufragen. Mit der Methode der zeitaufgelösten differentiellen Transmissionsspektroskopie (TRDT) werden die Lebensdauern dieser Ladungsträger bestimmt und mit ultraschnellen Prozessen der optischen Anregung und Relaxation in Verbindung gebracht. Die Methode der zeitaufgelösten Faraday-Rotation-Spektroskopie (TRFR) wird angewandt, um die kohärente Spindynamik des optisch angeregten Teilchenensembles zu beschreiben. Die Kohärenz unterliegt den Störeinflüssen verschiedener Streumechanismen, die in der vorliegenden Arbeit identifiziert und quantitativ beschrieben werden. Bei einigen untersuchten Materialsystemen (ZnCoO, ZnMnO und GaMnN) wird die jeweilige spezifische Elektron-Ion Austauschenergie N0α bestimmt, welche die Kopplungsstärke der elektronischen Spins zu denen der Dotierionen beschreibt.
139

Bose-Einstein condensation and superfluidity of excitons in semiconductors

Roubtsov, Danila January 2002 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
140

Spatially resolved optical measurements on supported metal particles and oxide surfaces with the STM

Benia, Hadj Mohamed 08 December 2008 (has links)
In der vorliegenden Arbeit wurde mit Hilfe eines Photon-STM die Korrelation zwischen optischen Eigenschaften und der lokalen Morphologie an zwei unterschiedlichen Systemen untersucht. Hierfür wurden zum einem oxidgetragene Ensemble von Silber-Partikeln präpariert, wobei sowohl die Partikelform (Kuppel- und Scheibenform) als auch die deponierte Partikeldichte variiert werden konnte. Neben der Präparation solcher Partikel auf Al10O13/NiAl, konnten sphärische Silber-Kolloide geordnet, als auch ungeordnet auf HOPG aufgebracht und untersucht werden. Dabei zeigte sich, dass das Verhältnis von Höhen zu Breiten nicht nur einen signifikanten Einfluss auf die Mie-Resonanz des einzelnen Partikels hat, sondern auch die elektromagnetische Kopplung der Partikel in einem Ensemble stark kontrolliert. Die energetische Lage der Mie-Resonanz zeigt im Fall der kuppelförmigen Ag-Partikel eine starke Abhängigkeit vom Intepartikel-Abstand, was sich in einer Verschiebung zu höheren Energien für eine steigende Partikeldichte äußert. Eine solche Abhängigkeit konnte bei den Ensembles der scheibenförmigen Partikel nicht beobachtet werden. Des weiteren zeigte sich, dass, verglichen mit den ungeordneten Ensembles, die selbstorganisierte langreichweitige Ordnung der Silber-Kolloide auf HOPG nur einen schwachen Einfluss auf die energetische Position der Mie Resonanz hat.Das zweite hier untersuchte System sind dünne MgO Filme unterschiedlicher Dicken auf einem Mo(001) Substrat. Diese zeigen ein reichhaltiges Wachstumsverhalten, welches durch eine Differenz in den Gitterkonstanten von 5.3% begründet ist und erst ab etwa 25 ML zu einem flachen und defektarmen Film führt. Die so induzierte Spannung relaxiert bis zu einer Dicke von etwa 7 ML in einer periodischen Überstruktur die aus abwechselnd flachen und verkippten Ebenen an der MgO-Mo Grenzschicht hervorgeht. Für MgO Filme mit einer Dicke von etwa 12 ML werden dann Schraubenversetzungen, ausgedehnte verkippte Ebenen und Stufenkanten mit einer Orientierung entlang der Richtung beobachtet. Die optische Charakterisierung durch Feldemission von Elektronen aus der STM-Spitze in den MgO-Film wird dominiert von zwei Emissionsmaxima bei Energien von 3.1 eV und 4.4 eV. Die kontrollierte Nukleation von Gold Partikeln und die Erzeugung von Farbzentren im MgO Film erlaubten eine Zuordnung dieser Emissionen zu strahlenden Zerfällen von Exitonen an Ecken, Kinken bzw. Stufen des Magnesiumoxids. Solche Emissionsprozesse konnten allerdings nur unter Einstellungen beobachtet werden, bei denen ein gleichzeitiges Rastern der Oberfläche unmöglich ist. Bei moderaten Einstellungen war auch eine ortsaufgelösten Spektroskopie möglich, wobei dann neue Emissionsmechanismen beobachtet wurden. Dabei sind zwei Prozesse wesentlich; zum einen die Ausbildung von sog. Spitzen-induzierten Plasmonen im Bereich zwischen Spitze und dem Mo-Substrat, zum anderen strahlende Elektronenübergänge zwischen sog. Feldemissionsresonanzen, die sich im Spitze/MgO-Film System ausbilden. / In this thesis, the correlation between the optical properties and the local morphology of supported silver nanoparticle ensembles and MgO thin films deposited on Mo(001) systems is explored by means of Photon-STM. In the first section, dome and disk shaped Ag nanoparticle ensembles with increasing density on an alumina film on NiAl(110) were analyzed as well as ordered and disordered ensembles of Ag nanocolloids on HOPG. The aspect ratio of the Ag nanoparticles was found to have a significant influence not only on the Mie plasmon resonance of a single particle, but also on the electromagnetic coupling within the nanoparticle ensembles. The Mie resonance in the ensemble of dome shaped Ag nanoparticles shows a strong dependence on the interparticle distance, where it shifts to higher energies with increasing particle density, due to destructive interference effects. In the disk-like Ag ensembles, however, the plasmon energy is independent of particle-particle separation. The long-range lateral ordering of size-selected Ag nanocolloids is found to induce a high dipole-dipole coupling within the ensemble. This is mainly reflected by the enhancement of the spectral intensity of the in-plane Mie mode, due to constructive coupling. However, ensembles with either well-ordered or disordered arrangements reveal no important difference in their optical properties, reflecting the weak influence of the long-range order in the particle ensemble. Thin MgO films with different thicknesses were grown on a Mo(001) surface. The stress resulting from the 5.3% lattice mismatch between the MgO(001) and the Mo(001) lattice parameters is found to control the surface morphology of the MgO film until thicknesses of around 25ML at which flat and defect-poor films are obtained. The relaxation of the stress induces a periodic network in the first 7ML of the MgO film, consisting of alternated flat and tilted mosaics. The presence of screw dislocations, steps oriented along the MgO directions, and tilted planes is observed when the MgO films are approximately 12ML thick. In addition, an increase of the MgO work function around these new surface features is revealed from STM spectroscopy. The photon emission induced by field-emitted electron injection from the STM tip into the MgO films is dominated by two emission bands located at 3.1eV and 4.4eV. To check the origin of these bands, further experiments, namely, nucleation of Au particles and creation of F-centers on the MgO surface, have been performed. The nucleation of Au particles at the low coordinated sites is found to quench the MgO optical signal, while the creation or annihilation of F-centers does not alter the MgO emission bands. The 3.1eV and the 4.4eV bands are therefore assigned to the radiative decay of MgO excitons at corner and kink sites, and step sites, respectively. Besides, spatially resolved optical measurements in the tunneling mode of the STM revealed different light emission mechanisms. These radiative processes are mainly related to tip-induced plasmons that form between the tip and the Mo support and to electron transitions between field-emission-resonance states in the STM tip-MgO film junction. The signal from exciton decays at corners and kinks of the MgO surface is however only observed at excitation conditions where the spatial resolution is already strongly reduced.

Page generated in 0.0478 seconds