Spelling suggestions: "subject:"endonuclease.""
11 |
Replicative DNA polymerase associated B-subunitsJokela, M. (Maarit) 16 November 2004 (has links)
Abstract
Replicative DNA polymerases (pols) synthesize chromosomal DNA with high accuracy and speed during cell division. In eukaryotes the process involves three family B pols (α, δ, ε), whereas in Archaea, two types of pols, families B and D, are involved. In this study the B-subunits of replicative pols were analysed at the DNA, RNA and protein levels.
By cloning the cDNAs for the B-subunits of human and mouse pol ε we were able to show that the encoded proteins are not only homologous to budding yeast pol ε, but also to the second largest subunit of pol α. Later studies have revealed that the B-subunits are conserved from Archaea to human, and also that they belong to the large calcineurin-like phosphoesterase superfamily consisting of a wide variety of hydrolases.
At the mRNA level, the expression of the human pol ε B-subunit was strongly dependent on cell proliferation as has been observed for the A-subunit of pol ε and also for other eukaryotic replicative pols. By analysing the promoter of the POLE2 gene encoding the human pol ε B-subunit we show that the gene is regulated by two E2F-pocket protein complexes associated with the Sp1 and NF-1 transcription factors. Comparison of the promoters of the human pol ε and the pol α B-subunit indicates that the genes for the B-subunits may be generally regulated through E2F-complexes whereas adjustment of the basal activity may be achieved by distinct transcription factors.
To clarify the function of the B-subunits, we screened through the expression of 13 different recombinant B-subunits. Although they were mainly expressed as insoluble proteins in E. coli, we were able to optimize the expression and purification for the B-subunit (DP1) of Methanococcus jannaschii pol D (MjaDP1). We show that MjaDP1 alone was a manganese dependent 3'-5' exonuclease with a preference for mispaired nucleotides and single-stranded DNA, suggesting that MjaDP1 functions as the proofreader of archaeal pol D. So far, pol D is the only pol family utilising an enzyme of the calcineurin-like phosphoesterase superfamily as a proofreader.
|
12 |
Functional Studies of the Interstrand Cross-link Repair Protein, Pso2Dowling, Michelle L. 26 July 2014 (has links)
<p>DNA interstrand cross-links (ICLs) constitute one of the most severe types of DNA damage. ICLs covalently tether both strands of duplex DNA, preventing unwinding and polymerase access during replication and transcription. This obstruction is exploited in cancer chemotherapy since it leads to replication fork collapse, double strand breaks (DSBs), and cell death. Mechanistic understanding of how eukaryotic cells repair these specific lesions, however, is still in its infancy. It is understood that ICL repair consists of a multitude of intersecting and connecting repair pathways that rely on interplay between critical protein factors. Interestingly, Pso2 has been identified as an integral component of the ICL repair pathway in <em>Saccharomyces cerevisiae</em>. Pso2 is a yeast nuclease from the β-CASP family of proteins that function predominantly in the repair of ICLs. It has been recognized as the only protein that does not serve a redundant function in any other DNA repair pathway. It remains unclear how the ICL repair pathway generates DNA intermediates suitable for high fidelity repair dependent on Pso2 nuclease activity. Here we show that Pso2 possesses structure-specific endonuclease activity that may be essential to its role in ICL repair. Direct <em>in vitro</em> activity assessment of the protein on a site-specific ICL proved to be inconclusive due to the heat-labile nature of the cross-linking agent employed. <em>In vitro </em>activity testing was also performed on various substrates resembling intermediates generated during ICL repair. Biochemical analysis demonstrated that Pso2 cleaves hairpins, stem loops, heterologous loops, and symmetrical bubbles. Although the precise cleavage sites vary between substrates, Pso2 demonstrates preference for the single- to double-stranded junction in the DNA backbone, with similar activity to that previously demonstrated for its human homologue, Artemis. This specific endonuclease activity is stimulated by increased concentrations of phosphate. Through two-dimensional gel electrophoresis, the presence of unique DNA intermediates generated in response to ICL damage <em>in </em><em>vivo </em>was also monitored. Results suggest the generation of hairpin-like intermediates that resemble those tested <em>in vitro</em>. These intermediates persist in the absence of Pso2 but are resolved by exogenous addition of control endonucleases. Our findings expand on previous data that established hairpin-opening activity for this protein and suggest that the structure-specific endonuclease activity demonstrated by Pso2 is important for ICL repair. We anticipate that Pso2 acts on a hairpin-containing DNA substrate in the ICL repair pathway and the resolution of this intermediate is uniquely dependent on Pso2 for the effective repair of ICL damage in yeast. Taking into consideration the current models of ICL repair, both in yeast and humans, possible roles for Pso2 have been described. Achieving a complete mechanistic perspective of this pathway is critical for the therapeutic exploitation of the human homologue, SNM1A. Implications include the potential inhibitory target for increased efficacy of chemotherapy with cross-linking agents.</p> / Master of Science (MSc)
|
13 |
Distribution cellulaire de la protéine de la nucléocapside NCp7 du VIH-1 et caractérisation de son interaction avec la protéine nucléolaire hNoL12 / Cellular distribution of the nucleocapsid protein of HIV-1 NCp7 and characterization of its interaction with the nucleolar protein hNoL 12Zgheib, Sarwat 08 December 2015 (has links)
La protéine de nucléocapside (NC) du virus de l’immunodéficience humaine (VIH-1) joue un rôle majeur dans les différentes étapes du cycle viral du VIH-1 : soit comme domaine fonctionnel de la polyprotéine Gag (NC-Gag) dans les phases tardives du cycle viral, soit sous sa forme mature NCp7 dans les phases précoces. Afin de mieux comprendre le rôle de la forme mature dans le cycle viral, nous avons cherché de nouveaux partenaires cellulaires spécifiques de la NCp7 et identifié la protéine nucléolaire, hNoL12, impliquée dans la maturation des ARNs ribosomaux. L’interaction NCp7/hNoL12 a été confirmée par co-IP, FRET-FLIM et double hybride chez la levure et le domaine d’interaction a été localisé entre les a.a. 22 et 61 correspondant au domaine 5’-3’-exonucléase de hNoL12. Nous avons développé un test pour caractériser cette activité et montré qu’elle est spécifique des ARN simples brins. Enfin, l’extinction de l’expression de hNoL12 entraine une diminution significative de l’infection par un lentivecteur modèle des phases précoces de l’infection soulignant l’implication fonctionnelle de hNoL12 dans cette phase de l’infection. Dans un second projet, nous nous sommes intéressés au devenir de la NCp7 dans les cellules infectées, suite à la transcription inverse. Nous avons généré des vecteurs lentiviraux composés de protéines NCp7 fusionnées à une étiquette tétracysteine permettant son marquage spécifique avec le dérivé de la fluorescéine (FlAsH). Nous avons alors étudié, par microscopie confocale, la distribution intracellulaire de la NCp7 dans des conditions proches de l’infection. Nos résultats indiquent qu’une grande partie de la NCp7 se dissocie du PIC durant son transport dans le cytoplasme. Toutefois, la perte de la NCp7 est une étape tardive qui se déroule proche du noyau confirmant ainsi que la décapsidation a lieu à la membrane nucleaire juste avant l’entrée du complexe de préintegration dans le noyau. Le troisième projet a porté sur le développement d’antiviraux ciblant la NCp7. Nous avons travaillé sur la vectorisation et la caractérisation des propriétés antivirales en milieu cellulaire, d’un peptide sélectionné in vitro pour sa capacité à inhiber l’action chaperonne de la NCp7. L’activité antivirale du peptide vectorisé vis-à-vis d’une infection par un vecteur lentiviral basé sur le VIH-1 s’est révélée décevante. / The Human Immunodeficiency Virus-1 (HIV-1) nucleocapsid protein (NC) plays a major role in the different steps of theviral lifecycle under its two forms; either as a domain of the polyprotein Gag (NC-Gag) in the late phase or as a matureNCp7 protein in the early phase. In order to better understand the role of the mature form in the viral cycle, we searchedfor new NCp7 specific cellular partners and identified the nucleolar protein hNoL12 which is known to be involved inthe maturation of ribosomal RNAs. The NCp7/hNoL12 interaction was confirmed by co- IP, FRET-FLIM, and yeast twohybrid. The interaction domain was localized between a.a. 22 and 61 on hNoL12; which corresponds to its putative 5’-3’-exonuclease domain. We developed an assay to monitor this activity and found it to be specific of single strand RNA.Finally, the cellular knockdown of hNoL12 resulted in a significant decrease in the infection by a pseudovirus mimickingthe early phase of the infection, emphasizing the functional involvement of hNoL12 in this phase. In a second project, wewere interested in the fate of the viral incoming NCp7 in the infected cells, after reverse transcription. We thus generatedlentiviral vectors composed of NCp7 fused to a tetracysteine tag enabling its specific labeling with the fluoresceinderivative FlAsH. We then studied by confocal microscopy, the intracellular distribution of NCp7 containing viralparticles in conditions close to the infection. Our results showed that an important proportion of the NCp7 moleculesdissociates from the PIC during its transport in the cytoplasm. However, the loss of NCp7 is a late step of this processand seems to take place close to the nucleus suggesting that the dissociation of the capsid occurs at the nuclear membranejust before the nuclear entry of the PIC. The third project concerns the development of antiviral inhibitors targetingNCp7. We worked on the vectorization and the characterization of the antiviral properties of a peptide selected in vitrofor its ability to inhibit the NCp7 chaperone activity. The inhibitory activity of the vectorized peptide on infection ofHeLa cells by a HIV-1 based lentiviral vector was found deceiving.
|
14 |
étude structurale et fonctionnelle de la protéine a1 du bactériophage t5 : une dnase octamérique originale / structural and functional study of bacteriophage t5 a1 protein : an original octameric dnaseZangelmi, Léo 06 December 2018 (has links)
Les bactériophages neutralisent les systèmes de défense et détournent les fonctions vitales de leur hôte pour favoriser leur multiplication. Les gènes de phages qui gouvernent cette prise de contrôle de l’hôte restent mal connus, pourtant leur caractérisation présente un intérêt majeur pour mettre à jour des fonctions bactériennes spécifiquement ciblées par les phages et pour concevoir de nouveaux agents antibactériens.Le phage T5 injecte son ADN dans la bactérie Escherichia coli en deux étapes. Seuls les gènes précoces codés par 8% du génome entrent dans la cellule et le transfert s’arrête. Leur expression induit la dégradation du chromosome de l’hôte et l’inactivation de ses systèmes de restriction et de réparation de l’ADN. Après quelques minutes, le reste de la molécule d’ADN est injecté, ce qui permet la production de nouveaux phages. Deux gènes précoces A1 et A2 ont été identifiés comme essentiels pour la reprise du transfert de l’ADN et A1 est également nécessaire pour induire la dégradation de l’ADN de l’hôte. A1 et A2 sont les deux seuls gènes connus pour être impliqués dans la régulation de ce système original d’infection, mais leur fonction n’a jamais été identifiée.Ma thèse porte sur la caractérisation fonctionnelle et structurale des protéines A1 et A2. J’ai purifié A1 et démontré in vitro qu’elle avait une activité DNase dépendante du manganèse. Sa structure atomique a été résolue par cryomicroscopie électronique à 3.01 Å de résolution, montrant une organisation octamérique de symétrie D4 inédite pour une DNase. Chaque monomère (61kDa) contient un domaine exonuclease dont le site actif lie deux ions Mn2+ et qui s’apparente au site catalytique des domaines exonucléases de la DNA polymerase II et des DNAses associées aux systèmes de recombinaison homologue et de réparation de l’ADN comme Mre11. En construisant différents mutants de A1, j’ai identifié certains acides aminés essentiels pour l’activité catalytique et, par des expériences de complémentation fonctionnelle, j’ai montré que cette activité était indispensable pour l’infection. L’ensemble de ces résultats suggèrent que A1 est la DNase, jusqu’ici inconnue, responsable de la dégradation massive du génome de l’hôte au tout début de l’infection. Enfin, j’ai observé que la production de A1 pendant l’infection induit une forte activité recombinase. De nombreux autres bactériophages qui n’appartiennent pas à la famille des T5virus produisent également une protéine similaire à A1 dont la fonction n’a jamais été identifiée. Ce travail est un premier pas vers la compréhension de son rôle dans le mécanisme général d‘infection par les phages. Une deuxième partie de cette thèse porte sur la caractérisation structurale de A2. Des recherches de similarité indiquent la présence d’un domaine Helix-Turn-Helix typique des régulateurs transcriptionnels. J’ai purifié A2 et montré que cette protéine de 14 kDa est un dimère en solution. La caractérisation des propriétés biochimiques de A2 a permis de débuter l’étude de sa structure par RMN.Les résultats de ma thèse ont révélé la structure originale d’une DNase de bactériophage qui contrôle la dégradation du génome bactérien et la régulation du transport de l’ADN viral au début du cycle infectieux. Ces résultats soulèvent des questions intrigantes : comment l’ADN de T5 est-il protégé de l’activité DNase de A1 ? Comment A1 et A2 interagissent-elles lors des étapes de prise de contrôle de l’hôte ? / Bacteriophages defeat bacterial defences and hijack host cell machineries to establish a favourable environment for their multiplication. Early-expressed viral genes that govern host takeover are highly diverse from one phage to another and most of them have no assigned function. They thus represent a pool of novel genes whose products potentially subvert bacterial cell vital functions and could help in designing new antibacterial strategies.T5 phage uses a unique 2-step mechanism to deliver its DNA into its host Escherichia coli. At the onset of the infection, only 8 % of the genome enter the cell before the transfer temporarily stops. Expression of the genes encoded by this DNA portion leads to host chromosome degradation and inactivation of host restriction and DNA mending systems. After a few minutes, T5 DNA transfer resumes, allowing further phage multiplication. A1 and A2 are early genes required for DNA transfer completion and A1 is also necessary to trigger host DNA degradation. A1 and A2 are the only two genes known to be involved in the regulation of this original infection system, but their function yet remains to be characterized.The objectives of this work were to characterize the function and structure of A1 and A2 proteins. I have purified the A1 protein and shown that it has a manganese-dependent DNase activity in vitro. Cryo Electron Microscopy at 3.01 Å resolution unravelled its structure, showing an octameric organization with a D4 symmetry, which is unprecedented for a DNase. Each monomer (61 kDa) carries an exonuclease domain harbouring an active site with two Mn2+ ions. This site is similar to those from the exonuclease domain of the DNA polymerase II and from DNases involved in DNA mending and recombination events like Mre11. I identified essential catalytic residues for the DNase activity and demonstrated that this activity is crucial for infection by engineering A1 mutant proteins and by doing functional complementation assays. Taken together, my results suggest that A1 could then be the elusive DNase responsible for the massive host genome degradation observed during T5 phage infection. Eventually, I uncovered a recombinase activity associated to A1 production during infection. Similar proteins to A1 with unknown functions are produced in several other bacteriophages outside of the T5virus family. This work is a first step towards understanding the role of this protein in the general mechanism of infection by bacteriophages. In a second part, I worked on the structural characterisation of A2 protein. Similarity searches revealed a helix-turn-helix domain typically found in transcriptional regulators. I purified and demonstrated the dimeric organisation of this 14-kDa protein in solution. This initial characterization of A2 has opened avenues for further NMR studies.During my Ph.D., I uncovered the structure of an original bacteriophage DNase that controls bacterial genome degradation and that regulates viral DNA transport at the beginning of the infectious cycle. These results open the intriguing question about the mechanism for T5 DNA protection from A1 DNase activity as well as about the interplay between A1 and A2 during the host takeover.
|
15 |
Identification of a phospho-hnRNP E1 Nucleic Acid Consensus Sequence Mediating Epithelial to Mesenchymal TransitionBrown, Andrew S. 27 July 2015 (has links)
No description available.
|
16 |
Biochemical insights into SARS-CoV replicationSubissi, Lorenzo 21 February 2014 (has links)
Mon travail de thèse s'est focalisé sur la machinerie enzymatique impliquée dans la réplication du génome ARN du Syndrome Respiratoire Aigu Sévère-Coronavirus (SRAS-CoV). J'ai montré in vitro que l'activité ARN polymérase ARN-dépendante (RdRp) portée par nsp12 nécessite le complexe nsp7/nsp8, qui agit comme facteur de processivité. Grâce à ce complexe polymérase hautement actif, j'ai pu en suite étudier le mécanisme de "proofreading" (correction d'épreuve) associé aux coronavirus, pour lequel seulement des preuves indirectes avaient été assemblées. En effet, les coronavirus codent pour une activité exonucléase 3'-5' (nsp14-ExoN) qui lorsqu'elle est absente, entraine 14-fois plus d'erreurs de réplication en contexte cellulaire. In vitro, nous avons pu montrer que nsp14-ExoN est capable d'exciser l'ARN double brin ainsi qu'un nucléotide mésapparié en 3' de l'ARN en cours d'élongation. J'ai pu apporter pour la première fois une preuve directe de l'existence d'un système de réparation des erreurs au cours de la synthèse, mené par le complexe nsp7/nsp8/nsp12/nsp14. En effet, le complexe nsp7/nsp8/nsp12 ralentit jusqu'à 30-fois quand il rajoute une base mésappariée. Par sequençage, nous avons pu montrer la réparation de cette base mésappariée en presence de nsp14. Enfin, grâce à ce système in vitro nous avons une base pour comprendre l'inefficacité de la ribavirine sur des patients atteints du SRAS. En effet, la ribavirine, incorporée par le complexe polymérase, serait également excisée par nsp14, annihilant tout potentiel effet mutagenique. En conclusion, ce système va permettre de guider le développement d'antiviraux de type nucleoside analogues contre les coronavirus. / This work focused on the enzymatic machinery involved in Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) RNA replication and transcription. Firstly, I established a robust in vitro polymerase assay with the canonical SARS-CoV RNA-dependent RNA polymerase (RdRp) nsp12. I showed that nsp12, in order to engage processive RNA synthesis, needs two viral proteins, i.e. nsp7 and nsp8. This nsp7/nsp8 complex not only activates nsp12-RdRp, but also acts as a processivity factor. Thus, using this processive polymerase complex, I could investigate SARS-CoV proofreading for which only indirect evidences were reported. Indeed, coronaviruses encode for a 3'-5' exonuclease (nsp14-ExoN), putatively involved in a mechanism that proofreads coronavirus RNA during viral replication. We first showed in vitro that nsp14-ExoN, which is stimulated by nsp10, is able to excise specifically dsRNA as well as all primer/templates bearing a 3' mismatch on the primer. Moreover, we could confirm by sequencing that a RNA 3' mismatch was indeed corrected in vitro by the nsp7/nsp8/nsp12/nsp14 complex. We provide for the first time direct evidence that nsp14-ExoN, in coordination with the polymerase complex, is able to proofread RNA. Interestingly, using this in vitro system we found an element that could possibly explain the inefficacy of ribavirin therapeutic treatment on SARS-patients: ribavirin, which is incorporated by the SARS-CoV polymerase complex, would also be excised by nsp14. In conclusion, this system will drive future development of antivirals, particularly of the nucleoside analogue type, against coronaviruses.
|
17 |
Approches biotechnologiques de l'expression et de la diversité du génome mitochondrial des plantes / Biotechnological approaches of the expression and diversity of the plant mitochondrial genomeIqbal, Rana khalid 07 July 2017 (has links)
L'ADN mitochondrial des plantes est dynamique et son expression est complexe. Par la voie naturelle d'import d'ARN de transfert codés par le noyau, nous avons adressé dans les mitochondries d'Arabidopsis l'ARN orf77 caractéristique de la S-CMS du maïs et nous avons analysé les effets sur le transcriptome mitochondrial. Celui-ci s'est avéré strictement régulé durant le développement et fortement tamponné aux stades précoces. L'adressage mitochondrial de l'orf77 a aussi promu un cross-talk avec le noyau. D'autre part, la réplication et la réparation de l'ADN dans les mitochondries de plante impliquent une recombinaison active contrôlée par des facteurs codés par le noyau. Nous avons identifié l'exonucléase 5'-3' potentiellement responsable de la résection des extrémités de l'ADN dans la réparation par recombinaison des cassures double-brin. Nos résultats ouvrent des perspectives pour la génération de diversité génétique mitochondriale et la création de lignées CMS d'intérêt agronomique. / The mitochondrial DNA of plants is dynamic and its expression is complex. Using a strategy based on the natural import of nuclear-encoded transfer RNAs from the cytosol, we targeted to mitochondria in Arabidopsis thaliana the orf77 RNA characteristic for S-CMS in maize and we analyzed the effects on the transcriptome. The results showed that the mitochondrial transcriptome is tighly regulated during plant development and is strongly buffered at early stages. Mitochondrial targeting of orf77 also triggered a cross-talk with the nucleus. On the other hand, DNA replication and repair in plant mitochondria involve active recombination controled by nuclear-encoded factors. We identified a new member of this set of factors, the 5'-3' exonuclease potentially responsible for the resection of DNA ends in recombination-mediated repair of double-strand breaks. As a whole, the results open prospects for generating mitochondrial genetic diversity and creating CMS lines with agronomical interest.
|
18 |
Functional Characterization And Regulation Of UvrD Helicases From Haemophilus Influenzae And Helicobacter Pylori, And Recj Exonuclease Fron Haemophilus InfluenzaeSharma, Ruchika 07 1900 (has links) (PDF)
DNA repair processes are crucial for mutation avoidance and the maintenance of genetic integrity in all organisms. Organisms rely on repair processes to combat genotoxic stress imposed by hostile host environment, and sometimes by therapeutic agents. Most pathogens rapidly generate genetic variability to acquire increased virulence and evade host immune response. Therefore, there needs to exist a fine balance between mutation avoidance and fixation, which is perhaps regulated by repair processes. Haemophilus influenzae and Helicobacter pylori contribute significantly to morbidity and mortality caused by bacteria worldwide. H. influenzae is an obligate commensal of upper respiratory tract with the potential to cause a variety of diseases in humans like meningitis and respiratory infections. H. pylori, which inhabits the human stomach, is associated with gastric and duodenal ulcers and cancerous gastric lesions. One of the striking differences between these two genetically diverse bacterial species is the absence of recognized DNA mismatch repair (MMR) pathway homologs in H. pylori. MMR is a highly conserved post-replicative process, which corrects base pairing mismatches and small loops arising during DNA replication and recombination due to misincorporated nucleotides, insertions, and deletions. Defective MMR results in increased mutation frequency that can alter the pathogenic potential and antibiotic resistance of pathogens. MMR has been extensively studied in Escherichia coli, and requires an orchestrated function of different proteins like MutS, MutL, MutH, UvrD, SSB, RecJ, ExoVII, ExoI, ExoX, beta-clamp, DNA polymerase III and DNA ligase. A growing body of evidence suggests that bacteria other than the well-characterized E. coli paradigm differ in basic DNA repair machinery.
MMR proteins involved in mismatch recognition and strand discrimination like MutS, MutL and MutH from H. influenzae have been characterized, but other downstream repair genes like UvrD helicase and exonucleases like RecJ have not been studied functionally in detail. H. pylori harbors a UvrD homolog, which shares limited homology with other UvrD proteins (29% identity with E. coli UvrD and 31 % with H. influenzae UvrD) and its cellular functions are not clear. Moreover, it is not well-understood how the activities of UvrD and RecJ proteins are regulated within these pathogens. It was, therefore, envisaged that biochemical characterization of UvrD and RecJ would lead to a better understanding of the mechanistic aspects of repair processes within these pathogens. The following sections summarize the results presented in this investigation.
Functional characterization of UvrD from H. influenzae
UvrD or DNA helicase II is a member of superfamily I of DNA helicases with well-documented roles in nucleotide excision repair (NER) and MMR, in addition to roles in replication and recombination. The 727-amino acid H. influenzae Rd KW20 UvrD (HiUvrD) protein was purified as an N-terminal (His)6-tagged protein to near homogeneity, and its authenticity was confirmed by peptide mass fingerprint analysis. HiUvrD displayed robust binding with single-stranded (ss) DNA as compared to double-stranded (ds) DNA. HiUvrD was found exhibit ~ 1000-fold higher affinity for ssDNA as compared to dsDNA as determined by surface plasmon resonance (SPR). In addition, to gain insights into the role of HiUvrD in replication, repair, recombination and transcription, the ability of HiUvrD to bind different DNA structures resembling intermediates of these processes was investigated using electrophoretic mobility shift assays. HiUvrD exhibited relatively high affinities for a number of branched DNA substrates and the order of affinity observed was; splayed-duplex ≥3’-flap ≥ ssDNA > 3’-overhang > four-way junction > three-way junction > nicked duplex > looped duplex ≥ duplex. Concurrent with its high affinity for ssDNA, HiUvrD exhibited a robust ssDNA-specific and Mg2+ - dependent ATPase activity. HiUvrD was able to unwind different DNA structures with varying efficiencies (3’ flap ≥ 3’-overhang > three-way junction > splayed-duplex > four-way junction > nicked > loop = duplex >>> 5’-overhang) and with a 3’-5’ polarity, which underpins its role in replication fork reversal, recombination and different DNA repair pathways. Multiple sequence alignment of HiUvrD with other helicases showed the presence highly conserved helicase motifs of which motif I and II are essential for ATP binding and hydrolysis. Mutation of an invariant glutamate residue (E226Q) in motif II of HiUvrD resulted in a dominant negative growth phenotype since, it was not possible to recover transformants when wild-type E. coli expression strains BL21(DE3)plysS or BL21(DE3)plysE were transformed with expression vector carrying hiuvrDE226Q. Mutation of a conserved arginine residue to alanine (R288A) in motif IV resulted in approximately 80 % reduction in ATP hydrolysis, and abrogation of helicase activity as compared to the wild-type protein. This can be attributed to ~ 70 % reduced ATP binding by HiUvrDR288A as determined by UV-crosslinking of radioactive ATP without change in affinity for ssDNA. HiUvrD was found to exist predominantly as a monomer with small amounts (~ 2-3 %) of higher oligomers like dimers and tetramers
in solution. Deletion of 48 amino acid residues from distal C-terminus of HiUvrD resulted in abrogation of the oligomeric species implicating C-terminus to be involved in protein oligomerization.
Interplay of UvrD with MutL and MutS in H. influenzae, and its modulation by ATP
To investigate the effects of H. influenzae MutS (HiMutS) and MutL (HiMutL) on the helicase activity of HiUvrD, two different nicked DNA substrates were generated- a homoduplex and a heteroduplex DNA with a GT mismatch. HiMutL and HiMutS did not exhibit any helicase activity on either homoduplex or heteroduplex DNA, and unwinding of these substrates was observed only in presence of HiUvrD. In the presence of HiMutL the helicase activity of HiUvrD was stimulated on both homoduplex and heteroduplex nicked substrates whereas no significant modulation of HiUvrD ATPase activity in presence of HiMutL was observed. A much higher stimulation of unwinding of heteroduplex DNA was obtained, in presence of increasing concentrations of HiMutS. With increasing concentrations of HiMutL a progressive increase in HiUvrD mediated unwinding of the radiolabeled DNA strand was observed, which was ~ 15-fold higher than unwinding by HiUvrD alone. To investigate the effect of ATP in the stimulation of HiUvrD by HiMutL, two mutants of HiMutL–E29A (E29 is involved in ATP hydrolysis in E. coli UvrD), and D58A (D58 is essential for ATP binding in E. coli UvrD) were generated. HiMutLE29A retained only ~ 30 % of the wild-type ATPase activity, which was completely abolished in HiMutLD58A. Similar to wild-type protein, HiMutLE29A was able to stimulate HiUvrD helicase activity whereas HiMutLD58A failed to stimulate this activity. This indicated that ATP-bound form of MutL was essential for stimulation and perhaps interaction with UvrD. SPR analysis was carried out to validate and quantitate the direct protein-protein interaction between HiUvrD and HiMutL in absence or in presence of ATP, AMPPNP, and ADP. In the presence of ATP as well as AMPPNP, almost ~ 10,000-fold increase in the affinity between HiMutL and HiUvrD was observed but the same was not the case in presence of ADP. This clearly suggested that ATP binding rather than its hydrolysis promotes the interaction of MutL with UvrD. The effect of HiMutS on MutL-stimulated DNA unwinding by HiUvrD was determined using a heteroduplex nicked DNA with a GT mismatch. Interestingly, in the presence of HiMutS ~ 20-fold activation of DNA unwinding was
observed, which is higher than the stimulation by HiMutL alone. The role of ATP-hydrolysis by MutS in regulation of UvrD helicase was studied by replacing wild-type protein with HiMutSE696A in the helicase assays. HiMutSE696A failed to hydrolyze ATP but was able to bind ATP with the same affinity as the wild-type protein and interacted with heteroduplex DNA with ~ 8-fold reduced affinity as compared to wild-type MutS. Intriguingly, increasing concentrations of HiMutSE696A failed to stimulate HiUvrD helicase activity in presence of HiMutL indicating that ATP hydrolysis by HiMutS is essential for stimulation of HiUvrD helicase activity post MutH-nicking during MMR.
SSB, an essential component of all DNA metabolism pathways, possibly functions to stabilize the ssDNA tract generated by UvrD and exonucleases during MMR. ATPase and helicase activities of HiUvrD were inhibited by the cognate SSB protein. This inhibition could be overcome by increasing the concentration of HiUvrD helicases thus, pointing out the fact that SSB and UvrD perhaps compete with each other for ssDNA substrate. Noticeably, MutL and MutS proteins could alleviate the inhibition of HiUvrD by HiSSB.
Functional characterization of UvrD from H. pylori
In H. pylori, UvrD has been reported to limit homologous recombination and DNA-damage induced genomic recombinations but the protein has not been functionally studied. UvrD from H. pylori strain 26695 (HpUvrD) was over-expressed and purified as an N-terminal (His)6-tagged protein, and its authenticity was confirmed by peptide mass fingerprint analysis. HpUvrD exhibited high affinity for ssDNA as compared to dsDNA as determined by electrophoretic mobility shift assays and SPR. In addition, HpUvrD was able to bind a number of branched DNA structures (splayed duplex > ssDNA > 3’-flap > 3’overhang > three-way junction = four-way junction > loop >>> nicked ≥ duplex) suggesting its role in different DNA processing pathways. HpUvrD exhibited a Mg2+ - dependent ssDNA-specific ATPase activity, and a 3’-5’ helicase activity. HpUvrD was able to unwind different branched DNA structures with 3’-ssDNA regions like splayed duplex, 3’-overhang and 3’-flap. Blunt-ended duplex, duplexes with nick and loop as well as three-way and four-way junctions were unwound with less efficiency. Interestingly, the helicase activity of HpUvrD was supported by GTP and dGTP to almost the same level as ATP and dATP, which is in stark contrast to other characterized UvrD proteins. Moreover, HpUvrD was able to
hydrolyze GTP albeit with ~ 1.5-fold reduced rate as compared to ATP. However, motifs associated with GTP binding and hydrolysis were not found in HpUvrD and it is possible that GTP binds in the same site as ATP. To investigate this possibility, helicase assay was done in the presence of ATP together with different concentrations of GMP-PNP, which is a non-hydrolysable analog of GTP, and did not support HpUvrD helicase activity. With increasing concentrations of GMP-PNP, a progressive inhibition of DNA unwinding by HpUvrD was observed suggesting that GMP-PNP could compete with ATP for a common binding site within HpUvrD. Replacement of a highly conserved glutamate residue with gluatamine (E206Q) in Walker B motif of HpUvrD resulted in ~17-fold reduced ATPase activity, and abrogation of helicase activity as compared to the wild-type protein. HpUvrDE206Q was able to bind ssDNA and ATP with comparable affinities as the wild-type protein suggesting the role of E206 in ATP hydrolysis. Like HiUvrD, HpUvrD was found to exist predominantly as a monomer in solution together with the presence of small amounts of higher oligomeric species. However, unlike HiUvrD, deletion of distal C-terminal 63 amino acids in HpUvD did not abrogate the oligomeric species suggesting that additional regions of the protein may be involved in protein oligomerization. The ATPase and helicase activities of HpUvrD were inhibited by the cognate SSB protein, and this inhibition could be overcome by increasing HpUvrD concentrations again suggesting that both UvrD and SSB proteins compete for ssDNA substrate. To investigate the role of UvrD in the physiology of H. pylori, a knock-out of hpuvrD was constructed in H. pylori strain 26695 by insertion of chloramphenicol cassette in its open reading frame. The mutant H. pylori strain 26695 obtained after disruption of hpuvrD was extremely slow growing under the normal microaerophilic conditions compared to the wild-type strain. Growth defect of H. pylori strain 26695ΔhpuvrD highlights the importance of UvrD in H. pylori cellular processes and in vitro fitness.
Characterization of H. influenzae RecJ and its interaction with SSB
Among the four exonucleases involved in MMR pathway, RecJ is the only known nuclease that degrades single-stranded DNA with 5’ to 3’ polarity. RecJ exonuclease plays additional important roles in base-excision repair, repair of stalled replication forks, and recombination. RecJ exonuclease from H. influenzae (HiRecJ) is a 575 amino acid protein, which harbors the characteristic motifs conserved among RecJ homologs. Due to limited solubility of HiRecJ, the protein was purified as a fusion
protein with maltose binding protein (MBP). The purified protein exhibited a Mg2+ or Mn2+- dependent, and a highly processive 5’ to 3’ exonuclease activity, which is specific for ssDNA. MBP did not affect the exonuclease activity of HiRecJ. The processivity of HiRecJ was determined as ~ 700 nucleotides per binding event, using a ssDNA substrate labelled internally with 3H and at its 5’-terminus with 32P. Cd2+ inhibited the Mg2+ - dependent exonuclease activity of RecJ, which could not be overcome by increasing Mg2+ concentration. Site-directed mutagenesis of highly conserved residues in HiRecJ- D77A, D156A and H157A abolished the enzymatic activity. Interestingly, HiRecJD77A was found to interact with ssDNA with a 10-fold higher affinity than wild-type protein suggesting that this conserved aspartate residue may function to coordinate the binding of metal ion or DNA to hydrolysis of DNA. E. coli HU protein inhibited the HiRecJ exonuclease activity in a concentration-dependent manner possibly due to sequestration of ssDNA, thus making it unavailable for HiRecJ. During MMR, ssDNA tracts generated by UvrD helicase activity are most probably stabilized by SSB and hence, the in vivo substrate for RecJ would be SSB-ssDNA complex. The exonuclease activity of HiRecJ was stimulated approximately 3-fold by H. influenzae SSB (HiSSB) protein. HiSSB was able to stimulate HiRecJ exonuclease activity on a ssDNA substrate, which formed either a very strong secondary structure or on a homopolymeric ssDNA substrate, which did not form any secondary structure, suggesting that HiRecJ exonuclease was stimulated independent of the ability to HiSSB to melt secondary structures and stabilize ssDNA. Significantly, steady-state-kinetic analysis clearly showed that HiSSB increases the affinity of HiRecJ for ssDNA. H. influenzae SSBΔC and T4 gene 32 protein, a SSB homolog from bacteriophage T4, failed to enhance the HiRecJ exonuclease activity suggesting a specific functional interaction between HiSSB and HiRecJ mediated by C-terminus tail of HiSSB. More importantly, HiRecJ was found to directly associate with its cognate SSB. The C-terminus of HiSSB protein was found to be essential for this interaction. To delineate the regions of HiRecJ that interact with HiSSB, different truncated forms of HiRecJ were generated in which regions external to conserved motifs required for exonuclease activity were deleted. Different deletion mutants of HiRecJ- RecJ∆N34, RecJ∆C76 and the core catalytic domain (which contains amino acid residues 35-498) were purified as fusion proteins with MBP. HiSSB was found to interact with all the truncated forms of HiRecJ suggesting that its core-catalytic domain harbors a site for interaction with SSB.
Taken together, the results presented in this study lead to a better understanding of the structure-function relationships of the UvrD helicase and RecJ exonuclease. Importantly, they provide insights into the interplay between various proteins in DNA MMR pathway. Characterization of repair proteins that are involved in multiple genome fidelity pathways is of fundamental importance to understand repair processes, more so in pathogenic bacteria wherein they regulate mutation rates, which can alter the fitness and virulence of the pathogens.
Publication
Sharma R., and Rao, D.N. (2009). Orchestration of Haemophilus influenzae RecJ exonuclease by interaction with single-stranded DNA-binding protein. J. Mol. Biol., 385, 1375-1396.
|
19 |
Genetic characterisation of Escherichia coli RecN protein as a member of SMC family of proteinsYoussef, M.M., Al-Omair, M.A., Picksley, Stephen M. 06 February 2011 (has links)
Yes / The proteins of SMC family are characterised by having Walker A and B sites. The Escherichia coli RecN protein is a prokaryotic member of SMC family that involved in the induced excision of Tn10 and the repair of the DNA double strand breaks. In this work, the Walker A nucleotide binding site of the E. coli RecN protein was mutated by changing the highly conserved lysine residue 35 to the aspartic acid (D), designated as recN(K35D). Reverse genetics was utilized to delete the entire recN gene (Delta recN108) or introduce the recN(K35D) gene into the E. coli chromosomal DNA. The recN(K35D) cells showed decreasing in the frequency of excision of Tn10 from gal76
|
20 |
Decoding TREX2: Molecular and cellular characterisation of a 3'-5' DNA exonucleaseJeyakumar, Nivya Jane 29 October 2024 (has links)
TREX2, a 3’-5’ exonuclease, plays a pivotal role in cleaving nucleoside monophosphates at the 3’ terminus of ssDNA. Despite previous insights into its biochemical functions—homodimerisation, DNA binding, and enzymatic activity—the precise biological significance of TREX2 remains elusive. The broad objective of this thesis was to elucidate the physiological function of the 3’-5’ DNA exonuclease TREX2, aiming to deepen our understanding of the cellular mechanisms governed by TREX2. Considering the implications of DNA exonuclease dysregulation in autoimmune disorders, we aimed to explore the potential implications of TREX2 deficiency on immune function. Due to the lack of anti-TREX2 antibodies recognising endogenous TREX2, we worked on overexpression systems. During interphase, GFP-tagged TREX2 predominantly localised to the cytoplasm; however, throughout all stages of mitosis, it accumulated within the nucleus, showing significant colocalisation with chromatin. This suggests a multifaceted role for TREX2 in maintaining chromatin integrity during cell division. Utilising the CRISPR-Cas9 knockout technique, we targeted the TREX2 gene in wildtype HaCaT cells. Our unexpected findings revealed that TREX2 deficiency led to reduced basal type I IFN activity, contrary to the anticipated effect observed with TREX1 deficiency. This suggests that TREX2 plays a crucial role in maintaining the homeostasis of the type I IFN pathway. Moreover, upon stimulation with cGAS- specific agonists, TREX2 knockout HaCaT cells exhibited diminished responsiveness, supporting a positive regulatory function of TREX2 in the cGAS-sensing pathway. Live imaging further demonstrated colocalisation of TREX2 and cGAS with mitotic chromatin, underscoring their collaborative role in cellular dynamics. In conclusion, TREX2 emerges as a crucial player in regulating the type I IFN pathway, influencing immune homeostasis in association with cGAS. These findings pave the way for comprehending the intricate interplay of TREX2 in cellular processes and its implications for immune modulation.
|
Page generated in 0.0634 seconds