• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la dynamique et de la physique statistique de modèles d'ADN non-linéaires à la dénaturation thermique

Buyukdagli, Sahin 03 October 2007 (has links) (PDF)
Ce travail a porté sur l'étude théorique de modèles d'ADN, afin de mieux caractériser le processus de dénaturation thermique. Nous avons proposé trois modèles d'ADN basés sur des énergies d'empilement finies et dépendantes de la séquence, qui reproduisent très bien les résultats expérimentaux. Nous avons ensuite étudié l'amplification des fluctuations de température de l'ADN à la dissociation et mis en évidence une dépendance en 1/f du spectre des fluctuations. Nous avons également effectué une étude complète du comportement critique des modèles d'ADN à la limite thermodynamique : nous avons calculé les exposants critiques, démontré quantitativement la discontinuité de la transition et montré que deux lois d'échelle sur quatre ne sont pas vérifiées. Enfin, nous avons analysé les effets de finitude de taille sur la dénaturation de l'ADN et testé les hypothèses de la théorie de finite size scaling. Les études en cours portent sur l'effet du désordre sur la transition de dénaturation.
2

Un modèle à criticalité auto-régulée de la magnétosphère terrestre

Vallières-Nollet, Michel-André January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
3

Un modèle à criticalité auto-régulée de la magnétosphère terrestre

Vallières-Nollet, Michel-André January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
4

Répétitions dans les mots et seuils d'évitabilité

Vaslet, Elise 23 June 2011 (has links)
Nous étudions dans cette thèse différents problèmes d'évitabilité des répétitions dans les mots infinis. Soulevée par Thue et motivée par ses travaux sur les mots sans carrés, la problématique s'est développée au cours du XXe siècle, et est aujourd'hui devenue un des grands domaines de recherche en combinatoire des mots. En 1972, Dejean proposa une importante conjecture, dont la validation étape par étape s'est terminée récemment (2009). La conjecture concerne le seuil des répétitions d'un alphabet, i.e., la borne inférieure des exposants évitables sur cet alphabet. La notion de seuil, comme frontière entre évitabilité et non-évitabilité d'un ensemble donné de mots, est le fil directeur de nos travaux. Nous nous intéressons d'abord à une généralisation du seuil des répétitions (nous donnons des encadrements de sa valeur). Cette notion permet d'ajouter, pour décrire l'ensemble des répétitions à éviter, au paramètre de l'exposant, celui de la longueur des répétitions. Puis, nous étudions des problèmes d'existence de mots dans lesquels, simultanément, certaines répétitions sont interdites et d'autres sont forcées. Nous répondons, pour l'alphabet ternaire, à la question : quels réels sont l'exposant critique d'un mot infini sur un alphabet fixé? Nous introduisons ensuite une notion de haute répétitivité, et établissons une description partielle des couples d'exposants paramètrant une double contrainte de haute répétitivité et d'évitabilité. Pour finir, nous utilisons des résultats et techniques issus de ces problématiques pour résoudre une question de coloration de graphes : nous introduisons un seuil des répétitions, calqué sur celui connu pour les mots, et donnons sa valeur pour deux classes de graphes, les arbres et les graphes de subdivisions. / In this thesis we study various problems on repetition avoidance in infinite words. Raised by Thue and motivated by his work on squarefree words, the topic developed during the 20th century, and has nowadays become a principal area of research in combinatorics on words. In 1972, Dejean proposed an important conjecture whose verification in steps was completed recently (2009). The conjecture concerns the repetition threshold for an alphabet, i.e., the infimum of the avoidable exponents for that alphabet. The notion of threshold as a borderline between avoidability and unavoidability for a given set of words is the guiding line of our work. First, we focus on a generalization of the repetition threshold. This concept allows us to include, in addition to the exponent, the length of the repetitions as a parameter in the description of the set of repetitions to avoid. We obtain various bounds in that respect. We then study existence problems for words in which simultaneously some repetitions are forbidden, and others are forced. For the ternary alphabet, we answer the question: what real numbers are the critical exponent of some infinite word over a given alphabet? Also, we introduce a notion of highly repetitive words and give a partial description of the pairs of exponents which parameterize the existence of words both highly repetitive and repetition-free. Finally, we use results and techniques stemming from those problems to solve a question on graph colouring: we introduce a repetition threshold adapted from the thresholds we know for words, and give its value for two classes of graphs, namely, trees and subdivision graphs.
5

Exposants de Lyapunov et potentiel aléatoire / Lyapunov exponents and random potential

Le, Thi Thu Hien 02 June 2015 (has links)
Dans le cadre de cette thèse, nous nous intéressons à ”l’exposant de Lyapu-nov” pour deux modèles en milieu aléatoire : la marche aléatoire en potentiel aléatoire, le mouvement brownien en potentiel poissonnien.Dans la première partie de la thèse (chapitre II), on étudie une marche aléatoire dans un potentiel aléatoire donné par une famille de variables aléa¬toires i.i.d. non-négatives. La continuité des exposants de Lyapunov par rap¬port à la loi du potentiel est démontrée dans le cas transient, c’est-à-dire en dimension d ≥ 3 ou en dimension 2 pour un potentiel borné inférieurement. On poursuit avec l’étude des exposants critiques : l’exposant de volume ξ et l’exposant de fluctuation X. On obtient l’une des inégalités suggérée par la conjecture de KPZ sous une condition de courbure de la forme asymptotique. Les exposants de Lyapunov jouent un rôle important dans cette étude.La deuxième partie de la thèse (chapitre III) est surtout consacrée à l’étude du brownien dans un potentiel aléatoire de longue portée. On débute cependant par un potentiel classique à portée finie. Sznitman (1987-1998) a étudié plusieurs aspects de ce modèle. Un premier résultat de cette partie est la continuité des exposants de Lyapunov par rapport au paramètre du pro¬cessus de Poisson. On étudie ensuite le modèle proposé par Lacoin (2012) qui est un modèle avec un potentiel à longue portée. Il a obtenu des estimations des exposants critiques sensiblement différentes de celles de Wüthrich (1998) pour le modèle de Sznitman. Dans cette thèse, on poursuit l’étude du modèle de Lacoin. On montre l’existence des exposants de Lyapunov, le théorème de la forme limite et une estimation de grandes déviations. / In this thesis, we are interested in Lyapunov exponent for two models in random media : random walk in random potential, Brownian motion in Poisson potential.In the first part (chapter II), we study a random walk in a random potential given by a family of i.i.d random non-negative variables. The continuity of Lyapunov exponents with respect to the law of potential is shown in the case transient, that is, in the dimension d ≥ 3 or in the dimension d = 2 for a lower bounded potential. Next, we consider the critical exponents : the exponent of volume ξ and the exponent of fluctuation X. We give an inequality suggested by the KPZ conjecture under a condition of asymptotic form. Lyapunov exponents play an important role in this work.The second part (chapter III) is mainly devoted to the study Brownian motion in a long-range random potential. However, we begin with a classical finite-range potential. Sznitman (1987-1998) investigated several aspects of this model. The first result of this part is the continuity of the Lyapunov exponents with respect to the parameter of the Poisson process. Then, we study the model proposed by Lacoin (2012) which is a long-range potential model. He obtained some estimations of critical exponents that are significantly different from those of Wüthrich (1998) for the model of Sznitman.In this thesis, we pursue the study of Lacoin model. We show the existence of Lyapunov exponents, the shape limit theorem and an estimation of large deviations

Page generated in 0.0833 seconds