131 |
Dynamique dans les fluides quantiques : Etude des excitations collectives dans un liquide de Fermi 2D / Dynamics in quantum fluid : Study of collective excitations in a bidimensional Fermi liquidSultan, Ahmad 25 May 2012 (has links)
L'4He et l'3He sont des systèmes modèles pour comprendre les propriétés quantiques de la matière fortement corrélée. C'est pour cette raison que plusieurs études ont été consacrées à la compréhension de leur dynamique. A basses températures où les effets quantiques jouent un rôle essentiel, les excitations élémentaires dans l'4He sont décrites par un mode collectif d'excitations: phonon-roton. Par contre pour un système d'3He la description est plus complexe, le spectre d'excitation a deux composantes: un mode collectif (zéro-son) et un continuum d'excitations incohérentes de type particule-trou. Les deux sont bien décrites par la théorie de Landau des liquides de Fermi qui trouve sa validité pour des petits vecteurs d'onde. Jusqu'à présent, on supposait que la dynamique dans les liquides de Fermi à vecteurs d'onde élevés était essentiellement incohérente. Cette thèse porte sur l'exploration, par diffusion inélastique de neutrons, des excitations collectives dans l'3He liquide 2D adsorbé sur un substrat de graphite. Un tel travail expérimental requiert trois ingrédients essentiels : un réfrigérateur à dilution afin de travailler à basses températures, un spectromètre temps de vol afin de mesurer le facteur de structure dynamique du système et un substrat solide (graphite exfolié ZYX) pour la préparation de films d'3He-2D par physisorption. Nos expériences sur ces films d'3He déposés en deuxième couche sur de l'4He solide adsorbé sur le graphite nous ont permis de faire les observations suivantes : à petit vecteur d'onde, le zéro-son est plus proche de la bande particule-trou que celui observé dans le cas de l'3He massif, tandis qu'à fort vecteur d'onde le mode collectif entre dans le continuum et réapparait de l'autre côté. Cette nouvelle branche, observée pour la première fois, est aujourd'hui décrite par la théorie dynamique à N-corps développée par nos collaborateurs de l'université Johannes Kepler de Linz, Autriche. Au cours de ce travail de thèse plusieurs techniques expérimentales ont été développées, en particulier, un réfrigérateur à dilution sans fluide cryogénique robuste adapté à des expériences de diffusion neutronique. Son optimisation a permis de réduire le temps de refroidissement de ce type de réfrigérateurs. / 4He and 3He are model systems for understanding quantum properties of strongly interacting matter. For this reason many studies have been devoted for the understanding of their dynamics. At low temperatures at which quantum effects play an essential role, the elementary excitations in 4He are described by a phonon-roton collective mode. For 3He, the physical description is more complicated, the spectrum has two components: collective excitations (zero-sound) and incoherent particle-hole excitations. Both are described by Landau's theory of Fermi liquids which is valid at low wave vectors. So far, it was thus believed that the dynamics at high wave vectors is essentially incoherent. This thesis is mainly concerned by exploring the collective excitations of a two dimensional 3He film adsorbed on graphite, using inelastic neutron scattering. Such an experiment has three main requirements: a dilution refrigerator in order to work at low temperatures, a time of flight spectrometer for measuring the dynamical structure factor of 3He and a solid substrate (exfoliated graphite ZYX) to obtain a two dimensional film by physical adsorption. Our investigations of the dynamics in two-dimensional 3He adsorbed on graphite preplated with 4He films have revealed important features: At low wave-vectors, the zero-sound mode is considerably depressed compared to bulk 3He. At higher wave vectors, the collective excitations branch enters the particle-hole continuum, and reappears at the lower energy branch of the continuum. This new branch, observed for the first time, is described by the dynamic many-body theory developed by our collaborators from Johannes Kepler University, Linz, Austria. During this work several low temperature techniques have been developed, in particular a robust, cryogen-free dilution refrigerator adapted to the demanding conditions of a neutron scattering experiments. Due to its efficient design, the cooling time has been considerably reduced compared to that of refrigerators of the same type developed in the past.
|
132 |
Detecção Direta e Indireta de Matéria Escura em Teorias de GaugeQueiroz, Farinaldo da Silva 04 February 2013 (has links)
Made available in DSpace on 2015-05-14T12:14:07Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 9808595 bytes, checksum: 235eec9737496afa4dfbdf1feafbc21f (MD5)
Previous issue date: 2013-02-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The Dark matter (DM) problem constitutes a key question at the interface among Particle Physics, Astrophysics and Cosmology. The observational data which have been accumulated in the last years point to an existence of non baryonic amount of DM. Since the Standard Model (SM) does not provide any candidate for such non-baryonic DM, the evidence of DM is a major indication for new physics beyond the SM. We will study in this work one of the most popular DM candidates, the so called WIMPs (Weakly Interacting Massive Particles) from a direct and indirect detection perspective. In order to approach the direct and indirect dection of DM in the context of Particle Physics in a more pedagogic way, we will begin our discussion talking about a minimal extension of the SM. Later we will work on the subject in a 3-3-1 model. Next, we will study the role of WIMPs in the Big Bang Nucleosynthesis. Lastly, we will look for indirect signals of DM, by looking for gamma-ray excess observed by the NASA Satelite, called Fermi-LAT, in the Galactic Center. Through an analyses of the data events observed by Fermi-LAT and some background models, we will constrain the annihilation cross section-mass relation. As a result of this PhD 9 articles have been done. Two of them are still under the publication process. / O problema da matéria escura (ME) constitui uma questão chave na interface entre física de partículas, astrofísica e cosmologia. O acúmulo de dados observacionais nos últimos anos
apontam para uma enorme quantidade de ME não bariônica. Uma vez que o Modelo Padrão (MP), não fornece um candidato para este tipo de matéria, a evidência de ME é uma forte
indicação de física nova, além do MP. Estudaremos neste trabalho um dos candidatos à ME mais populares, os chamados WIMPS (partículas massivas que interagem fracamente) sob o ponto de vista de detecção direta e indireta de ME. Para que possamos abordar os meios de detecção direta e indireta de ME no contexto de Física de Partículas de forma didática, iniciaremos nossa discussão apresentando uma extensão mínima do MP. Posteriormente trataremos do assunto
no contexto de um modelo 3-3-1. Adiante verificaremos qual o papel da ME no cenário da Nucleossíntese Primordial. Por ´ultimo procuraremos por sinais indiretos de ME, na busca por
excessos em raios gama observados pelo satélite da NASA, chamado Fermi-LAT, no centro da nossa galáxia. Através de uma análise dos eventos observados pelo Fermi-LAT e de alguns
modelos de background astrofísico iremos impor vínculos com relação à massa e seção de choque de aniquilação.
Ao longo desse doutorado foram publicados 9 artigos. Um destes ainda sob o processo de publicação.
|
133 |
Mikrostruktur und elektrischer Transport von Sr<sub>1-x</sub>Ca<sub>x</sub>RuO<sub>3</sub>-Dünnfilmen – Der Weg zur Aufdeckung des Fermiflüssigkeitgrundzustandes in CaRuO<sub>3</sub> / Microstructur and electrical transport in Sr<sub1-x</sub>Ca<sub>x</sub>RuO<sub>3</sub> thin films – The way of revelation of fermi liquid groundstate in CaRuO<sub>3</sub>Srba, Melanie 20 July 2018 (has links)
No description available.
|
134 |
Cálculos numéricos de sistemas eletrônicos desordenados correlacionados / Numerical calculations in disordered strongly correlated electronic systemsAndrade, Eric de Castro e 16 August 2018 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-16T08:19:56Z (GMT). No. of bitstreams: 1
Andrade_EricdeCastroe_D.pdf: 5537554 bytes, checksum: 1391d5fcc710b5e471f0814a4a6d484f (MD5)
Previous issue date: 2010 / Resumo: Sistemas eletrônicos fortemente correlacionados desordenados possuem dois mecanismos básicos para a localização eletrônica e a subsequente destruição do estado metálico: o de Mott (causado pela interação elétron-elétron) e o de Anderson (causado pela desordem). Nesta tese, estudamos como estes mecanismos competem dentro da fase metálica e também como afetam o comportamento crítico do sistema, empregando uma generalização para o caso desordenado do cenário de Brinkman-Rice para a transição de Mott.
Investigamos os efeitos de desordem fraca e moderada sobre a transição metal-isolante de Mott a T = 0 em duas dimensões. Para desordem sucientemente baixa, a transição mantém sua característica do tipo Mott, na qual temos os pesos de quasipartícula Zi indo a zero na transição e uma forte blindagem da desordem na região crítica. Em contraste com o comportamento encontrado para d = 8 , no nosso caso as flutuações espaciais dos pesos de quasipartícula são fortemente amplificadas próximo à transição de Mott de tal forma que eles adquirem uma distribuição do tipo lei de potência P (Z) ~ Z a-1 ,com a --> 0 na transição. Tal comportamento altera completamente as características desta transição com relação ao caso limpo, e é um indício robusto da emergência de uma fase de Griffiths eletrônica precedendo a transição metal-isolante de Mott, com uma fenomenologia surpreendentemente similar àquela do "ponto fixo de desordem infinita" encontrada em magnetos quânticos.
Uma consequência imediata dessas novas características introduzidas pela desordem é que estados eletrônicos próximos à superfície de Fermi tornam-se mais homogêneos na região crítica, ao passo que estados com maiores energias têm o comportamento oposto: eles apresentam uma grande inomogeneidade precisamente nas vizinhanças da transição de Mott. Sugerimos que uma desordem efetiva dependente da interação é uma característica comum a todos os sistemas de Mott desordenados.
Estudamos também como os efeitos bem conhecidos das oscilações de longo alcance de Friedel são afetados por fortes correlações eletrônicas. Primeiramente, mostramos que sua amplitude e alcance são consideravelmente suprimidos em líquidos de Fermi fortemente renormalizados. Posteriormente, investigamos o papel dos espalhamentos elásticos e inelásticos na presença dessas oscilações. Em geral, nossos resultados analíticos mostram que um papel proeminente das oscilações de Friedel é relegado a sistemas fracamente interagentes.
Abordamos, por m, os efeitos das interações sobre o isolante de Anderson em uma dimensão. Construímos a função de escala ß (g) e mostramos que a escala de "crossover" g *, que marca a transição entre o regime ôhmico e o localizado da condutância, é renormalizada pelas interações. Como consequência, embora não haja a emergência de estados verdadeiramente estendidos, o regime ôhmico de g estende-se agora por uma região consideravelmente maior do espaço de parâmetros. / Abstract: Disordered strongly correlated electronic systems have two basic routes towards localization underlying the destruction of the metallic state: the Mott route (driven by electron-electron interaction) and the Anderson route (driven by disorder). In this thesis, we study how these two mechanisms compete in the metallic phase, and also how they change the critical behavior of the system, within a generalization to the disordered case of the Brinkman-Rice scenario for the Mott transition.
We investigate the effects of weak to moderate disorder on the Mott metal-insulator transition at T = 0 in two dimensions. For sufficiently weak disorder, the transition retains the Mott character, as signaled by the vanishing of the local quasiparticle weights Zi and strong disorder screening at criticality. In contrast to the behavior in d = 8, here the local spatial fluctuations of quasiparticle parameters are strongly enhanced in the critical regime, with a distribution function P(Z) ~ Z a-1 and a --> 0 at the transition. This behavior indicates the robust emergence of an electronic Griffiths phase preceding the MIT, in a fashion surprisingly reminiscent of the " Infinite Randomness Fixed Point" scenario for disordered quantum magnets.
As an immediate consequence of these new features introduced by disorder, we have that the electronic states close to the Fermi energy become more spatially homogeneous in the critical region, whereas the higher energy states show the opposite behavior: they display enhanced spatial inhomogeneity precisely in the close vicinity to the Mott transition. We suggest that such energy-resolved disorder screening is a generic property of disordered Mott systems.
We also study how well-known effects of the long-ranged Friedel oscillations are affected by strong electronic correlations. We first show that their range and amplitude are signifficantly suppressed in strongly renormalized Fermi liquids. We then investigate the interplay of elastic and inelastic scattering in the presence of these oscillations. In the singular case of two-dimensional systems, we show how the anomalous ballistic scattering rate is conned to a very restricted temperature range even for moderate correlations. In general, our analytical results indicate that a prominent role of Friedel oscillations is relegated to weakly interacting systems.
Finally, we discuss the effects of correlations on the Anderson insulator in one dimension. We construct the scaling function ß(g) and we show that the crossover scaling g*, which marks the transition between the ohmic and the localized regimes of the conductance, is renormalized by the interactions. As a consequence, we show that, although truly extend states do not emerge, the ohmic regime covers now a considerably larger region in the parameter space. / Doutorado / Física da Matéria Condensada / Doutor em Ciências
|
135 |
Determinação do nível de Fermi relativo em ligas metálicas (Au-Pd) com a implantação de átomos de Ar / Determination of relative Fermi energy in metallic alloys (Au-Pd) with the implantation of atoms ArMoreira, William de Oliveira 07 August 2010 (has links)
Orientador: Richard Landers / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-15T20:58:16Z (GMT). No. of bitstreams: 1
Moreira_WilliamdeOliveira_M.pdf: 9448249 bytes, checksum: 3dd42234cee158f2636fa903c68e5819 (MD5)
Previous issue date: 2010 / Abstract: The Fermi Energy of a metal or a metal alloy is an important parameter for defining the energy levels associated with the material. Usually all other energy levels are defined relative to it. Notwithstanding the experimental determination of the absolute Fermi Energy (EF ) of a system is almost impossible.
On the other hand to measure important phenomena such as charge transfer between the elements of a metal alloy, knowledge of changes of the EF are necessary.
In this study we explore the use of chemical shifts derived from X-ray excited photoelectrons and Auger electrons to map changes in the relative EF as a function of concentration for the solid solution AuxPd1-x. First observing the Auger shifts of the Au, analogously to Nascente et al. [4] and then looking at the shifts of the Ar2p line of Ar atoms implanted with low energy into the alloys. Due to the inert nature of Ar atoms it is predicted that these shifts should be related to the changes in the FE of the alloy determined by shifts of the Au XAES lines. It is shown that both methods produce equivalent results, validating the prediction, and possibly indicating that the use of shifts from Ar implanted into a more general class of alloys could be a useful tool for detecting changes in EF in alloys / Mestrado / Física da Matéria Condensada / Mestre em Física
|
136 |
Susceptibilidade magnética de um modelo de Hubbard estendido com interação ao atrativa / Magnetic Susceptibility of an extended Hubbard model with attractive interactionLobo, Cesar de Oliveira 17 January 2012 (has links)
Anomalous properties of the normal state of a strongly correlated electron system described
by an attractive extended Hubbard model are investigated. The equations of motion
of the Green s functions are calculated with the two-pole approximation which gives rise to
quasiparticle renormalized bands. The two-pole approximation leads to a set of correlation
functions. In particular, the antiferromagnetic correlation function h~Si · ~Sji plays an important
role as a source of anomalies in the normal state of the model. The uniform static
magnetic susceptibility as a function of occupation nT and temperature is calculated. At low
temperatures, the susceptibility presents a peak for nT ≃ 0.80. The results suggest that it
is the onset of short range antiferromagnetic correlations, which could be a mechanism for
the pseudogap. The Fermi surface, defined by the spectral function A(ω = 0,~k), is presented
for different dopings. It has been observed that above nT ≃ 0.80 the ordinary Fermi surface
evolves to a hole-pocket with pseudogaps near the antinodal points (0, π) and (π, 0). / Neste trabalho, investigamos certas propriedades anômalas do estado normal de sistemas de elétrons fortemente correlacionados, descrito por um modelo de Hubbard estendido,
com interação atrativa. As equações de movimento das funções de Green são calculadas na aproximação de dois polos que gera às bandas de quasipartículas renormalizadas. A aproximação de dois polos dá origem a um conjunto de funções correlação. Em particular, a função correlação h~Si.~Sji, associadas ás correlações antiferromagnética, desempenha um papel
importante como fonte de anomalias no estado normal do modelo. A susceptibilidade magnética é calculada como função da ocupação nT e da temperatura. Em baixas temperaturas,
a susceptibilidade apresenta um pico para nT∼=0, 80 e é nessa ocupação que as correlações antiferromagnéticas assumem um papel importante responsável pelo surgimento de pseudogaps
na superfície de Fermi. O cálculo do calor específico em função da temperatura mostra uma estrutura de dois picos, um associado ás flutuações de spin e localizado em baixas temperaturas e outro associado á flutuações de cargas localizado em temperaturas mais altas. Verificamos uma relação direta entre o pico, devido ás flutuações de spins e às correlações spin-spin do tipo antiferromagnéticas. A superfície de Fermi definida pela função espectral (A~k,σ(ω)) em ω = 0 é calculada para diferentes ocupações. Foi observado que a partir de nT∼=0, 80 a superfície de Fermi desenvolve pockets centrados no ponto nodal (π 2 , π 2 ) como também pseudogaps nas proximidades dos pontos antinodais (π, 0) e (0, π).
|
137 |
Invariance de Lorentz et Gravité Quantique : contraintes avec des sources extragalactiques variables observées par H.E.S.S. et Fermi-LAT / Lorentz Invariance Violation and Quantum Gravity : constraints from astrophysical observations of extragalactic transient eventsCouturier, Camille 21 October 2014 (has links)
Des modèles de Gravité Quantique (QG) prédisent une violation de l'invariance de Lorentz (LIV), se manifestant par une dispersion de la lumière dans le vide. Si un tel effet existe, des photons d'énergies différentes émis en même temps par une source distante sont détectés sur Terre à des moments différents. Les émissions transitoires à (très) hautes énergies provenant de sources astrophysiques lointaines, comme les sursauts gamma (GRBs) et les blazars sont utilisées pour contraindre cet effet LIV. Cet ouvrage présente les études menées avec deux télescopes gamma majeurs : H.E.S.S. -- pour lequel une étude de la qualité des données étalonnées a été réalisée -- et Fermi-LAT. Les énergies et les temps d'arrivée de photons individuels ont été utilisés pour contraindre le paramètre de dispersion dans le vide ainsi que l'échelle d'énergie E_QG à laquelle des effets LIV peuvent apparaitre. La méthode de maximum de vraisemblance est décrite, avec une étude détaillée des systématiques. Une modification dans le cas de fond non négligeable est appliquée aux données de l'éruption d'un blazar observé par H.E.S.S. : les limites obtenues sur E_QG sont moins contraignantes que les meilleures limites précédentes, mais elles se trouvent à un redshift non couvert à ce jour. Quatre GRBs observés par Fermi-LAT ont aussi été analysés, en déterminant la courbe de lumière de deux manières : ajustements gaussiens et estimation par densité de noyaux. Les meilleures limites sur E_QG pour le cas linéaire/subluminal sont obtenus avec GRB090510 : E_QG,1 > 7,6 E_Planck. Des limites plus robustes, tenant compte des effets intrinsèques à la source, ont également été produites. / Some Quantum Gravity (QG) theories allow for a violation of Lorentz invariance (LIV), manifesting as a dependence on the velocity of light in vacuum on its energy. If such a dependence exists, then photons of different energies emitted together by a distant source will arrive at the Earth at different times. (Very) high energy transient emissions from distant astrophysical sources such as Gamma-ray Bursts (GRBs) and blazars can be used to search for and constrain LIV. This work presents the studies obtained with two leading Gamma-ray telescopes: H.E.S.S. -- for which a study of the quality of the calibrated data was performed -- and Fermi-LAT. The energies and arrival times of individual photons were used to constrain the vacuum dispersion parameter and the energy scale EQG at which QG effects causing LIV may arise. The maximum likelihood method is described, with detailed studies of the systematics. A modification for a non-negligible background is provided and applied to the data of an AGN flare observed by H.E.S.S.: the obtained limits on the QG energy scale are less constraining than the previous best limits obtained with blazars; yet, the new limits lie a redshift range not covered this far. Four bright and quasi background-free GRBs observed by the Fermi-LAT were also analysed, with two different template light curve determinations -- Gaussian fits and Kernel Density Estimates. The best limits on the E_QG scale for the linear/subluminal case are from the shortest burst, GRB090510: E_QG,1 > 7.6 E_Planck. More robust limits, considering the intrinsic effects possibly occurring at the source, were also derived.
|
138 |
Etude des propriétés de transport et d'équilibration de la matière nucléaire dans le domaine de l'énergie de Fermi / Study of the transport and equilibration properties of the nuclear matter in the Fermi energy domainHenri, Maxime 19 October 2018 (has links)
L’équation d’état de la matière nucléaire est un outil primordial dans la description des collisions entreions lourds, mais également dans la description de la formation d’objets ou de phénomènes astrophysiques(structure des étoiles à neutrons, fusion d’étoiles à neutron). Établir l’équation d’état de la matière nucléairerequiert de définir de manière précise les conditions thermodynamiques (densité, température, asymétrie pro-ton/neutron) dans lesquelles le systèmes évolue. Dans ce travail, nous abordons la problématique de l’étatd’équilibration maximal qui est atteint dans les collisions entre ions lourds, en terme d’énergie et d’isospin.Pour cela, nous utilisons la base de données expérimentale du multi-détecteur INDRA construite par lacollaboration au cours de ces 25 dernières années, en nous intéressant plus particulièrement aux collisionscentrales dans le domaine de l’énergie de Fermi, entre 10 et 100 MeV/nucléon. Nous présentons ainsi dansce document, comment à l’aide de simulation dédiées, il nous a été possible de relier le pouvoir d’arrêt de lamatière nucléaire à la section efficace de collision nucléon-nucléon dans la matière nucléaire. Nous apportonségalement des éléments de réponse au regard du transport de l’isospin dans les collisions centrales à l’aidedes rapports isobariques A = 3 construits à partir des tritons et des hélium-3. Ces différents résultats nouspermettent de mettre en avant le nouveau dispositif expérimental mis en place par les collaborations INDRAet FAZIA : le multi-détecteur FAZIA. Ce dernier est le résultat d’une période de recherche et développementde dix ans, ayant abouti à un multi-détecteur embarquant son électronique numérique sous vide, avec desperformances d’identification accrues (mesure de la charge Z et de la masse A jusqu’à Z = 25) par rapportaux multi-détecteurs des générations précédentes. / The nuclear matter equation of the state is an essential tool in the description of heavy ion collisions,but also in the description of the formation of astrophysical objects or phenomena (neutron star structure,neutron stars fusion). Establishing the nuclear matter equation of state requires a proper definition of thethermodynamic conditions (density, temperature, proton/neutron asymmetry) in which the system evolves.In this work, we address the issue of equilibration reached in heavy ion collisions, in terms of energy andisospin. To do this, we use the experimental database of the INDRA array built by the collaboration over thepast 25 years, focusing on central collisions in the Fermi energy domain, between 10 and 100 MeV/nucleon.In this document, we present how, with the help of dedicated simulations, it has been possible to link thestopping power of nuclear matter to the in-medium nucleon-nucleon cross-section. We also provide someanswers regarding isospin transport in central collisions using the isobaric ratios A = 3 based on the tritonsand helium-3 particles. These different results allow us to highlight the new experimental apparatus devel-loped by the INDRA and FAZIA collaborations : the FAZIA array. The latter is the result of a ten-yearperiod of research and development, resulting in an array embedded its digital electronic under vacuum, withincreased identification performance (measurement of the Z charge and A mass up to Z = 25) compared tothe previous generations arrays.
|
139 |
Fermi-surface investigations of rare-earth transition-metal compoundsPolyakov, Andrey 29 April 2013 (has links)
The interplay of partially filled d- or f-electron shells with conduction-band electrons is a key ingredient in new rare-earth transition-metal compounds for the emergence of unusual electronic and magnetic properties. Among which unconventional superconductivity is one of the most studied. Despite many years of intensive experimental investigations and plenty promising theoretical models, unconventional superconductivity still remains hotly debated a very rich topic. One of the fundamental unsolved problems for condensed-matter physicists is the mechanism that causes the electrons to form anisotropic superconductivity.
Since electrons in the vicinity of the Fermi level are primarily responsible for superconductivity, in order to better understand the mechanism giving rise to this phenomenon and the origin of complex forces between correlated electrons, knowledge of the Fermi surface and band selective effective mass is essential. Of the many techniques used to study electronic band-structure properties, measurements of quantum oscillations in the magnetization, so-called de Haas-van Alphen (dHvA) effect, in combination with band-structure calculations is the traditional proven tool for studying Fermi-surface topology and quasiparticle effective mass.
In the present work, electronic structure and Fermi-surface properties of Ybsubstituted heavy fermion superconductor CeCoIn5 and iron based ternary phosphides LaFe2P2 and CeFe2P2 have been investigated by means of dHvA measurements. For these measurements, capacitive cantilever-torque magnetometry was utilized.
In Ce1−xYbxCoIn5, the evolution of the Fermi surface and effective mass was studied as a function of Yb concentration. The observed topology change is consistent with what is expected from the band-structure calculations. For a small Yb concentration, x = 0.1, the band-structure topology and the effective masses remain nearly unchanged compared to CeCoIn5. This contrasts clearly modified Fermi surfaces and light, almost unrenormalized effective masses for x = 0.2 and above. For LaFe2P2 and CeFe2P2, the obtained effective masses are light. Good agreement between the calculated and measured dHvA frequencies was identified only for LaFe2P2. However, for CeFe2P2 strong disagreement was observed. Moreover, different CeFe2P2 single crystals reveal different experimental results. In order to reconcile the results of the dHvA measurements and density-functional-theory calculations more work is necessary.
|
140 |
Novel phases and light-induced dynamics in quantum magnetsSeifert, Urban F. P. 20 December 2019 (has links)
In this PhD thesis, we study the interplay between symmetry-breaking order and quantum-disordered phases in the milieu of frustrated quantum magnets, and further show how the excitation process of long-wavelength (semi-)classical modes in spin-orbit coupled antiferromagnets crucially depends on the nature and interactions of the underlying quantum quasiparticles.
First, we focus on Kitaev's exactly solvable model for a Z2 spin liquid as a building block for constructing novel phases of matter, utilizing Majorana mean-field theory (MMFT) to map out phase diagrams and study occurring phases.
In the Kitaev Kondo lattice, conduction electrons couple via a Kondo interaction to the local moments in the Kitaev model.
We find at small Kondo couplings a fractionalized Fermi liquid (FL*) phase, a stable non-Fermi liquid where conventional electronic quasiparticles coexist with the deconfined excitations of the spin liquid.
The transition between FL* and a conventional Fermi liquid is masked by an exotic (confining) superconducting phase which exhibits nematic triplet pairing, which we argue to be mediated by the Majorana fermions in the Kitaev spin liquid.
We moreover study bilayer Kitaev models, where two Kitaev honeycomb spin liquids are coupled via an antiferromagnetic Heisenberg interaction.
Varying interlayer coupling and Kitaev coupling anisotropy, we find both direct transitions from the spin liquid to a trivial dimer paramagnet as well as intermediate 'macrospin' phases, which can be studied by mappings to effective transverse-field Ising models.
Further, we find a novel interlayer coherent pi-flux phase.
Second, we consider the stuffed honeycomb Heisenberg antiferromagnet, where recent numerical studies suggest the coexistence of collinear Néel order and a correlated paramagnet, dubbed 'partial quantum disorder'.
We elucidate the mechanism which drives the disorder in this model by perturbatively integrating out magnons to derive an effective model for the disordered sublattice.
This effective model is close to a transition between two competing ground states, and we conjecture that strong fluctuations associated with this transition lead to disorder.
Third, we study the generation of coherent low-energy magnons using ultrafast laser pulses in the spin-orbit coupled antiferromagnet Sr2IrO4, inspired by recent pump-probe experiments. While the relaxation dynamics of the system at long time scales can be well described semi-classically, the ultrafast excitation process is inherently non-classical.
Using symmetry analysis to write down the most general coupling between electric field and spin operators, we subsequently integrate out high-energy spin fluctuations to derive induced effective fields which act to excite the low-energy magnon, constituting a generalized 'inverse Faraday effect'.
Our theory reveals a tight relationship between induced fields and the two-magnon density of states.:1 Introduction
1.1 Frustrated antiferromagnets
1.2 Quantum spin liquids
1.3 Fractionalization and topological order
1.4 Spin-orbit coupling
1.5 Outline
I Novel phases by building on Kitaev’s honeycomb model
2 Kitaev honeycomb spin liquid
2.1 Microscopic spin model and constants of motion
2.2 Majorana representation of spin algebra
2.3 Exact solution
2.3.1 Ground state
2.3.2 Correlations and dynamics
2.3.3 Thermodynamic properties
2.4 Z2 gauge structure
2.5 Toric code
2.6 Topological order
2.6.1 Superselection sectors and ground-state degeneracy
2.6.2 Topological entanglement entropy
2.6.3 Symmetry-enriched and symmetry-protected topological phases
3 Mean-field theory
3.1 Generalized spin representations
3.1.1 Parton constructions
3.1.2 SO(4) Majorana representation
3.2 Projective symmetry groups
3.3 Mean-field solution of the Kitaevmodel
3.4 Comparisonwithexactsolution
3.4.1 Spectral properties
3.4.2 Correlation functions
3.4.3 Thermodynamic properties
3.5 Generalized decoupling
3.6 Comparison to previous Abrikosov fermion mean-field theories of the Kitaev model
3.7 Discussion
4 Fractionalized Fermi liquids and exotic superconductivity
in the Kitaev Kondo lattice
4.1 Metals with frustration
4.2 Local-moment formation and Kondo effect
4.2.1 Single Kondo impurity
4.2.2 Kondo lattices and heavy Fermi liquids
4.3 Fractionalized Fermi liquids
4.4 Construction of the Kitaev Kondo lattice
4.4.1 Hamiltonian
4.4.2 Symmetries
4.5 Mean-field decoupling of Kondo interaction
4.5.1 Solution of self-consistency conditions
4.6 Overview of mean-field phases
4.7 Fractionalized Fermi liquid
4.7.1 Results from mean-field theory
4.7.2 Perturbation theory beyond mean-field theory
4.8 Heavy Fermi liquid
4.9 Superconducting phases
4.9.1 Spontaneously broken U(1) phase rotation symmetry
4.9.2 Excitation spectrum and nematicity
4.9.3 Topological triviality
4.9.4 Group-theoretical classification
4.9.5 Pairing glue
4.10 Comparison with a subsequent study
4.11 Discussion and outlook
5 Bilayer Kitaev models
5.1 Model and stacking geometries
5.1.1 Hamiltonian
5.1.2 Symmetries and conserved quantities
5.2 Previous results
5.3 Mean-field decoupling and phase diagrams
5.3.1 AA stacking
5.3.2 AB stacking
5.3.3 σAC stacking
5.3.4 σ ̄AC stacking
5.4 Quantum phase transition in the AA stacking
5.4.1 Perturbative analysis
5.5 Phase transition in the σAC stacking
5.6 Macro-spin phases
5.6.1 KSL-MAC transition: Effective model for Kitaev dimers
5.6.2 DIM-MAC transition: Effective theory for triplon condensation
5.6.3 Macro-spin interactions and series expansion results
5.6.4 Antiferromagnet in the AB stacking
5.7 Stability of KSL and the interlayer-coherent π-flux phase
5.7.1 Perturbative stability of the Kitaev spin liquid
5.7.2 Spontaneous interlayer coherence near the isotropic point
5.8 Summary and discussion
II Partial quantum disorder in the stuffed honeycomb lattice
6 Partial quantum disorder in the stuffed honeycomb lattice
6.1 Definition of the stuffed honeycomb Heisenberg antiferromagnet
6.2 Previous numerical results
6.3 Derivation of an effective model
6.3.1 Spin-wave theory for the honeycomb magnons
6.3.2 Magnon-central spin vertices
6.3.3 Perturbation theory
6.3.4 Instantaneous approximation
6.3.5 Truncation of couplings
6.3.6 Single-ion anisotropy
6.3.7 Discussion of most dominant interactions
6.4 Analysis of effective model
6.4.1 Classical ground states
6.4.2 Stability of classical ground states in linear spin-wave theory
6.4.3 Minimal model for incommensurate phase
6.4.4 Discussion of frustration mechanism in the effective model
6.5 Partial quantum disorder beyond the effectivemodel
6.5.1 Competition between PD and the (semi-)classical canted state
6.5.2 Topological aspects
6.5.3 Experimental signatures
6.6 Discussion
6.6.1 Directions for further numerical studies
6.6.2 Experimental prospects
III Optical excitation of coherent magnons
7 Ultrafast optical excitation of magnons in Sr2IrO4
7.1 Pump-probe experiments
7.2 Previous approaches to the inverse Faraday effect and theory goals
7.3 Sr2IrO4 as a spin-orbit driven Mott insulator
7.4 Spin model for basal planes in Sr2IrO4
7.4.1 Symmetry analysis
7.4.2 Classical ground state and linear spin-wave theory
7.4.3 Mechanism for in-plane anisotropy
7.5 Pump-induced dynamics
7.5.1 Coupling to the electric field: Symmetry analysis
7.5.2 Keldysh path integral
7.5.3 Low-energy dynamics
7.5.4 Driven low-energy dynamics
7.6 Derivation of the induced fields
7.6.1 Perturbation theory
7.6.2 Evaluation of loop diagram
7.6.3 Analytical momentum integration in the continuum limit
7.6.4 Numerical evaluation of effective fields
7.7 Analysis of induced fields
7.7.1 Polarization and angular dependence
7.7.2 Two-magnon spectral features
7.8 Applications to experiment
7.8.1 Predictions for experiment
7.8.2 Magnetoelectrical couplings
7.9 Discussion and outlook
8 Conclusion and outlook
8.1 Summary
8.2 Outlook
IV Appendices
A Path integral methods
B Spin-wave theory
B.1 Holstein-Primakoff bosons
B.2 Linear spin-wave theory
B.2.1 Diagonalization via Bogoliubov transformation
B.2.2 Applicability of linear approximation
B.3 Magnon-magnon interactions
B.3.1 Dyson's equation and 1/S consistency
B.3.2 Self-energy from quartic interactions in collinear states on bipartite lattices
C Details on the SO(4) Majorana mean-field theory
C.1 SO(4) Matrix representation of SU(2) subalgebras
C.2 Generalized SO(4) Majorana mean-field theory for a Heisenberg dimer
(Chapter 3)
C.3 Dimerization of SO(4) Majorana mean-field for the Kitaev model
(Chapter3)
C.4 Mean-field Hamiltonian in the Kitaev Kondo lattice (Chapter 4)
C.5 Example solutions in the superconducting phase for symmetry analysis
(Chapter4)
D Linear spin-wave theory for macrospin phase in the bilayer Kitaev model
(Chapter 5)
D.1 Spin-wave Hamiltonian and Bogoliubov rotation
D.2 Results and discussion
E Extrapolation of the effective couplings for the staggered field h -> 0
(Chapter 6)
E.1 xy interaction
E.1.1 Leadingorder ~ S0
E.1.2 Subleadingorder ~ S^(−1)
E.2 z-Ising interaction
F Light-induced fields by analytical integration (Chapter 7)
F.1 Method
F.2 Results
Bibliography
|
Page generated in 0.0356 seconds