• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 23
  • 14
  • 12
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 164
  • 73
  • 51
  • 45
  • 43
  • 40
  • 38
  • 32
  • 29
  • 27
  • 21
  • 21
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

On the rôle of entanglement in quantum field theory / Über die Rolle von Verschränkung in der Quantenfeldtheorie

Fries, Pascal January 2022 (has links) (PDF)
In this thesis, I study entanglement in quantum field theory, using methods from operator algebra theory. More precisely, the thesis covers original research on the entanglement properties of the free fermionic field. After giving a pedagogical introduction to algebraic methods in quantum field theory, as well as the modular theory of Tomita-Takesaki and its relation to entanglement, I present a coherent framework that allows to solve Tomita-Takesaki theory for free fermionic fields in any number of dimensions. Subsequently, I use the derived machinery on the free massless fermion in two dimensions, where the formulae can be evaluated analytically. In particular, this entails the derivation of the resolvent of restrictions of the propagator, by means of solving singular integral equations. In this way, I derive the modular flow, modular Hamiltonian, modular correlation function, R\'enyi entanglement entropy, von-Neumann entanglement entropy, relative entanglement entropy, and mutual information for multi-component regions. All of this is done for the vacuum and thermal states, both on the infinite line and the circle with (anti-)periodic boundary conditions. Some of these results confirm previous results from the literature, such as the modular Hamiltonian and entanglement entropy in the vacuum state. The non-universal solutions for modular flow, modular correlation function, and R\'enyi entropy, however are new, in particular at finite temperature on the circle. Additionally, I show how boundaries of spacetime affect entanglement, as well as how one can define relative (entanglement) entropy and mutual information in theories with superselection rules. The findings regarding modular flow in multi-component regions can be summarised as follows: In the non-degenerate vacuum state, modular flow is multi-local, in the sense that it mixes the field operators along multiple trajectories, with one trajectory per component. This was already known from previous literature but is presented here in a more explicit form. In particular, I present the exact solution for the dynamics of the mixing process. What was not previously known at all, is that the modular flow of the thermal state on the circle is infinitely multi-local even for a connected region, in the sense that it mixes the field along an infinite, discretely distributed set, of trajectories. In the limit of high temperatures, all trajectories but the local one are pushed towards the boundary of the region, where their amplitude is damped exponentially, leaving only the local result. At low temperatures, on the other hand, these trajectories distribute densely in the region to either---for anti-periodic boundary conditions---cancel, or---for periodic boundary conditions---recover the non-local contribution due to the degenerate vacuum state. Proceeding to spacetimes with boundaries, I show explicitly how the presence of a boundary implies entanglement between the two components of the Dirac spinor. By computing the mutual information between the components inside a connected region, I show quantitatively that this entanglement decreases as an inverse square law at large distances from the boundary. In addition, full conformal symmetry (which is explicitly broken due to the presence of a boundary) is recovered from the exact solution for modular flow, far away from the boundary. As far as I know, all of these results are new, although related results were published by another group during the final stage of this thesis. Finally, regarding relative entanglement entropy in theories with superselection sectors, I introduce charge and flux resolved relative entropies, which are novel measures for the distinguishability of states, incorporating a charge operator, central to the algebra of observables. While charge resolved relative entropy has the interpretation of being a ``distinguishability per charge sector'', I argue that it is physically meaningless without placing a cutoff, due to infinite short-distance entanglement. Flux resolved relative entropy, on the other hand, overcomes this problem by inserting an Aharonov-Bohm flux and thus passing to a variant of the grand canonical ensemble. It takes a well defined value, even without putting a cutoff, and I compute its value between various states of the free massless fermion on the line, the charge operator being the total fermion number. / In dieser Dissertation untersuche ich quantenmechanische Verschränkung mittels Methoden aus Theorie der Operatoralgebren. Genauer gesagt stelle ich eigene Forschung über die Verschränkungseigenschaften des freien Fermions vor. Die Arbeit beginnt mit einer pädagogischen Einführung in algebraische Quantenfeldtheorie und stellt die modulare Theorie nach Tomita und Takesaki, sowie ihre Verbindung zu Verschränkung vor. Darauffolgend stelle ich einen vollständigen Satz an Werkzeugen vor, mit dem Tomita-Takesaki-Theorie für freie fermionische Felder in beliebiger Anzahl von Dimenionen gelöst werden kann. Diese Werkzeuge wende ich dann auf das freie, masselose Dirac-Fermion in zwei Dimensionen an, wo die hergeleiteten Formeln exakt gelöst werden können. Dies beinhaltet insbesondere die Herleitung der Resolvente von Einschränkungen des Propagators mittels der analytischen Lösung singulärer Integralgleichungen. Daraus ergeben sich schließlich der modulare Fluss, der modulare Hamiltonian, der modulare Korrelator, Rényi Verschränkungsentropien, von-Neumann Verschränkungsentropien, relative Verschränkungsentropie und Transinformation für nicht-zusammenhängende Verschränkungsgebiete. Dies alles wird im Vakuum und bei endlicher Temperatur ausgearbeitet, für ein Fermion sowohl auf der Geraden, als auch auf dem Kreis mit (anti-)periodischen Randbedingungen. Einige der Ergebnisse, besipielsweise der modulare Hamiltonian und von-Neumann Verschränkungsentropie, bestätigen Resultate aus bereits existierender Literatur. Die nicht-universellen Lösungen für den modularen Fluss, den modularen Korrelator und die Rényi Verschränkungsentropie dagegen sind neu, insbesondere für den Fall des thermischen Zustandes auf dem Kreis. Zusätzlich demonstriere ich den Einfluss von Rändern der Raumzeit auf Verschränkung und zeige, wie man relative Entropie und Transinformation in Theorien mit Superselektionsregeln definieren kann. Die Ergebnisse bezüglich modularen Flusses in nicht-zusammenhängenden Gebieten lassen sich wie folgt zusammenfassen: Im nicht-entarteten Vakuum ist der modulare Fluss multi-lokal, was bedeutet, dass er Feldoperatoren entlang mehrerer Trajektorien -- eine pro Zusammenhangskomponente der Region -- untereinander vermischt. Dies war bereits vorher bekannt, allerdings folgt es sich hier in expliziter Form aus exakten Lösungen. Ein vollkommen neues Ergebnis ist, dass der modulare Fluss des thermischen Zustandes auf dem Kreis sogar für zusammenhängende Regionen multi-lokal ist: Er mischt Feldoperatoren entlang unendlich vieler, diskret verteilter Trajektorien in der Verschränkungsregion. Im Hochtemperaturgrenzwert befinden sich alle diese Trajektorien, bis auf die lokale, nahe am Rand der Region, wo ihre Amplitude exponentiell gedämpft wird -- es bleibt nur die lokale Lösung. Bei tiefen Temperaturen dagegen sind die Trajektorien dicht in der Region verteilt, sodass sie entweder (bei antiperiodischen Randbedingungen) sich durch destruktive Interferenz gegenseitig aufheben oder (bei periodischen Randbedingungen) durch konstruktive Interferenz einen nicht-lokalen Term erzeugen, der auf das entartete Vakuum zurückgeführt werden kann. Im Falle von Raumzeiten mit Rand zeige ich explizit, wie der Rand Verschränkung zwischen beiden Komponenten des Dirac-Spinors impliziert. Mit zunehmdendem Abstand vom Rand nimmt diese Verschränkung invers quadratisch ab, wie ich quantitativ durch Berechnung der Transinformation zwischen den Komponenten in einem zusammenhängenden Gebiet zeige. Zusätzlich lässt sich die volle konforme Symmetrie der Theorie (die durch den Rand explizit gebrochen wird) aus der exakten Lösung für den modularen Fluss wiederherstellen, indem man den Grenzwert eines weit entfernten Randes betrachtet. Meines Wissens sind alle diese Resultate neu, allerdings wurden während der Fertigstellung dieser Dissertation verwandte Ergebnisse von einer anderen Arbeitsgruppe veröffentlicht. Die letzten Resultate in dieser Arbeit beziehen sich auf die Untersuchung relativer Entropie in Systemen mit Superselektionsregeln. Hier führe ich neue informationstheoretische Maße für die Unterscheidbarkeit von Zuständen ein: Die ladungs- und flussbezogenen relativen Entropien. Beide werden mittels eines Ladungsoperators aus dem Zentrum der Observablenalgebra definiert. Während die ladungsbezogene relative Entropie sich physikalisch als "Unterscheidbarkeit pro Ladungssektor" interpretieren lässt, argumentiere ich, dass sie nur innerhalb eines Regularisierungsschemas physikalisch bedeutsam ist, da die universell unendliche Verschränkung auf kurzen Längenskalen sonst zu Widersrpüchen führt. Flussbezogene relative Entropie dagegen hat dieses Problem nicht: Durch das Hinzufügen eines Aharonov-Bohm-Flusses betrachtet man hier eine lokale Variante des großkanonischen Ensembles, wodurch sie sich auch ohne Regularisierung definieren und berechnen lässt. Ich berechne ihren Wert zwischen verschiedenen Zuständen des freien masselosen Fermions auf der Geraden. Die erhaltene Ladung ist hierbei die Gesamtzahl der Fermionen im System.
32

Novel properties of ferromagnetic p-wave superconductors

Lorscher, Christopher 01 January 2014 (has links)
This thesis investigates the many extraordinary physical properties of the candidate p-wave ferromagnetic superconductors UCoGe and URhGe, and proposes theoretical predictions for p-wave superconductors yet to be discovered. In particular, we carry out angular dependent quantum field theoretical calculations of the thermodynamic H - T phase diagram known as the upper critical field, or more appropriately for ferromagnetic superconductors the upper critical induction, for various p-wave superconducting order parameter symmetries including: The axial Anderson-Brinkman-Morel(ABM) state, the chiral Scharnberg-Klemm (SK) state, and the completely broken symmetry polar state (CBS), as well as for some other states with partially broken symmetry (PBS) superconducting order parameter symmetries. The most notable contribution of the work presented in this thesis is the application of the Klemm-Clem transformations to analytically calculate the full angular and temperature dependencies of the upper critical field for orthorhombic materials, which may prove to be useful to experimentalists in identifying these exotic states of matter experimentally. Second, this work formulates a double spin-split ellipsoidal Fermi surface (FS) model for ferromagnetic superconductors in the normal state, which introduces a field dependence to the effective mass in one crystallographic direction on the dominant Fermi surface and to the chemical potential, and is subsequently applied to the normal state of URhGe to explain theoretically the anomalous specific heat data of Aoki and Flouquet. Extension of this work to understanding the still elusive reentrant high-field superconducting phase of URhGe and the S-shaped upper critical field curve for external magnetic field parallel to the b-axis direction inUCoGe is discussed. Third, this work also presents theoretical fits to the upper critical field data of Kittika et al. for Sr2RuO4 using the helical p-wave states and including Pauli limiting effects of the three components of the triplet pair-spin fixed to the highly conducting layers by strong spin-orbit coupling.
33

Ground States and Behaviors in Correlated Electron Materials

Konic, Alex M. 17 July 2023 (has links)
No description available.
34

Fermion Pairing and BEC-BCS Crossover in Novel Systems

Liao, Renyuan 10 September 2008 (has links)
No description available.
35

The Interplay Between Magnetism and Superconductivity in Strongly Correlated Materials

Hu, Tao 07 October 2009 (has links)
No description available.
36

Majorana Fermions in Synthetic Quasi One-Dimensional Systems: Quantum Computer Driven Simulation Tools

Gayowsky, David 29 September 2022 (has links)
Majorana fermions promise potential applications in quantum computing, superconductivity, and related fields. In this thesis, an analysis of A. Y. Kitaev's “Kitaev Chain”, a quasi-one-dimensional quantum wire in contact with a p-wave superconductor, designed as a model exhibiting unpaired Majoranas, is performed. Described by tunneling of spinless fermions between quantum dots, and formation of Cooper pairs on neighboring dots, Kitaev's chain Hamiltonian serves as a basis for emergent Majorana Zero Modes (zero energy Majorana fermions localized at either end of the chain) and artificial gauges (phases) to appear. By exact diagonalization, energy spectra and wavefunctions of a chain of spinless fermions on discrete quantum dots described by Kitaev's Hamiltonian are generated. By transforming the system into a basis of Majorana fermions and "bond fermions", where Majoranas on neighboring dots are paired, emergent Majorana Zero Modes (MZMs) are found at the ends of the chain. These emergent MZMs are paired in a non-local, zero energy bond fermion, which is found to allow degenerate energy states of the system to occur. Joining the ends of the chain by allowing tunneling and pairing of fermions on end sites, a ring topology is considered, where an "artificial gauge" emerges. This artificial gauge, or phase, causes a phase change on tunneling and Cooper pairing Hamiltonian matrix elements as a result of operator ordering within the Hamiltonian's ring terms. These required operator orderings are derived by comparison of energy spectra of the Kitaev ring in the fermion and bond fermion bases. Matching of calculated energy spectra in the Majorana and fermionic bases is used to confirm the presence of the artificial gauge, where this phase is found to be necessary in order to maintain a consistent energy spectra across the transformation between bases. This analysis is performed in order to understand the concept of Majorana Zero Modes and the emergence of Majorana fermions in 1D chains. By doing so, it is determined what Majorana fermions are, where they come from, and why Majorana Zero Modes are considered to be zero energy. These results contribute to the understanding of Kitaev chains and rings, as well as serve as a starting point for discussions regarding physical implications of the artificial gauge's effect, fermion statistics, and the emergence of Majorana Zero Modes in quasi-one-dimensional systems.
37

MUON SPIN ROTATION STUDIES OF URU2SI2 AND DICHALCOGENIDE SUPERCONDUCTORS

Wilson, Murray Neff 14 June 2018 (has links)
This dissertation details studies of two different material classes: isoelectronically doped URu2Si2, and dichalcogenide superconductors, both of which are primarily studied with the muon spin rotation (μSR) experimental technique. The objective of the work on URu2Si2 was to probe how the low temperature "hidden order" state, which transitions into antiferromagnetism under hydrostatic pressure, evolves when perturbed by isoelectronic chemical doping. μSR measurements of iron doped URu2Si2, which produces positive chemical pressure, show long range magnetic order. Neutron diffraction measurements demonstrate that this magnetic order is antiferromagnetism, and both muon spin rotation and neutron scattering suggest that the magnetic moment increases with increasing doping in contrast to the pressure independent moment seen in the pressure induced antiferromagnetic state of URu2Si2. Inelastic neutron scattering measurements show a significantly larger commensurate gap at the (1 0 0) position compared to that seen in the pressure induced antiferromagnetic phase. Osmium doping, which gives negative effective chemical pressure, shows similar behaviour in μSR measurements to the iron doped samples. This suggests that these samples are also antiferromagnetic and that the evolution from hidden order to antiferromagnetism is not solely caused by changes in the lattice size. This is further supported by μSR measurements on germanium doped samples that do not show magnetic order despite giving similar negative chemical pressure to the osmium doped samples. Work on the dichalcogenide superconductors involved using transverse field μSR to measure the temperature dependence of the magnetic penetration depth of two different materials, Pt0.05Ir0.95Te2 and PbTaSe2. The μSR data on Pt0.05Ir0.95Te2 were supplemented by magnetometry measurements of the penetration depth. Zero field μSR measurements were also performed on PbTaSe2, and rule out any time reversal symmetry breaking field greater than 0.05 G. These measurements all suggest that both materials are fully gapped superconductors. / Thesis / Doctor of Philosophy (PhD)
38

Investigation of superconducting order parameters in heavy-fermion and low-dimensional metallic systems under pressure

Miclea, Corneliu Florin 19 July 2006 (has links) (PDF)
The understanding of new emerging unconventional ground states is a great challenge for experimental and theoretical solid-state physicists. New ground states are developing, where different energy scales compete, leading to a high sensitivity of the system to external tuning parameters like doping, pressure or magnetic field. The exploration of superconductivity proved to be a fascinating and challenging scientific undertaking. Discovered by H. Kammerlingh Onnes in 1911, prior to the development of the quantum theory of matter, superconductivity was defying a microscopic theory for more than four decades until the BCS theory was formulated in 1957 by J. Bardeen, L. N. Cooper and J. R. Schrieffer. Superconductivity of most of the simple metals or metallic alloys is well described within the frame of the BCS scenario, however, in the last thirty years numerous new superconducting materials were found to exhibit exotic properties not accounted for by the BCS theory. Among them are included the high-Tc compounds, the heavy-fermion superconductors and as well the organic superconductors. It was the purpose of this work to probe different facets of superconductivity in heavy-fermion and in low-dimensional metallic compounds. This dissertation is divided into six chapters. After this introduction, in Chapter 1 we will outline the basic theoretical concepts later needed for the analysis of the experimental results. In Chapter 2 we briefly introduce the experimental techniques with a special focus on the new pressure cells developed during this thesis and used for the measurements presented in Chapters 3 to 5. In Chapter 3 the possible realization of the inhomogeneous superconducting FFLO state in CeCoIn5 is studied by specific heat measurements under hydrostatic pressure, while in Chapter 4 the results of AC specific heat experiments on UBe13 under uniaxial pressure are presented. The ambient pressure properties as well as results obtained by resistivity measurements under hydrostatic pressure on the one-dimensional metallic compounds TlxV6S8 are discussed in Chapter 5. At the end, Chapter 6 summarizes and concludes this thesis.
39

Classical & quantum dynamics of information and entanglement properties of fermion systems

Zander, Claudia 13 February 2012 (has links)
Due to their great importance, both from the fundamental and from the practical points of view, it is imperative that the various facets of the concepts of information and entanglement are explored systematically in connection with diverse physical systems and processes. These concepts are at the core of the emerging field of the Physics of Information. In this Thesis I investigate some aspects of the dynamics of information in both classical and quantum mechanical systems and then move on to explore entanglement in fermion systems by searching for novel ways to classify and quantify entanglement in fermionic systems. In Chapter 1 a brief review of the different information and entropic measures as well as of the main evolution equations of classical dynamical and quantum mechanical systems is given. The conservation of information as a fundamental principle both at the classical and quantum levels, and the implications of Landauer's theorem are discussed in brief. An alternative and more intuitive proof of the no-broadcasting theorem is also provided. Chapter 2 is a background chapter on quantum entanglement, where the differences between the concept of entanglement in systems consisting of distinguishable subsystems and the corresponding concept in systems of identical fermions are emphasized. Different measures of entanglement and relevant techniques such as majorization, are introduced. To illustrate some of the concepts reviewed here I discuss the entanglement properties of an exactly soluble many-body model which was studied in paper (E) of the publication list corresponding to the present Thesis. An alternative approach to the characterization of quantum correlations, based on perturbations under local measurements, is also briefly reviewed. The use of uncertainty relations as entanglement indicators in composite systems having distinguishable subsystems is then examined in some detail. Chapter 3 is based on papers (A) and (B) of the list of publications. Extended Landauer-like principles are developed, based amongst others on the conservation of information of divergenceless dynamical systems. Conservation of information within the framework of general probabilistic theories, which include the classical and quantum mechanical probabilities as particular instances, is explored. Furthermore, Zurek's information transfer theorem and the no-deleting theorem are generalized. Chapter 4 is based on articles (C) and (D) mentioned in the publication list, and investigates several separability criteria for fermions. Criteria for the detection of entanglement are developed based either on the violation of appropriate uncertainty relations or on inequalities involving entropic measures. Chapter 5 introduces an approach for the characterization of quantum correlations (going beyond entanglement) in fermion systems based upon the state disturbances generated by the measurement of local observables. Chapter 6 summarizes the conclusions drawn in the previous chapters. The work leading up to this Thesis has resulted in five publications in peer reviewed science research journals. / Thesis (PhD)--University of Pretoria, 2012. / Physics / unrestricted
40

Electrical resistivity of YbRh2Si2 and EuT2Ge2 (T = Co, Cu) at extreme conditions of pressure and temperature

Dionicio, Gabriel Alejandro 31 January 2007 (has links) (PDF)
This investigation address the effect that pressure, p, and temperature, T, have on 4f-states of the rare-earth elements in the isostructural YbRh2Si2, EuCo2Ge2, and EuCu2Ge2 compounds. Upon applying pressure, the volume of the unit cell reduces, enforcing either the enhancement of the hybridization of the 4f-localized electrons with the ligand or a change in the valence state of the rare-earth ions. Here, we probe the effect of a pressure-induced lattice contraction on these system by means of electrical resistivity, from room temperature down to 100 mK. At ambient pressure, the electrical resistivity of YbRh2Si2 shows a broad peak at 130 K related to the incoherent scattering on the ground state and the excited crystalline electrical field (CEF) levels. At T_N = 70 mK, YbRh2Si2 undergoes a magnetic phase transition. Upon applying pressure up to p_1 = 4 GPa , T_N increases monotonously while the peak in the electrical resistivity is shifted to lower temperatures. For p < p_1 a different behavior is observed; namely, T_N depends weakly on the applied pressure and a decomposition of the single peak in the electrical resistivity into several shoulders and peaks occurs. Above p_2 = 9 GPa, the electrical resistivity is significantly reduced for T < 50 K and this process is accompanied by a sudden enhancement of T_N. Thus, our results confirm the unexpected behavior of the magnetization as function of pressure reported by Plessel et al. The small value of the magnetic ordering temperature for p < p_2 and the strength of the mechanism that leads to the peaks and shoulders in the electrical resistivity suggest that the f-electrons are still screened by the conduction electrons. Therefore, the observed behavior for pressures lower than p_2 might be a consequence of the competition of two different types of magnetic fluctuations (seemingly AFM and FM). Furthermore, the results suggest that a sudden change of the CEF scheme occurs at pressures higher than p_1, which would have an influence on the ground state. Additionally, a comparison of the pressure dependent features in the electrical resistivity of YbRh2Si2 with similar maxima in other isostructural YbT2X2 (T = transition metal; X = Si or Ge) compounds was performed. For the comparison, a simple relation that considers the Coqblin-Schrieffer model and the hypothesis of Lavagna et al. is proposed. A systematic behavior is observed depending on the transition metal; namely, it seems that the higher the atomic radii of the T-atom the smallest the pressure dependence of the maximum in the electrical resistivity, suggesting a weaker coupling of localized- and conduction-electrons. It is also observed that an increase in the density of conduction electrons reduces the pressure dependence of the characteristic Kondo temperature. The mechanism responsible for the sudden enhancement of T_N in YbRh2Si2 at about p_2 is still unknown. However two plausible scenarios are discussed. The Eu-ions in EuCo2Ge2 and EuCu2Ge2 have a divalent character in the range 100 mK < T < 300 K. Therefore, these systems order magnetically at T_N = 23 K and T_N = 12 K, respectively. The studies performed on EuCo2Ge2 and EuCu2Ge2 as a function of pressure suggest that a change to a non-magnetic trivalent state of the Eu-ions might occur at zero temperature for pressures higher than 3 GPa and 7 GPa, respectively. A common and characteristic feature on EuCo2Ge2 and EuCu2Ge2 is the absence of a clear first order transition from the divalent to the trivalent state of the Eu-ions at finite temperature for p > 3 GPa and for p > 7 GPa, respectively. In other isostructural Eu-based compounds, a discontinuous and abrupt change in the thermodynamic and transport properties associated to the valence transition of the Eu-ions is typically observed at finite temperatures. In contrast, the electrical resistivity of EuCo2Ge2 and EuCu2Ge2 changes smoothly as a function of pressure and temperature. The analysis of the the electrical resistivity of EuCo2Ge2 suggest that a classical critical point might be close to the AFM-ordered phase, being a hallmark of this compound. The overall temperature dependence of the the electrical resistivity of EuCo2Ge2 changes significantly at 3 GPa; therefore, it seems that the system suddenly enters to a T-dependent valence-fluctuating regime. Additionally, the pressure-dependent electrical-resistivity isotherms show a step-like behavior. Thus, it is concluded that discontinuous change of the ground state might occur at 3 GPa. The electrical resistivity of EuCu2Ge2 at high pressure is characterized by a negative logarithmic T-dependence in the pressure range 5 GPa < p < 7 GPa for T > T_N and by a broad peak in the pressure dependent residual resistivity, whose maximum is located at 7.3 GPa. The first behavior resembles the incoherent scattering process typical for an exchange coupling mechanism between the localized electrons and the ligand. This and the peak effect in the local 4f susceptibility observed in NMR measurements are consistent with such a coupling mechanism. Thus, it would be for the first time that a dense Eu-based compound like EuCu2Ge2 show such a behavior. Combining the results of the experiment performed at high pressures on EuCu2Ge2 with the studies performed in the EuCu2(Ge1-xSix)2 series, a crossover from an antiferromagnetically ordered state into a Fermi-liquid state for pressures higher than 7.3 GPa may be inferred from the analysis. Therefore, it may be possible that the sudden depopulation of 4f-level occur mediated by quantum fluctuation of the charge due to a strong Coulomb repulsion between the localized-electrons and the ligand. This phenomenon would explain the broad peak in the residual resistivity. To our knowledge, this would be the first Eu-based compound, isostructural to ThCr2Si2, that show such a transition as function of pressure at very low temperatures.

Page generated in 0.0445 seconds