• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 20
  • 19
  • 15
  • 14
  • 10
  • 9
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 268
  • 268
  • 124
  • 66
  • 44
  • 43
  • 38
  • 37
  • 32
  • 32
  • 31
  • 29
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Herstellung von Nanocompositen aus Cellulose und präzipitiertem Calciumcarbonat zur Festigkeitssteigerung in Papier

Lutsch, Birgit 07 February 2022 (has links)
In dieser Studie wird ein neuer Ansatz zur Herstellung von Hybridfüllstoffen – Compositen aus Cellulose und präzipitiertem Calciumcarbonat – zur Festigkeitssteigerung in Papier sowie für Anwendungen über die Papierherstellung hinaus (wie bspw. Kunststoff sowie Baufaserplatten, Filter oder Filterhilfsmittel und Foamforming-Produkte) vorgestellt. Das Hauptaugenmerk lag dabei auf der Fällung von CaCO3 über Doppelaustauschreaktion mit Calciumhalogeniden (CaCl2) und Alkalimetallcarbonaten (vorwiegend Na2CO3) auf chemisch und mechanisch modifizierte Faserstoffe in einem Doppelschneckenextruder. Die Hypothese, die dieser Doktorarbeit zugrunde lag, war, dass es möglich ist, CaCO3 durch die reaktive Extrusion direkt auf die Fasern – durch deren veränderte Ladungseigenschaften nach Modifizierung – auszufällen und damit eine irreversible Anlagerung des mineralischen Füllstoffs an den cellulosischen Faserstoff zu generieren. Dabei erwies sich die reaktive Extrusion als vielversprechende Methode sowohl für die Erzeugung carboxymethylierter und fibrillierter Faserstoffe (CMFC) als auch für die in-situ Fällung von CaCO3 direkt auf die CMFC zur Herstellung faserarmierter Füllstoffe mit einer optimierten Füllstoffretention. Darüber hinaus wurde untersucht, inwiefern sich durch die Einstellung der Reaktions- und Prozessparameter die CaCO3-Morphologie, Kristallform und -größe steuern und damit die resultierenden Composite-Eigenschaften einstellen lassen. Zudem konnte durch Anwendungsversuche der neuartigen Hybridfüllstoffe das Potenzial eben dieser in variierenden Endanwendungen – besonders jedoch zur Festigkeitssteigerung in Papier sowie zur Verbesserung des Eigenschaftsprofils in Polypropylen – verdeutlicht werden. Die Untersuchungen zeigten, dass die funktionellen Faserstoffeigenschaften einen entscheidenden Einfluss auf die CaCO3-Fällung – sowohl auf die Kristallisations- als auch Umwandlungsprozesse – und damit auf die resultierenden Hybridfüllstoff-Eigenschaften haben. Besonders wird die Keimbildungsrate durch die hydrogelartige Oberfläche der CMFC reduziert und das Kristallwachstum gefördert, sodass vor-wiegend große CaCO3-Kristalle (≥ 3 µm) an bzw. in der hydrogelartigen Faseroberfläche entstehen. Ebenso konnte gezeigt werden, dass sich auch bei intensiver mechanischer Behandlung bis zu 89 wt.-% des ausgefällten CaCO3 nicht von der CMFC lösen und demnach irreversibel angelagert sind. Dies führt bei der Laborblattbildung zu einer Verbesserung der CaCO3-Retention von 62 wt.-% auf 80 wt.-% bei Kurzfaserzellstoff (BEKP) bzw. von 38 wt.-% auf 91 wt.-% bei Langfaserzellstoff (NBSK). Darüber hinaus konnte gezeigt werden, dass die Hybridfüllstoffe zu einer Festigkeitssteigerung (Tensile Index) um das 1,5-fache bei NBSK- (16,4 Nm/g) und um das 2,1-fache bei BEKP-Laborblättern (26,2 Nm/g) beitragen. Diese Doktorarbeit verdeutlicht, dass die reaktive Extrusion ein innovatives und zukunftsfähiges Verfahren zur Composite-Herstellung ist und die neuartigen Hybridfüllstoffe Potenzial für den vielseitigen Einsatz in variierenden Materialien versprechen.:Abstract I Zusammenfassung II Danksagung III Eidesstattliche Erklärung IV Abbildungsverzeichnis VIII Abkürzungsverzeichnis XIV Formelzeichen und Indizes XVIII Formelverzeichnis XXII Normen- und Methodenverzeichnis XXIII Tabellenverzeichnis XXVI 1 Einleitung 1 2 Allgemeiner Aufbau von Zellstofffasern 3 2.1 Holzquelle Wald 3 2.2 Anatomie des Holzes 3 2.3 Morphologische Eigenschaften und chemische Zusammensetzung der Zellwand 5 2.4 Chemischer Aufbau des Holzes 6 3 Von der Zellstofffaser zur Nanocellulose 11 3.1 Nanocellulosetypen 11 3.2 Mikrofibrillierte Cellulose – MFC 14 3.3 Einsatzmöglichkeiten für MFC 14 3.3.1 Allgemeine Einsatzmöglichkeiten von MFC 14 3.3.2 Einsatz von MFC in der Papierherstellung 15 3.4 Herstellung von MFC 16 3.4.1 Allgemeine Herstellung von MFC 16 3.4.2 Herstellung von MFC im Extruder 18 3.5 Chemische Modifizierung/Vorbehandlung von Faserstoffen 20 3.5.1 Carboxymethylcellulose – CMC 20 3.5.2 TEMPO-Oxidierte Cellulose 22 3.5.3 Carboxymethylierte, fibrillierte Cellulose – CMFC 24 4 Theorie der Fällung und Kristallisation 25 4.1 Fällung und Kristallisation im Allgemeinen 25 4.2 Keim- und Partikelbildung 29 4.2.1 Änderung der freien Enthalpie bei der Keim- und Partikelbildung 29 4.2.2 Löslichkeit und Übersättigung 30 4.2.3 Keimbildungskinetik 34 4.2.4 Keimbildungs- und Wachstumsrate 37 4.3 Kristallwachstum 39 4.3.1 Diffusionskontrolliertes und einbaulimitiertes Wachstum 39 4.3.2 Modellansätze von LaMer und Ostwald 41 4.4 Mechanismen zur Beeinflussung von Fällungsreaktionen 43 5 Calciumcarbonat – Eigenschaften, Herstellung, Einsatz 45 5.1 Stoffsystem Calciumcarbonat 45 5.1.1 Eigenschaften und Vorkommen 45 5.1.2 Modifikationen und Kristallformen 47 5.1.3 Bildung der wasserfreien Phasen – Calcit, Aragonit und Vaterit 50 5.1.4 Möglichkeiten zur Steuerung der Modifikationen und Kristallformen 55 5.2 Herstellung von Calciumcarbonat 57 5.2.1 Allgemein 57 5.2.2 Natürliches Calciumcarbonat – GCC 58 5.2.3 Synthetisches Calciumcarbonat – PCC 59 5.2.3.1 Fällung aus Kalkmilch 59 5.2.3.2 Doppelaustauschreaktion 60 5.2.3.3 Weitere technische Fällungs-Methoden 61 5.3 Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.1 Allgemeine Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.2 PCC als funktioneller Füllstoff in der Papierherstellung 63 6 Calciumcarbonat-Fällung an Faseroberflächen 66 6.1 Motivation 66 6.2 Stand der Technik 67 6.2.1 Calciumcarbonat-Fällung an Faseroberflächen zur Hybridfüllstoff-Herstellung 67 6.2.2 Weitere Methoden zur Hybridfüllstoff-Herstellung bzw. zur Verbesserung der Faser-Füllstoff-Interaktion 72 6.3 Prozesse bei der Calciumcarbonat-Fällung an Faseroberflächen und in Hydrogelen 76 7 Problemstellung 81 7.1 Idee und Ziel der Arbeit 81 7.2 Hypothesen der Arbeit 84 8 Material und Methoden 85 8.1 Material 85 8.1.1 Verwendete Zellstoffe und deren Modifizierung 85 8.1.2 Fällungsreagenzien/-chemikalien 86 8.1.3 Weitere Chemikalien und Materialien 87 8.2 Laborfällung 87 8.2.1 Versuchsaufbau 87 8.2.2 Versuchsdurchführung 88 8.3 Extruderfällung 93 8.3.1 Versuchsaufbau 93 8.3.2 Versuchsdurchführung 95 8.4 Messmethoden zur Materialcharakterisierung 98 8.4.1 Überblick über alle angewandten Messmethoden zur Calciumcarbonat-, Faserstoff- sowie Composite-Charakterisierung 98 8.4.2 Themenspezifische und adaptierte Messmethoden sowie Probenpräparation 100 8.5 Anwendung der Composite in unterschiedlichen Produkten 107 8.5.1 Composite-Einsatz in der Laborblattbildung 107 8.5.2 Composite-Einsatz in weiteren Materialien 108 9 Ergebnisse und Diskussion der Fällungsexperimente 111 9.1 Untersuchungen zur Steuerung der Doppelaustauschreaktion zur reinen Calciumcarbonat-Fällung im Labor 111 9.2 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion im Labor 120 9.3 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion und Kalkmilchfällung im Extruder 132 9.4 Zusammenfassung der Ergebnisse 149 10 Anwendungsversuche 152 10.1 Definition möglicher Einsatzgebiete für mineralisierte Cellulosestrukturen 152 10.2 Einfluss der Composite in der Laborblattbildung 154 10.3 Einfluss der Composite in anderen Materialien 159 10.4 Zusammenfassung der Ergebnisse 164 11 Zusammenfassung und Ausblick 166 Literaturverzeichnis 169 Anlagenverzeichnis 194 / This study presents a new approach for the production of hybrid fillers – composites of cellulose and precipitated calcium carbonate – for strength enhancement in paper as well as for applications beyond paper production (such as plastics as well as building fibre boards, filters or filter aids and foamforming products). The main focus was on the precipitation of CaCO3 via double exchange reaction with calcium halides (CaCl2) and alkali metal carbonates (mainly Na2CO3) onto chemically and mechanically modified fibrous materials in a twin screw extruder. The hypothesis underlying this PhD thesis was that it is possible to precipitate CaCO3 directly onto the fibres – through their altered charge properties after modification – by reactive extrusion, thus generating an irreversible attachment of the mineral filler to the cellulosic pulp. Reactive extrusion proved to be a promising method both, for the generation of carboxymethylated and fibrillated cellulose (CMFC) and for the in-situ precipitation of CaCO3 directly onto the CMFC for the production of fibre-reinforced fillers with optimised filler retention. Furthermore, it was investigated to what extent the CaCO3 morphology, crystal shape and size can be controlled by adjusting the reaction and process parameters and thus the resulting composite properties. In addition, the potential of the novel hybrid fillers in varying end-use applications – especially for increasing the strength of paper and improving the property profile of polypropylene – was demonstrated in application trials. The investigations showed that the functional fibre properties have a decisive influence on CaCO3 precipitation – both on the crystallisation and conversion processes – and thus on the resulting hybrid filler properties. In particular, the nucleation rate is reduced by the hydrogel-like surface of the CMFC and crystal growth is promoted, so that predominantly large CaCO3 crystals (≥ 3 µm) are formed on or in the hydrogel-like fibre surface. It was also shown that even with intensive mechanical treatment, up to 89 wt. % of the precipitated CaCO3 does not detach from the CMFC and is therefore irreversibly attached. This leads to an improvement in CaCO3 retention in laboratory sheet formation from 62 wt. % to 80 wt. % for hardwood pulp (BEKP) and from 38 wt. % to 91 wt. % for softwood pulp (NBSK). Furthermore, it could be shown that the hybrid fillers contribute to an increase in strength (tensile index) of 1.5 times for NBSK (16.4 Nm/g) and 2.1 times for BEKP laboratory sheets (26.2 Nm/g). This thesis work illustrates that reactive extrusion is an innovative and sustainable process for composite production and that the novel hybrid fillers promise potential for versatile use in varying materials.:Abstract I Zusammenfassung II Danksagung III Eidesstattliche Erklärung IV Abbildungsverzeichnis VIII Abkürzungsverzeichnis XIV Formelzeichen und Indizes XVIII Formelverzeichnis XXII Normen- und Methodenverzeichnis XXIII Tabellenverzeichnis XXVI 1 Einleitung 1 2 Allgemeiner Aufbau von Zellstofffasern 3 2.1 Holzquelle Wald 3 2.2 Anatomie des Holzes 3 2.3 Morphologische Eigenschaften und chemische Zusammensetzung der Zellwand 5 2.4 Chemischer Aufbau des Holzes 6 3 Von der Zellstofffaser zur Nanocellulose 11 3.1 Nanocellulosetypen 11 3.2 Mikrofibrillierte Cellulose – MFC 14 3.3 Einsatzmöglichkeiten für MFC 14 3.3.1 Allgemeine Einsatzmöglichkeiten von MFC 14 3.3.2 Einsatz von MFC in der Papierherstellung 15 3.4 Herstellung von MFC 16 3.4.1 Allgemeine Herstellung von MFC 16 3.4.2 Herstellung von MFC im Extruder 18 3.5 Chemische Modifizierung/Vorbehandlung von Faserstoffen 20 3.5.1 Carboxymethylcellulose – CMC 20 3.5.2 TEMPO-Oxidierte Cellulose 22 3.5.3 Carboxymethylierte, fibrillierte Cellulose – CMFC 24 4 Theorie der Fällung und Kristallisation 25 4.1 Fällung und Kristallisation im Allgemeinen 25 4.2 Keim- und Partikelbildung 29 4.2.1 Änderung der freien Enthalpie bei der Keim- und Partikelbildung 29 4.2.2 Löslichkeit und Übersättigung 30 4.2.3 Keimbildungskinetik 34 4.2.4 Keimbildungs- und Wachstumsrate 37 4.3 Kristallwachstum 39 4.3.1 Diffusionskontrolliertes und einbaulimitiertes Wachstum 39 4.3.2 Modellansätze von LaMer und Ostwald 41 4.4 Mechanismen zur Beeinflussung von Fällungsreaktionen 43 5 Calciumcarbonat – Eigenschaften, Herstellung, Einsatz 45 5.1 Stoffsystem Calciumcarbonat 45 5.1.1 Eigenschaften und Vorkommen 45 5.1.2 Modifikationen und Kristallformen 47 5.1.3 Bildung der wasserfreien Phasen – Calcit, Aragonit und Vaterit 50 5.1.4 Möglichkeiten zur Steuerung der Modifikationen und Kristallformen 55 5.2 Herstellung von Calciumcarbonat 57 5.2.1 Allgemein 57 5.2.2 Natürliches Calciumcarbonat – GCC 58 5.2.3 Synthetisches Calciumcarbonat – PCC 59 5.2.3.1 Fällung aus Kalkmilch 59 5.2.3.2 Doppelaustauschreaktion 60 5.2.3.3 Weitere technische Fällungs-Methoden 61 5.3 Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.1 Allgemeine Einsatzmöglichkeiten von Calciumcarbonat 62 5.3.2 PCC als funktioneller Füllstoff in der Papierherstellung 63 6 Calciumcarbonat-Fällung an Faseroberflächen 66 6.1 Motivation 66 6.2 Stand der Technik 67 6.2.1 Calciumcarbonat-Fällung an Faseroberflächen zur Hybridfüllstoff-Herstellung 67 6.2.2 Weitere Methoden zur Hybridfüllstoff-Herstellung bzw. zur Verbesserung der Faser-Füllstoff-Interaktion 72 6.3 Prozesse bei der Calciumcarbonat-Fällung an Faseroberflächen und in Hydrogelen 76 7 Problemstellung 81 7.1 Idee und Ziel der Arbeit 81 7.2 Hypothesen der Arbeit 84 8 Material und Methoden 85 8.1 Material 85 8.1.1 Verwendete Zellstoffe und deren Modifizierung 85 8.1.2 Fällungsreagenzien/-chemikalien 86 8.1.3 Weitere Chemikalien und Materialien 87 8.2 Laborfällung 87 8.2.1 Versuchsaufbau 87 8.2.2 Versuchsdurchführung 88 8.3 Extruderfällung 93 8.3.1 Versuchsaufbau 93 8.3.2 Versuchsdurchführung 95 8.4 Messmethoden zur Materialcharakterisierung 98 8.4.1 Überblick über alle angewandten Messmethoden zur Calciumcarbonat-, Faserstoff- sowie Composite-Charakterisierung 98 8.4.2 Themenspezifische und adaptierte Messmethoden sowie Probenpräparation 100 8.5 Anwendung der Composite in unterschiedlichen Produkten 107 8.5.1 Composite-Einsatz in der Laborblattbildung 107 8.5.2 Composite-Einsatz in weiteren Materialien 108 9 Ergebnisse und Diskussion der Fällungsexperimente 111 9.1 Untersuchungen zur Steuerung der Doppelaustauschreaktion zur reinen Calciumcarbonat-Fällung im Labor 111 9.2 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion im Labor 120 9.3 Untersuchungen zur Composite-Bildung über Doppelaustauschreaktion und Kalkmilchfällung im Extruder 132 9.4 Zusammenfassung der Ergebnisse 149 10 Anwendungsversuche 152 10.1 Definition möglicher Einsatzgebiete für mineralisierte Cellulosestrukturen 152 10.2 Einfluss der Composite in der Laborblattbildung 154 10.3 Einfluss der Composite in anderen Materialien 159 10.4 Zusammenfassung der Ergebnisse 164 11 Zusammenfassung und Ausblick 166 Literaturverzeichnis 169 Anlagenverzeichnis 194
232

Adaptive FEM for fibre-reinforced 3D structures and laminates

Weise, Michael 07 July 2014 (has links)
The topic of this thesis is the numerical simulation of transversely isotropic 3D structures and laminates by means of the adaptive finite element method. To achieve this goal, the theoretical background of elastic deformation problems, transverse isotropy, plate theory, and the classical laminate theory is recapitulated. The classical laminate theory implies a combination of the membrane problem and the plate problem with additional coupling terms. The focus of this work is the adjustment of two integral parts of the adaptive FE algorithm according to the classical laminate theory. One of these parts is the solution of the FE system; a good preconditioner is needed in order to use the conjugate gradient method efficiently. It is shown via a spectral equivalence bound that the combination of existing preconditioners for the membrane and plate problems poses a capable preconditioner for the combined laminate problem. The other part is the error estimation process; the error estimator determines where the current mesh has to be refined for the next step. Existing results on residual error estimators for the elasticity problem, the biharmonic problem, and the plate problem are combined and extended to obtain a posteriori local residual error indicators for the classical laminate theory problem. The effectiveness of both results is demonstrated by numerical examples.:1 Introduction 1.1 Motivation 1.2 Organisation of this work 1.3 Notation and basic definitions 2 Basic theory of 3D simulation 2.1 Differential geometry 2.1.1 Initial and deformed domain 2.1.2 Strain tensor 2.2 Energy functional 2.2.1 Linearly elastic material law 2.2.2 Equilibrium of forces 2.2.3 Large deformations 2.2.4 Small deformations 2.3 Voigt notation and elasticity matrix 3 Transversely isotropic material law 3.1 Elasticity tensor 3.2 Conversion of the material constants 3.3 Elasticity matrix 3.4 Eigenvalues 3.5 State of plane strain 3.6 State of plane stress 4 Plate theory and classical laminate theory 4.1 The Kirchhoff–Love hypothesis 4.2 Constitutive law and bilinear form of the laminated plate 4.3 Definition of resultants 4.4 Boundary conditions 4.5 From the equilibrium conditions to the weak formulation 4.5.1 Membrane equilibrium 4.5.2 Plate equilibrium 4.5.3 Combined weak formulation 4.5.4 The CLT problem in Voigt notation 5 Discretisation 5.1 Short introduction to FEM 5.2 Adaptive FEM 5.3 Finite elements for 3D elasticity problems 5.4 Finite elements for plates 5.4 Finite elements for plates 5.4.1 BFS rectangles 5.4.2 rHCT triangles 5.5 CLT elements 5.5.1 Rectangles 5.5.2 Triangles 6 Solver and preconditioner 6.1 The preconditioned conjugate gradient method 6.2 Hierarchical basis and BPX preconditioners 6.3 Preconditioning of CLT problems 6.3.1 General laminates 6.3.2 Some special cases and examples 7 A posteriori residual error estimation 7.1 Residual error estimator for 3D elements 7.2 Residual error estimator for plate and CLT elements 7.2.1 Auxiliary definitions and assumptions on the mesh 7.2.2 Interpolation operators 7.2.3 Important inequalities 7.2.4 Cut-off functions 7.2.5 Definition of the error 7.2.6 Reliability inequality 7.2.7 Efficiency inequality 8 Some details of the implementation 8.1 The adaptive FE package SPC-PM 8.2 Remarks on some added features 8.2.1 Capability of the current code 8.2.2 Cuntze’s failure mode concept 8.3 Coordinate transformation of higher-order derivatives 8.3.1 Mapping of coordinates 8.3.2 Transformation of derivatives of up to the third-order 8.3.3 Recursive construction of transformation matrices 8.3.4 Simplification for axis-parallel rectangles 9 Numerical examples 9.1 A three-dimensional example from eniPROD 9.2 Example problems for laminates 9.2.1 Rectangular plate under in-plane load 9.2.2 Rectangular plate under vertical load 9.2.3 L-shaped plate with inhomogeneous natural boundary conditions 10 Conclusion and outlook Bibliography Acknowledgements List of main symbols Theses
233

Advanced Joining Technologies for Load and Fibre Adjusted FRP-Metal Hybrid Structures

Klein, Mario, Podlesak, Frank, Höfer, Kevin, Seidlitz, Holger, Gerstenberger, Colin, Mayr, Peter, Kroll, Lothar 27 August 2015 (has links)
Multi-material-design (MMD) is commonly realized through the combination of thin sheet metal and fibre reinforced plastics (FRP). To maximize the high lightweight potential of the material groups within a multi-material system as good as possible, a material-adapted and particularly fibre adjusted joining technology must be applied. The present paper focuses on two novel joining technologies, the Flow Drill Joining (FDJ) method and Spin-Blind-Riveting (SBR), which were developed for joining heavy-duty metal/composite hybrids. Tests were carried out with material combinations which are significant for lightweight constructions such as aluminium (AA5083) and carbon fibre-reinforced polyamide in sheet thickness of 1.8 mm. The mechanical testing and manufacturing of those multi-material joints was investigated.
234

Development of Dynamic Test Method and Optimisation of Hybrid Carbon Fibre B-pillar

Johansson, Emil, Lindmark, Markus January 2017 (has links)
The strive for lower fuel consumption and downsizing in the automotive industry has led to the use of alternative high performance materials, such as fibre composites. Designing chassis components with composite materials require accurate simulation models in order to capture the behaviour in car crashes. By simplifying the development process of a B-pillar with a new dynamic test method, composite material products could reach the market faster. The setup has to predict a cars side impact crash performance by only testing the B-pillar in a component based environment. The new dynamic test method with more realistic behaviour gives a better estimation of how the B-pillar, and therefore the car, will perform in a full-scale car side impact test. With the new improved tool for the development process, the search for a lighter product with better crash worthiness is done by optimising a steel carbon fibre hybrid structure in the B-pillar. The optimisation includes different carbon fibre materials, composite laminate lay-up and stiffness analysis. By upgrading simulation models with new material and adhesive representation physical prototypes could be built to verify the results. Finally the manufactured steel carbon fibre hybrid B-pillar prototypes were tested in the developed dynamic test method for a comparison to the steel B-pillar. The hybrid B-pillars perform better than the reference steel B-pillar in the dynamic tests also being considerably lighter. As a final result a hybrid B-pillar is developed that will decrease fuel consumption and meet the requirements of any standardized side impact crash test. / Strävan efter lägre bränsleförbrukning och minimalistiskt tänkande inom bilindustrin har lett till användning av alternativa högpresterande material, såsom fiberkompositer. Vid design av chassi-komponenter utav kompositer krävs noggranna simuleringsmodeller för att fånga upp bilens beteende vid en krock. Genom att förenkla utvecklingsprocessen för en B-stolpe med en ny dynamisk testmetod kan produkter bestående av fiberkompositer nå marknaden snabbare. Provuppställningen skall förutse bilens prestanda vid ett sidokrocktest genom att endast testa B-stolpen i en komponentbaserad miljö. Den nya dynamiska testmetoden med ett mer realistiskt beteende skall ge en bättre uppskattning om hur B-stolpen, och därmed bilen, kommer att prestera i ett fullskaligt sidokrocktest. Med utvecklingsprocessens nya förbättrade verktyg kan strävan mot lättare produkter med bättre krocksäkerhet utvecklas genom optimering av en hybrid B-stolpe i stål och kolfiber. Optimeringen innefattar olika kolfibermaterial, laminatvarianter och styvhetsanalyser. Genom att uppgradera simuleringsmodeller med nya material och adhesiva metoder kunde fysiska prototyper tillverkas för att verifiera resultaten. Slutligen testades de tillverkade prototyperna utav stål och kolfiber i den nyutvecklade dynamiska testmetoden för jämförelse mot den ursprungliga stål B-stolpen. Hybrid B-stolparna presterade bättre än referensstolpen utav stål i de dynamiska provningarna och är samtidigt betydligt lättare. Det slutgiltigt resultatet är en utvecklad hybrid B-stolpe som både ger minskad bränsleförbrukningen och uppfyller kraven för ett standardiserat sidokrocktest.
235

Entwicklung neuartiger Verbindungen für komplexe Stab-, Flächen- und Raumtragelemente aus UHPFRC

Ledderose, Lukas, Lehmberg, Sven, Wirth, Franz, Kloft, Harald, Budelmann, Harald 21 July 2022 (has links)
Das Institut für Tragwerksentwurf (ITE) und das Institut für Baustof e, Massivbau und Brandschutz (iBMB) der TU Braunschweig bearbeiteten in der ersten Förderperiode des SPP 1542 „Leicht Bauen mit Beton“ gemeinsam das Teilprojekt „Entwicklung neuartiger Verbindungen für geometrisch komplexe Flächen- und Stabwerkselemente aus UHPC“. Schwerpunkt waren umfangreiche Untersuchungen zu geometrisch komplexen und hochpräzise hergestellte trocken gefügten Stoßverbindungen für dünnwandige UHPC-Bauteile zur Übertragung von Druck-, Biege- und Scherkräften. Zur Verbesserung der Zugtragfähigkeit und des Nachbruchverhaltens wurde im Forschungsprojekt stahlfaserverstärkter ultrahochfester Beton (UHPFRC) verwendet. Die einzelnen Arbeitspakete waren entsprechend der Expertisen der beiden Institute aufgeteilt. Während sich das ITE insbesondere mit der Entwicklung der Bauteil- und Fugengeometrien sowie dem Schalungsbaus befasste, lagen Planung und Umsetzung der experimentellen und numerischen Material- und Bauteiluntersuchungen in der Verantwortung des iBMB. [Aus. Einleitung) / The Institute of Structural Design (ITE) and the Institute of Building Materials, Concrete Structures and Fire Safety (iBMB) of the Technical University of Braunschweig worked together in the f rst funding period of the SPP 1542 “Concrete Light” on the subproject “Development of novel jointing systems for complex beam surface and spatial elements made of UHPFRC”. The focus was on extensive investigations of geometrically complex and high-precision dry-jointed connections for thin-walled UHPC components for the transmission of compressive, bending and shear forces. Steel f bre reinforced ultra-high performance concrete (UHPFRC) was used in the research project to improve the tensile strength and post fracture behaviour. The individual work packages were divided according to the expertise of the two institutes. While the ITE was particularly concerned with the development of the component and joint geometries as well as the formwork construction, the iBMB was responsible for the planning and implementation of the experimental and numerical material and element analyses. [Off: Introduction]
236

Flexible GFK-Schalungen zur Herstellung von doppelt gekrümmten Beton-Leichtbauelementen mit stabilisierten Abstandsgewirken

Funke, Henrik, Ehrlich, Andreas, Ulke-Winter, Lars, Petzoldt, Carolin, Gelbrich, Sandra, Kroll, Lothar 21 July 2022 (has links)
Die Herstellung mehrfach gekrümmter großflächiger Tragwerke aus Beton erfordert komplexe Schalungskonstruktionen, die in der Regel material- und kostenaufwändig sind [2]. Durch die im Projekt durchgeführte Entwicklung und Erprobung von flexiblen Strukturen aus glasfaserverstärktem Kunststoff (GFK) für den Schalungsbau in Kombination mit dem Einsatz von textilverstärktem Beton sollten diese Defizite behoben werden. [Aus: Ausgangsfragen und Zielsetzung] / The practical implementation of large-scale curved concrete elements requires complex formwork constructions, which are rather expensive and therefore reach their limits easily [2]. Flexible glass fibre reinforced plastic (GFRP) formwork to produce textile reinforced concrete elements, which was developed and tested within the project, is expected to eliminate those deficits. [Off: Initial question and objective]
237

Wickelverstärkte Hybridrohre

Lohaus, Ludger, Markowski, Jan 21 July 2022 (has links)
Dieses Projekt widmete sich einer neuen Bauweise für stabförmige Drucktragglieder aus ultrahochfestem Beton (UHFB), die - als UHFB-Rohre mit Stahlrohren ummantelt - hier als Hybridrohre bezeichnet werden. Durch eine äußere Wickelverstärkung aus kohlenstofffaserverstärktem Kunststoff (CFK) werden die beiden, für sich alleine betrachtet ausgeprägt spröden Hochleistungsmaterialien UHFB und CFK so kombiniert, dass sie zu besonders leichten Bauteilen hoher Tragfähigkeit mit ausgeprägt duktilem Versagensverhalten zusammengefügt werden. [Aus: Motivation und Zielsetzung] / This project was dedicated to a new construction method for rod-shaped support elements made of ultra-high performance concrete (UHPC), which - as UHPC tubes coated with steel sheets - are called hybrid tubes in this report. Through an exterior wrapping-reinforcement made of carbon fibre reinforced plastic (CFRP), the two high-performance materials UHPC and CFRP, which are distinctly brittle when viewed on their own, are combined in such a way that they form particularly light components of high load-bearing capacity with profound ductile failure behaviour. [Off: Motivation and objective]
238

Behaviour of continuous concrete deep beams reinforced with GFRP bars

Shalookh, Othman H. Zinkaah January 2019 (has links)
This research aims to investigate the behaviour of glass fibre reinforced polymer bars (GFRP) reinforced continuous concrete deep beams. For this purpose, experimental, analytical and numerical studies were conducted. Nine continuous concrete deep beams reinforced with GFRP bars and one specimen reinforced with steel bars were experimentally tested to failure. The investigated parameters included shear span-to-overall depth ratio (𝑎/ℎ), size effect and web reinforcement ratio. Two 𝑎/ℎ ratios of 1.0 and 1.7 and three section heights of 300 mm, 600 mm and 800 mm as well as two web reinforcement ratios of 0% and 0.4% were used. The longitudinal reinforcement, compressive strength and beam width were kept constant at 1.2%, ≈55 MPa and 175 mm, respectively. The web reinforcement ratio achieved the minimum requirements of the CSA S806-12. The experimental results highlighted that the web reinforcement ratio improved the load capacities by about 10% and 18% for specimens having 𝑎/ℎ ratios of 1.0 and 1.7, respectively. For specimens with web reinforcement, the increase of 𝑎/ℎ ratio from 1.0 to 1.7 led to reductions in the load carrying capacity by about 33% and 29% for beams with overall depths of 300 mm and 600 mm, respectively. Additionally, a considerable reduction occurred in the shear strength due to the increase of the section depth from 300 mm to 600 mm. The experimental results confirmed the impacts of web reinforcement and size effect that were not considered by the strut-and-tie method (STM) of the only code provision, the Canadian S806-12, that addressed such elements. In this study, the STM was illustrated and simplified to be adopted for GFRP RC continuous deep beams, and then, the experimental results obtained from this study were employed to assess the performance of the effectiveness factors suggested by the STMs of the American (ACI 318-2014), European (EC2-04) and Canadian (S806-12) codes as well as those factors recommended by the previous studies to predict the load capacities. It was found that these methods were unable to reflect the influences of member size and/or web reinforcement reasonably, the impact of which has been confirmed by the current experimental investigation. Therefore, a new effectiveness factor was recommended to be used with the STM. Additionally, an upper bound analysis was developed to predict the load capacities of the tested specimens considering a reduced bond strength of GFRP bars after assessing the old version recommended for steel RC continuous deep beams. A good agreement between the predicted results and the measured ones was obtained with the mean and coefficient of variation values for experimental/calculated results of 1.02 and 5.9%, respectively, for the STM and 1.03 and 8.6%, respectively, for the upper-bound analysis. A 2D finite element analysis using ABAQUS/Explicit approach was carried out to introduce a model able to estimate the response of GFRP RC continuous deep beams. Based on the experimental results extracted from the pullout tests, the interface between the longitudinal reinforcement and concrete surface was modelled using a cohesive element (COH2D4) tool available in ABAQUS. Furthermore, a perfect bond between the longitudinal reinforcement and surrounding concrete was also modelled to evaluate the validity of this assumption introduced by many previous FE studies. To achieve a reasonable agreement with the test results, a sensitivity analysis was implemented to select the proper mesh size and concrete model variables. The suitability and capability of the developed FE model were demonstrated by comparing its predictions with the test results of beams tested experimentally. Model validation showed a reasonable agreement with the experiments in terms of the failure mode, total failure load and the load-deflection responses. The perfect bond model has overestimated the predicted results in terms of stiffness behaviour and failure load, while the cohesive element model was more suitable to reflect the behaviour of those specimens. The validated FE model was then employed to implement a parametric study for the key parameters that govern the behaviour of beams tested and to achieve an in depth understanding of such elements. The parametric study showed that the higher the 𝑎/ℎ ratio the more pronounced the effect of web and the longitudinal reinforcements and the lower the effect of concrete compressive strength; and vice versa when 𝑎/ℎ ratio reduces.
239

CHARACTERISATION OF THE TENSILE BEHAVIOUR OF UHPFRC BY MEANS OF FOUR-POINT BENDING TESTS

López Martínez, Juan Ángel 18 April 2017 (has links)
Combining the most recent technologies in concrete, Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC) arises as a promising material for the near future. UHPFRC have shown how flexible concrete can be to adapt to the ever-changing social and environmental demands. With its high flexibility composition and its mechanical properties, UHPFRC is full of both unexplored and unexploited possibilities. Engineers should take responsibility for this task. However, it is fair to acknowledge that this is not an easy task and it requires the development of reliable and widely accepted design standards provided by the scientific community. A major concern about durability, long-lasting structures and reduction of maintenance cost, as well as the development of new concrete technologies, improved knowledge of fibre effect and a huge growth in the fibre industry accompanied by fibre price reduction have led, among other factors, to the development of new types of concrete whose mechanical behaviour substantially differs from conventional fibre-reinforced concrete. This is why current characterisation methodologies and design standards must be reviewed and adjusted to these newer materials. However, design standard revision cannot disregard former milestones achieved thanks to decades of hard work. It must offer an integrated view in which new types of concrete comprise existing ones in a broader group, because at the end of the day and despite having newer and improved properties, new types of concrete are still concrete. That is how it should be understood and how it must be reflected in newer codes and standards. The work presented herein is focused on one of these recently developed materials that embraces major advanced technologies in concrete: Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC). This work is specifically focused on those crucial requirements for the development and widespread use of it, such as constitutive tensile characterisation and classification. This work includes a deep revision of the uniaxial tensile behaviour of concrete and its development as fibre technology has evolved. In addition, traditional characterisation standard methods as well as those recently developed for its specific use on UHPFRC are reviewed and called into question. Throughout the document, the development of different methodologies to determine the uniaxial constitutive tensile behaviour of UHPFRC from bending tests are shown, together with a simplified characterisation proposal specially developed for being included in a standard. All developed methodologies presented herein are checked and validated. These methods are specifically designed for their application on experimental results obtained from a special type of four-point bending test, whose standardisation proposal for UHPFRC is also shown. Finally, a classification proposal is presented as a function of more relevant UHPFRC tensile parameters necessary for design that can be directly obtained from the standard characterisation test method suggested. Proposed classification encompasses the existing classification for conventional reinforced and fibre-reinforced concrete. In it, both plain concrete and fibre-reinforced concrete are presented as a particular case of a more general tensile constitutive response for concrete. Standard methodology and classification proposed are in accordance with the evolution of concrete and unify historic milestones achieved by the international research community. / El Hormigón de Muy Alto Rendimiento (HMAR) combina los últimos avances tecnológicos en hormigón y se erige como un material prometedor para el futuro. El HMAR ha demostrado su gran capacidad para adaptarse a las cada vez más exigentes demandas sociales y medioambientales. Con un gran abanico de posibilidades en su dosificación para conseguir las propiedades mecánicas deseadas, el HMAR es un material lleno de posibilidades aún sin explorar y sin explotar. Los ingenieros tienen la responsabilidad de esta tarea. Sin embargo, es justo reconocer que no se trata de una tarea fácil y que requiere de un desarrollo previo de códigos de diseño adecuados y ampliamente aceptados por parte de la comunidad científica. La aparición de nuevas tecnologías, el mayor conocimiento sobre la aportación de las fibras así como su industrialización y bajada de precios, las mayores preocupaciones sobre la durabilidad estructural, incremento de la vida útil o la reducción de los costes de mantenimiento, entre otros factores, han derivado en el desarrollo de nuevas tipologías de hormigones cuyo comportamiento mecánico difiere de manera sustancial de los tradicionales hormigones con fibras. Es por ello que tanto la readaptación de las metodologías de caracterización como las metodologías de diseño deben ser reformuladas. Y esto debe hacerse de manera no disruptiva, es decir, manteniendo la línea de los hitos alcanzados en los hormigones con fibras convencionales de manera que queden integrados en metodologías de caracterización y de diseño que los engloben, porque al fin y al cabo, y aunque con nuevas y mejores propiedades mecánicas, los nuevos hormigones siguen siendo hormigones. Así debe ser entendido y así debe quedar reflejado en las nuevas normativas. El presente trabajo se centra en uno de esos nuevos materiales desarrollados con el avance de las nuevas tecnologías como es el HMAR. En especial, este documento se centra en ese aspecto tan fundamental para el desarrollo de nuevos hormigones como es la caracterización mecánica y la tipificación. Este trabajo incluye una revisión del comportamiento mecánico uniaxial a tracción del hormigón y de su evolución con la aparición de las diferentes tecnologías. Además, se revisan y se ponen en cuestión los sistemas tradicionales de caracterización, así como los nuevos sistemas desarrollados en los últimos años para su empleo específico en el HMAR. A lo largo del documento se desarrollan diferentes metodologías para la obtención del comportamiento constitutivo a tracción del HMAR, así como la propuesta de una metdología simplificada de caracterización especialmente diseñada para ser incluida en una norma, todas ellas debidamente validadas. Estas metodologías son de aplicación específica a los resultados experimentales obtenidos mediante un ensayo a cuatro puntos sin entalla, cuya propuesta de estandarización para el HMAR ha sido también desarrollada. Finalmente, se presenta una propuesta de tipificación de acuerdo a los parámetros más relevantes del comportamiento a tracción del HMAR que son necesarios para el diseño y que pueden ser directamente obtenidos del ensayo de caracterización propuesto. Esta clasificación engloba a la clasificación existente para el hormigón armado convencional y los actuales hormigones con fibras, de manera que se presenta la actual definición de hormigón con fibras como un caso particular de estos nuevos hormigones, respetando al máximo la evolución de este material y aunando los logros conseguidos por la comunidad científica. / Dins de les combinacions de les tecnologies més recents en el formigó, el formigó de molt alt rendiment (UHPFRC) sorgeix com un material prometedor per al futur pròxim. L'UHPFRC ha demostrat poder ser un formigó flexible per adaptar-se a les sempre canviants demandes socials i mediambientals. Amb una gran flexibilitat en la seua composició i les seues propietats mecàniques, l`UHPFRC està ple de possibilitats de ser explorades i explotades. Els enginyers han de prendre la responsabilitat d'aquesta tasca. No obstant això, és just reconèixer que això no serà fàcil i requerirà el desenvolupament de normes de disseny fiables i àmpliament acceptades per la comunitat científica. Hi ha una gran preocupació al voltant de la durabilitat, la vida útil de les estructures i la reducció del cost de manteniment, juntament amb el desenvolupament de noves tecnologies de formigó, un millor coneixement de l'efecte de la fibra i un enorme creixement en la indústria de la fibra acompanyat per la reducció del preu de la fibra, han conduït, entre altres factors, al desenvolupament de nous tipus de formigons, el comportament mecànic dels quals es diferencia substancialment dels formigons reforçats amb fibres convencionals. És per això que les metodologies de caracterització actuals i les normes de disseny han de ser revisades i ajustades a aquests nous materials. No obstant això, la revisió del codis de disseny no pot prescindir de les antigues fites aconseguides gràcies a dècades de treball dur. S'ha d'oferir una visió integrada en la qual els nous tipus de formigons integren els ja existents en un grup més ampli, ja que, al cap i la fi i malgrat tenir propietats noves i millorades, els nous tipus de formigons són encara un tipus de formigó. Així es com s'hauria d'entendre i reflectir-se en els nous codis i normes. El treball presentat en aquest document es centra en un d'aquests materials que s'han desenvolupat recentment i que abasta les principals tecnologies avançades en el formigó: el Formigó de Molt Alt Rendiment Reforçat amb Fibres (UHPFRC). Aquest treball se centra específicament en els requisits fonamentals per al desenvolupament i l'ús generalitzat d'aquest, com ara la caracterització i classificació del comportament constitutiu a tracció. Aquest treball inclou una revisió profunda del comportament a tracció uniaxial del formigó i els seus canvis al temps que la tecnologia de les fibres ha evolucionat. A més, els mètodes tradicionals estàndard de caracterització, així com els recentment desenvolupats per al seu ús específic en l'UHPFRC són revisats i qüestionats. Al llarg del document, es mostra el desenvolupament de diferents metodologies per a determinar el comportament constitutiu a tracció uniaxial de l'UHPFRC, juntament amb una proposta de caracterització simplificada especialment desenvolupada per poder ser inclosa en normativa. Totes les metodologies desenvolupades presentades en aquest document han estat comprovades i validades. Aquests mètodes estan dissenyats específicament per a la seva aplicació en els resultats experimentals obtinguts a partir d'un tipus especial d'assaig de flexió a quatre punts, a més també s'inclou una proposta d'estandardització per a l'UHPFRC. Finalment, es presenta una proposta de classificació en funció dels paràmetres més rellevants del comportament a tracció de l'UHPFRC que són necessaris per al disseny i que es poden obtindre directament del mètode d'assaig estàndard suggerit per a la caracterització de l'UHPFRC. La classificació proposada té amb compte la classificació existent per al formigó armat convencional i el reforçat amb fibres. En ella, tant el formigó en massa com el formigó reforçat amb fibres es presenten com un cas particular d'una resposta constitutiva a tracció més general per al formigó. La metodologia estàndard i la classificació proposada estan d'acord amb l'evolució de formigó i unifica l / López Martínez, JÁ. (2017). CHARACTERISATION OF THE TENSILE BEHAVIOUR OF UHPFRC BY MEANS OF FOUR-POINT BENDING TESTS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/79740
240

Beitrag zu hochbelasteten Krafteinleitungselementen für Faserverbundbauteile / Excerpt to heavy load force translation components for fibre composite elements

Schievenbusch, Florian 19 September 2003 (has links) (PDF)
Fibre reinforced plastics (FRP) are increasingly employed in structural parts of the automotive, aviation and aerospace as well as railway industries. For those applications a heavily loaded, as well as crash and safety relevant force translation component is developed. This Hybrid-Insert consists of SMC and a metal insert, and is based on modular assembly through standard elements. The galvanic insulation of the metal insert by the SMC provides an excellent corrosion protection. The couplingstrength of the metal insert moulded into the SMC fulfills the tensile requirements of a M10 10.9 screw fit by VDI 2230 standards. Additionally the component provides a high degree of energy absorption and a gradual failure process. / Faserverstärkte Kunststoffe (FVK) werden zunehmend in Strukturbauteilen der Automobil-,der Luft- und Raumfahrt- sowie der Schienenfahrzeugindustrie eingesetzt. Für diese Anwendungen wird ein hochbelastetes sowie crash- und sicherheitsrelevantes Krafteinleitungselement entwickelt. Dieses Hybrid-Insert, bestehend aus SMC und einem Metalleinsatz, ist modular aus Standardkomponenten aufgebaut. Die galvanische Isolation des Metalleinsatzes durch das SMC bietet für diesen einen hervorragenden Korrosionsschutz. Die Verankerungsfestigkeit des Metalleinsatzes im SMC genügt den Anforderungen einer M10 10.9 Verschraubung nach VDI 2230. Zusätzlich zeichnet sich das Krafteinleitungselement durch eine hohe Energieabsorption und ein gutmütiges Versagen aus.

Page generated in 0.0728 seconds