Spelling suggestions: "subject:"five model"" "subject:"fine model""
11 |
Transferência de frequência em modelos de neurônios de disparo / Frequency transfer of spiking neurons modelsGewers, Felipe Lucas 25 February 2019 (has links)
Este trabalho trata sobre a transferência de frequência em neurônios de disparo, especificamente neurônios integra-e-dispara com escoamento e neurônios de Izhikevich. Através de análises matemáticas analíticas e sistemáticas simulações numéricas é obtida a função de ganho, a transferência de frequência estacionária e dinâmica dos neurônios utilizados, para diversos valores dos parâmetros do modelo. Desse modo, são realizados múltiplos ajustes às curvas obtidas, e os coeficientes estimados são apresentados. Com base em todos esses dados, são obtidas diversas características dessas relações de transferência de frequência, e como suas propriedades variam com relação aos principais parâmetros do modelo de neurônio e sinapse utilizados. Diversos resultados interessantes foram apresentados, incluindo evidências de que a função ganho do neurônio integra-e-dispara pode se comportar de modo bastante semelhante à função de ganho e transferência estacionária do neurônio de Izhikevich, dependendo dos parâmetros adotados; a divisão do plano de parâmetros do modelo integra-e-dispara de acordo com a linearidade da transferência de frequência dinâmica; o limiar da intensidade de corrente contínua e de frequência de spikes pré-sinápticos de um neurônio de Izhikevich é determinado apenas pelo parâmetro b, no intervalo de parâmetros usual; modelos de sinapses distintos tendem a não alterar a forma da transferência de frequência estacionária de um neurônio de Izhikevich. / This work is about the frequency transfer of spiking neurons, specifically integrate-and-fire neurons and Izhikevich neurons. Through analytical and systematic numerical simulations the gain function, the stationary and dynamic frequency transfer of the adopted neuron models, are obtained for several values of the model parameters. Thus, multiple fits are made to the curves obtained, and the estimated coefficients are presented. Based on all these data, several characteristics of the frequency transfer relations are obtained, and information is obtained about how their properties vary with respect the parameters of the adopted neuron and synapse model. Several interesting results have been presented, including evidences that the integrate-and-fire neuron\'s gain function can behave quite similarly to the Izhikevich neuron\'s stationary transfer and gain function, depending of the adopted parameters. We also obtained the division of the parameters plane of integrate-and-fire model according to the linearity of the dynamic frequency transfer. It was also verified that the thresholds of the presynaptic spikes\' current intensity and frequency of an Izhikevich neuron are determined only by the parameter b, in the usual parameter range. In addition, it was observed that the considered distinct synapses models tend not to depart from the stationary frequency transfer of an Izhikevich neuron.
|
12 |
Investigation of methods used to predict the heat release rate and enclosure temperatures during mattress firesThrelfall, Todd 05 September 2005
Fires in buildings ranging in size from small residential houses to large office buildings and sports stadiums pose significant threats to human safety. Many advances have been made in the area of fire behaviour modeling and have lead to much safer, and more efficient fire protection engineering designs, saving countless lives. Fire, however, is still a difficult phenomenon to accurately model and the most important quantity used to describe a fire is the heat (energy) release rate (HRR).
Predictions of the fire hazard posed by mattresses, using relatively simple modeling techniques, were investigated in this research work and compared to full-scale experimental results. Specifically, several common methods of predicting the HRR from a mattress fire were examined. Current spatial separation guidelines, which exist in order to mitigate fire spread between buildings, were used to predict radiation heat flux levels emitted by a burning building and compared to experimental results measured in the field. Enclosure ceiling temperatures, predicted using the Alpert temperature correlation, and average hot gas layer temperature predictions were also compared to experimental results.
Results from this work indicate that the t-squared fire heat release rate modeling technique combined with the common Alpert ceiling temperature correlation, provide a reasonable prediction of real-life fire temperatures as results within 30% were obtained. The cone calorimeter was also found to be a useful tool in the prediction of full-scale fire behaviour and the guidelines used for spatial separation calculations were found to predict the radiant heat flux emitted by a burning building reasonably well.
|
13 |
Investigation of methods used to predict the heat release rate and enclosure temperatures during mattress firesThrelfall, Todd 05 September 2005 (has links)
Fires in buildings ranging in size from small residential houses to large office buildings and sports stadiums pose significant threats to human safety. Many advances have been made in the area of fire behaviour modeling and have lead to much safer, and more efficient fire protection engineering designs, saving countless lives. Fire, however, is still a difficult phenomenon to accurately model and the most important quantity used to describe a fire is the heat (energy) release rate (HRR).
Predictions of the fire hazard posed by mattresses, using relatively simple modeling techniques, were investigated in this research work and compared to full-scale experimental results. Specifically, several common methods of predicting the HRR from a mattress fire were examined. Current spatial separation guidelines, which exist in order to mitigate fire spread between buildings, were used to predict radiation heat flux levels emitted by a burning building and compared to experimental results measured in the field. Enclosure ceiling temperatures, predicted using the Alpert temperature correlation, and average hot gas layer temperature predictions were also compared to experimental results.
Results from this work indicate that the t-squared fire heat release rate modeling technique combined with the common Alpert ceiling temperature correlation, provide a reasonable prediction of real-life fire temperatures as results within 30% were obtained. The cone calorimeter was also found to be a useful tool in the prediction of full-scale fire behaviour and the guidelines used for spatial separation calculations were found to predict the radiant heat flux emitted by a burning building reasonably well.
|
14 |
Characterization of a Spiking Neuron Model via a Linear ApproachJabalameli, Amirhossein 01 January 2015 (has links)
In the past decade, characterizing spiking neuron models has been extensively researched as an essential issue in computational neuroscience. In this thesis, we examine the estimation problem of two different neuron models. In Chapter 2, We propose a modified Izhikevich model with an adaptive threshold. In our two-stage estimation approach, a linear least squares method and a linear model of the threshold are derived to predict the location of neuronal spikes. However, desired results are not obtained and the predicted model is unsuccessful in duplicating the spike locations. Chapter 3 is focused on the parameter estimation problem of a multi-timescale adaptive threshold (MAT) neuronal model. Using the dynamics of a non-resetting leaky integrator equipped with an adaptive threshold, a constrained iterative linear least squares method is implemented to fit the model to the reference data. Through manipulation of the system dynamics, the threshold voltage can be obtained as a realizable model that is linear in the unknown parameters. This linearly parametrized realizable model is then utilized inside a prediction error based framework to identify the threshold parameters with the purpose of predicting single neuron precise firing times. This estimation scheme is evaluated using both synthetic data obtained from an exact model as well as the experimental data obtained from in vitro rat somatosensory cortical neurons. Results show the ability of this approach to fit the MAT model to different types of reference data.
|
15 |
Redundant Input Cancellation by a Bursting Neural NetworkBol, Kieran G. 20 June 2011 (has links)
One of the most powerful and important applications that the brain accomplishes is solving the sensory "cocktail party problem:" to adaptively suppress extraneous signals in an environment. Theoretical studies suggest that the solution to the problem involves an adaptive filter, which learns to remove the redundant noise. However, neural learning is also in its infancy and there are still many questions about the stability and application of synaptic learning rules for neural computation.
In this thesis, the implementation of an adaptive filter in the brain of a weakly electric fish, A. Leptorhynchus, was studied. It was found to require a cerebellar architecture that could supply independent frequency channels of delayed feedback and multiple burst learning rules that could shape this feedback. This unifies two ideas about the function of the cerebellum that were previously separate: the cerebellum as an adaptive filter and as a generator of precise temporal inputs.
|
16 |
Redundant Input Cancellation by a Bursting Neural NetworkBol, Kieran G. 20 June 2011 (has links)
One of the most powerful and important applications that the brain accomplishes is solving the sensory "cocktail party problem:" to adaptively suppress extraneous signals in an environment. Theoretical studies suggest that the solution to the problem involves an adaptive filter, which learns to remove the redundant noise. However, neural learning is also in its infancy and there are still many questions about the stability and application of synaptic learning rules for neural computation.
In this thesis, the implementation of an adaptive filter in the brain of a weakly electric fish, A. Leptorhynchus, was studied. It was found to require a cerebellar architecture that could supply independent frequency channels of delayed feedback and multiple burst learning rules that could shape this feedback. This unifies two ideas about the function of the cerebellum that were previously separate: the cerebellum as an adaptive filter and as a generator of precise temporal inputs.
|
17 |
Redundant Input Cancellation by a Bursting Neural NetworkBol, Kieran G. 20 June 2011 (has links)
One of the most powerful and important applications that the brain accomplishes is solving the sensory "cocktail party problem:" to adaptively suppress extraneous signals in an environment. Theoretical studies suggest that the solution to the problem involves an adaptive filter, which learns to remove the redundant noise. However, neural learning is also in its infancy and there are still many questions about the stability and application of synaptic learning rules for neural computation.
In this thesis, the implementation of an adaptive filter in the brain of a weakly electric fish, A. Leptorhynchus, was studied. It was found to require a cerebellar architecture that could supply independent frequency channels of delayed feedback and multiple burst learning rules that could shape this feedback. This unifies two ideas about the function of the cerebellum that were previously separate: the cerebellum as an adaptive filter and as a generator of precise temporal inputs.
|
18 |
Redundant Input Cancellation by a Bursting Neural NetworkBol, Kieran G. January 2011 (has links)
One of the most powerful and important applications that the brain accomplishes is solving the sensory "cocktail party problem:" to adaptively suppress extraneous signals in an environment. Theoretical studies suggest that the solution to the problem involves an adaptive filter, which learns to remove the redundant noise. However, neural learning is also in its infancy and there are still many questions about the stability and application of synaptic learning rules for neural computation.
In this thesis, the implementation of an adaptive filter in the brain of a weakly electric fish, A. Leptorhynchus, was studied. It was found to require a cerebellar architecture that could supply independent frequency channels of delayed feedback and multiple burst learning rules that could shape this feedback. This unifies two ideas about the function of the cerebellum that were previously separate: the cerebellum as an adaptive filter and as a generator of precise temporal inputs.
|
19 |
The interspike-interval statistics of non-renewal neuron modelsSchwalger, Tilo 30 September 2013 (has links)
Um die komplexe Dynamik von Neuronen und deren Informationsverarbeitung mittels Pulssequenzen zu verstehen, ist es wichtig, die stationäre Puls-Aktivität zu charakterisieren. Die statistischen Eigenschaften von Pulssequenzen können durch vereinfachte stochastische Neuronenmodelle verstanden werden. Eine gut ausgearbeitete Theorie existiert für die Klasse der Erneuerungsmodelle, welche die statistische Unabhängigkeit der Interspike-Intervalle (ISI) annimmt. Experimente haben jedoch gezeigt, dass viele Neuronen Korrelationen zwischen ISIs aufweisen und daher nicht gut durch einen Erneuerungsprozess beschrieben werden. Solche Korrelationen können durch Nichterneuerungs-Modelle erfasst werden, welche jedoch theoretisch schlecht verstanden sind. Diese Arbeit ist eine analytische Studie von Nichterneuerungs-Modellen, die zwei bedeutende Korrelationsmechanismen untersucht: farbiges Rauschen, welches zeitlich-korrelierten Input darstellt, und negative Puls-Rückkopplung, welche Feuerraten-Adaption realisiert. Für das "Perfect-Integrate-and-Fire" (PIF) Modell, welchen durch ein allgemeines Gauss''sches farbiges Rauschen getrieben ist, werden die Statistiken höherer Ordnung der Output-Pulssequenz hergeleitet, insbesondere der Koeffizient der Variation, der serielle Korrelationskoeffizient (SCC), die ISI-Dichte und der Fano-Faktor. Weiterhin wird die Dynamik des PIF Modells mit Puls-getriggertem Adaptionsstrom und weissem Stromrauschen im Detail analysiert. Die Theorie liefert einen Ausdruck für den SCC, der für schwaches Rauschen aber beliebige Adaptions-Stärke und Zeitskale gültig ist, sowie die lineare Antwortfunktion und das Leistungsspektrum der Pulssequenz. Ausserdem wird gezeigt, dass ein stochastischer Adaptionsstrom wie ein langsames farbiges Rauschen wirkt, was ermöglicht, die dominierende Quellen des Rauschen in einer auditorischen Rezeptorzelle zu bestimmen. Schliesslich wird der SCC für das fluktuations-getriebene Feuerregime berechnet. / To understand the complex dynamics of neurons and its ability to process information using a sequence of spikes, it is vital to characterize its stationary spontaneous spiking activity. The statistical properties of spike trains can be explained by reduced stochastic neuron models that account for various sources of noise. A well-developed theory exists for the class of renewal models, in which the interspike intervals (ISIs) are statistically independent. However, experimental studies show that many neurons are not well described by a renewal process because of correlations between ISIs. Such correlations can be captured by generalized, non-renewal models, which are, however, poorly understood theoretically. This thesis represents an analytical study of non-renewal models, focusing on two prominent correlation mechanisms: colored-noise driving representing temporally correlated inputs, and negative feedback currents realizing spike-frequency adaptation. For the perfect integrate-and-fire (PIF) model driven by a general Gaussian colored noise input, the higher-order statistics of the output spike train is derived using a weak-noise analysis of the Fokker-Planck equation. This includes formulas for the coefficient of variation, the serial correlation coefficient (SCC), the ISI density and the Fano factor. Then, the dynamics of a PIF model with a spike-triggered adaptation and a white-noise current is analyzed in detail. The theory yields an expression for the SCC valid for weak noise but arbitrary adaptation strengths and time scale, and also provides the linear response to time-dependent stimuli and the spike train power spectrum. Furthermore, it is shown that a stochastic adaptation current acts like a slow colored noise, which permits to determine the source of spiking variability observed in an auditory receptor neuron. Finally, the SCC is calculated for the fluctuation-driven spiking regime by assuming discrete states of colored noise or adaptation current.
|
Page generated in 0.0465 seconds