• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 22
  • 9
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 169
  • 57
  • 43
  • 38
  • 29
  • 21
  • 21
  • 20
  • 19
  • 18
  • 18
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Characterization of thin laminate interface by using Double Cantilever Beam and End Notched Flexure tests

Majeed, Moiz, Venkata Teja Geesala, Rahitya January 2020 (has links)
This thesis is intended to identify the mode I and mode II fracture toughness to characterize the thin laminate interface by using the Double Cantilever Beam test (DCB) and End Notched Flexure test (ENF). This study’s thin laminate was Polyethylene Terephthalate and Low-Density Polyethylene (PET-LDPE), which is mostly used by packaging industries in the manufacturing of packages to store liquid food. As PET-LDPE film is very flexible and difficult to handle, DCB and ENF tests cannot be performed directly so, sheet metal (Aluminium) was used as carrier material. PET-LDPE film is placed between two aluminum plates to reduce the flexibility and perform the tests. Therefore, the Aluminium plate was also studied to find the constitutive parameters (young’s modulus (E) and mixed hardening parameters (Plastic properties)) under the tensile test and three-point bending test. From the test response, energy release rate calculation has been done for different Pre-crack lengths to validate the DCB and ENF experimental setup, study the different Pre-crack lengths, and characterize the laminate interface. Finite Element simulation (FE simulation) for those tests were carried out in AbaqusTM2020. When needed, the force versus displacement response from FE simulation was optimized against experimental response to find the required constitutive parameters (Young’s modulus, Hardening parameters, and PET-LDPE material properties). Implementing of optimization algorithm and automated simulation has been done with the help of MATLAB code. In contrast, MATLAB works as a server, and Abaqus works as a client and connected two interfaces to run the optimization. The results obtained from experiments and FE simulations were compared to the results found in the literature.
142

Eliminace negativních vlastností betonů vyvolaných použitím recyklovaného kameniva pomocí čedičových vláken / ELIMINATION OF NEGATIVE PROPERTIES OF CONCRETE INDUCED BY THE USE OF RECYCLED AGGREGATES USING BASALT FIBERS

Fittl, David January 2022 (has links)
The thesis summarises information about recycled aggregates and basalt fibres, their interaction in composite material such as concrete. It focuses on the potential deficiencies and properties of concrete due to the use of recycled aggregates and on the possibilities of their subsequent elimination of their negative impact by the use of basalt fibres. It characterizes individual raw materials and their interaction in concrete. It includes verification of the properties of the individual sub-components and the resulting concrete itself. An assessment is made of the impact of the use of recycled aggregates on the properties of concrete (compresive strength, static modulus of elasticity, residual flexure tensile strength and others). The thesis discusses the question of whether the same or similar mechanical properties of concrete can be achieved with natural and recycled aggregates using basalt reinforcing fibres. The work provides for the possibility of settlement the values of these concrete parameters by using basalt fibres as a dispersed reinforcement in concrete. The recycled aggregates come from concrete company JARO AS in the north of Norway, where this work was conducted with the financial support from Erasmus+ at The Arctic University of Norway - campus Narvik.
143

Konstrukční lamelové dřevo vyztužené kompozitními materiály / Structural laminated wood reinforced with composite materials

Kovács, Pavel January 2012 (has links)
This master’s thesis describes an experimental program investigating the strengthening of beams of glued laminated timber with composite reinforcement. The work compares the behavior of beams reinforced with composite reinforcement with unreinforced beam and with solid timber beam. The work also deals with identifying and evaluating the physic-mechanical properties of materials.
144

Rheology of grout for preplaced aggregate concrete. Investigation on the effect of different materials on the rheology of Portland cement based grouts and their role in the production of preplaced aggregate concrete.

Ganaw, Abdelhamed I. January 2012 (has links)
Preplaced aggregate concrete (PAC) is produced by grouting high workability cement based grouts among the voids of compacted coarse aggregate mass. Because of its low shrinkage, PAC has been used for many repair jobs like; tunnel lines, dams and bridge piers. Moreover, it has been used for underwater construction. Grout has a major effect on the properties of produced PAC and well defined grout controls the properties of resulted PAC. The effect of types and amount of powder materials, admixtures, sand and water content on the properties of fresh and hardened grout for the production of PAC have been investigated. Tests on hardened grout and PAC properties have also been carried out to investigate the most important effects. A correlation between hardened properties of grout and PAC has also been analyzed. Grout rheology using four different gradation sands at two different cement-sand and at different w/c ratios ratios has been identified experimentally; no added chemical admixtures or mineral additives had first employed, then superplasticizer (SP) was added at 2% and 1%, and finally a combination of 1% SP and pulverized fuel ash (Pfa) at 20% of the cement weight was employed for all mixes. Grout tests have included two point workability tests by the Viskomat NT, flow time funnel test, Colcrete flow meter test, and water bleeding test. After that, eighteen grout mixes with high workability were produced using three different sands at three w/c ratios and two c/s ratios with 1% SP and Pfa at 20% of the cement weight were designed. Eighteen hardened grout and PAC then produced and their compressive strength and sorptivity were tested. Grout rheology can be defined by the rheology of cement paste employed and the internal distance between sand particles. The effect of sand surface texture on grout rheology is important at very low internal distances. Fresh grout yield stress is the most important property which gives the same degree of sensitivity for all grouts regardless the material type and content used in the mix. There are strong relations between compressive strength of grout and PAC, but less correlation between them in sorptivity test because of the effect high quantity of coarse aggregate of PAC. Sorptivity of PAC is low comparing with different kinds of concrete suggesting its advantage for underwater construction. / Libyan High Education Ministry
145

Modeling and Analysis of Compliant Mechanisms for Designing Nanopositioners

Shi, Hongliang January 2013 (has links)
No description available.
146

Investigation of Interfacial Bonding Between Shape Memory Alloys and Polymer Matrix Composites

Quade, Derek J. January 2017 (has links)
No description available.
147

Development of Novel Computational Simulation Tools to Capture the Hysteretic Response and Failure of Reinforced Concrete Structures under Seismic Loads

Moharrami Gargari, Mohammadreza 26 July 2016 (has links)
Reinforced concrete (RC) structures constitute a significant portion of the building inventory in earthquake-prone regions of the United States. Accurate analysis tools are necessary to allow the quantitative assessment of the performance and safety offered by RC structures. Currently available analytical approaches are not deemed adequate, because they either rely on overly simplified models or are restricted to monotonic loading. The present study is aimed to establish analytical tools for the accurate simulation of RC structures under earthquake loads. The tools are also applicable to the simulation of reinforced masonry (RM) structures. A new material model is formulated for concrete under multiaxial, cyclic loading conditions. An elastoplastic formulation, with a non-associative flow rule to capture compression-dominated response, is combined with a rotating smeared-crack model to capture the damage associated with tensile cracking. The proposed model resolves issues which characterize existing concrete material laws. Specifically, the newly proposed formulation accurately describes the crack opening/closing behavior and the effect of confinement on the strength and ductility under compressive stress states. The model formulation is validated with analyses both at the material level and at the component level. Parametric analyses on RC columns subjected to quasi-static cyclic loading are presented to demonstrate the need to regularize the softening laws due to the spurious mesh size effect and the importance of accounting for the increased ductility in confined concrete. The impact of the shape of the yield surface on the results is also investigated. Subsequently, a three-dimensional analysis framework, based on the explicit finite element method, is presented for the simulation of RC and RM components under cyclic static and dynamic loading. The triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for the material hysteretic response and for rupture due to low-cycle fatigue. The reinforcing steel bars are represented with geometrically nonlinear beam elements to explicitly account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is validated with the results of experimental static and dynamic tests on RC columns and RC/RM walls. The analyses are supplemented with a sensitivity study and with calibration guidelines for the proposed modeling scheme. Given the computational cost and complexity of three-dimensional finite element models in the simulation of shear-dominated structures, the development of a conceptually simpler and computationally more efficient method is also pursued. Specifically, the nonlinear truss analogy is employed to capture the response of shear-dominated RC columns and RM walls subjected to cyclic loading. A step-by-step procedure to establish the truss geometry is described. The uniaxial material laws for the concrete and masonry are calibrated to account for the contribution of aggregate interlock resistance across inclined shear cracks. Validation analyses are presented, for quasi-static and dynamic tests on RC columns and RM walls. / Ph. D.
148

Fiabilité des assemblages structuraux collés pour applications spatiales / Reliability of bonded assemblies for space launchers

Ben Salem, Naoufel 17 December 2012 (has links)
Le dimensionnement des joints collés est une préoccupation majeure du CNES pour lesapplications spatiales des futurs lanceurs. Pour dimensionner une structure collée, il est nécessaire depouvoir apprécier les caractéristiques mécaniques du joint collé.Dans cette étude, trois adhésifs structuraux ont été sélectionnés (Hysol®EA 9321, Hysol®EA9394 et Hysol EA® 9395). Après leur caractérisation massique, une étude statistique pour mettre enévidence les effets des différents paramètres (vitesse d’essai, géométrie éprouvette, le degré depolymérisation…) a été entreprise.La deuxième étape a pour objectif de fiabiliser l’analyse des essais de fissuration etd’améliorer la compréhension des mécanismes d’endommagement et de propagation de fissure dansles liaisons collées. Trois types d’essai ont été utilisés, à savoir, l’essai Double Cantilever Beam(DCB), pour l’étude du mode I, l’essai End Notched Flexure (ENF), pour le mode II, et l’essai MixedMode Bending (MMB), pour les chargements en mode mixte I/II. Nous avons développé de nouvellesinstrumentations et méthodologies d’analyse. Pour affiner le protocole de test standard, la techniquedite de « backface strain monitoring » a été utilisée. Elle consiste à positionnées des jauges dedéformation sur les surfaces de l’éprouvette de façon à enregistrer l’évolution du signalextensométrique durant la propagation de la fissure. Cette méthode permet une meilleure estimation dela position front de fissure ainsi que l'étude de la répartition des contraintes le long du joint de colle.La corrélation d'images numériques (DIC) a également été utilisée afin de proposer un nouveauprotocole de calibrage de la longueur de fissure et pour comparer un modèle analytique (poutre deTimoshenko sur fondation élastique) avec les résultats expérimentaux. / Adhesive bonding is being strongly considered in space applications CNES as anadvantageous assembly technique for future launchers. Correct design of adhesive joints is of majorconcern. Aerospace adhesives are tough viscoelastic matrices (special epoxy resins) reinforced withnano-, or microparticles. Extended use of adhesive joints in structural applications is limited due to thedifficulties in predicting in-service performance, frequently leading to over-conservative design.Three structural adhesives (Hysol®EA 9321, Hysol®EA 9394 and Hysol®EA 9395) wereselected. After their bulk characterization, statistical studies to highlight effects of different parameterse.g. speed, test piece geometry, degree of polymerization were undertaken.In the second stage, fracture mechanics tests were effected employing: the double cantileverbeam (DCB) configuration (mode I characterisation), the three point bending end-notched flexure(ENF) (mode II) and the mixed-mode bending (MMB) (combined mode I/II loading). Crack growth inbonded joints was investigated in a novel way. To refine standard test protocol, the backface strainmonitoring technique was used. Strain gauges were used to measure the strain on the exposed skin ofthe adherends during crack onset and propagation. This method allows better estimation of the crackfront position as well as fine investigation of the stress distribution along the bondline and in the crackfront vicinity. Digital image correlation (DIC) was also used to compare analytical models, e.g.Timoshenko beam on elastic foundation model with experimental results.
149

Monotonic and Fatigue Performance of RC Beams Strengthened with Externally Post-Tensioned CFRP Tendons

El Refai, Ahmed January 2007 (has links)
External post-tensioning is an attractive technique for strengthening reinforced concrete structures because of its ability to actively control stresses and deflections, speed of installation, minimum interruption for the existing structure, and ease of inspection under service conditions. However, external prestressing implies exposing the tendons to the environment outside the concrete section, which may lead to corrosion in steel tendons. Therefore, the interest in using fiber reinforced polymer (FRP) tendons, which are corrosion resistant, has increased. The present work investigated, experimentally and analytically, the flexural performance of reinforced concrete beams strengthened with externally post-tensioned Carbon FRP (CFRP) tendons, under monotonic and fatigue loadings. Initially, tensile fatigue tests were carried out on CFRP tendon-anchor assemblies to assess their response under repeated cyclic loads, before implementing them in the beam tests. New wedge-type anchors (Waterloo anchors) were used in gripping the CFRP specimens. The assemblies exhibited excellent fatigue performance with no premature failure occurring at the anchorage zone. The fatigue tests suggested a fatigue limit of a stress range of 10% of the tendon ultimate capacity (approximately 216 MPa). Monotonic and fatigue experiments on twenty-eight beams (152x254x3500 mm) were then undertaken. Test parameters included the tendon profile (straight and double draped), the initial loading condition of the beam prior to post-tensioning (in-service and overloading), the partial prestressing ratio (0.36 and 0.46), and the load ranges applied to the beam during the fatigue life (39% to 76% of the yield load). The CFRP tendons were post-tensioned at 40% of their ultimate capacity. The monotonic tests of the post-tensioned beams suggested that overloading the beam prior to post-tensioning increased the beam deflections and the strains developed in the steel reinforcing bars at any stage of loading. However, overloading had no significant effect on the yield load of the strengthened beam and the mode of failure at ultimate. It also had no discernable effect on the increase in the tendon stress at yielding. The maximum increase in the CFRP stress at yield load was approximately 20% of the initial post-tensioning stress, for the in-service and overloaded beams. A very good performance of the strengthened beams was observed under fatigue loading. The fatigue life of the beams was mainly governed by the fatigue fracture of the internal steel reinforcing bars at a flexural crack location. Fracture of the bars occurred at the root of a rib where high stress concentration was likely to occur. No evidence of wear or stress concentration were observed at the deviated points of the CFRP tendons due to fatigue. The enhancement in the fatigue life of the strengthened beams was noticeable at all load ranges applied. Post-tensioning considerably decreased the stresses in the steel reinforcing bars and, consequently, increased the fatigue life of the beams. The increase in the fatigue life was slightly affected by the loading history of the beams. At the same load range applied to the beam, increasing the amount of the steel reinforcing bars for the same post-tensioning level decreased the stress range in the bars and significantly increased the fatigue life of the strengthened beams. In the analytical study, a monotonic model that predicts the non-linear flexural response of the CFRP post-tensioned beams was developed and implemented into a computer program. The model takes into account the loading history of the strengthened beams prior to post-tensioning (in-service and overloading). Good agreement was obtained between the measured and the predicted monotonic results. A strain-life based fatigue model was proposed to predict the fatigue life of the CFRP post-tensioned beams. The model takes into consideration the stress-strain history at the stress raisers in the steel bars. It accounts for the inelastic deformation occurring at the ribs during cycling and the resulting changes in the local mean stresses induced. Good agreement between the experimental and predicted fatigue results was observed. A step-by-step fatigue design approach is proposed for the CFRP externally post-tensioned beams. General conclusions of the study and recommendations of future work are given.
150

Structural assessment procedures for existing concrete bridges : Experiences from failure tests of the Kiruna Bridge

Bagge, Niklas January 2017 (has links)
Assessing existing bridges is an important task in the sustainable management ofinfrastructure. In practice, structural bridge assessments are usually conducted usingtraditional and standardised methods, despite knowledge that these methods oftenprovide conservative estimates. In addition, more advanced methods are available, suchas nonlinear finite element (FE) analysis, that are used for research purposes and cansimulate the structural behaviour of bridges more accurately. Therefore, it would beuseful to develop practical and reliable procedures for refined assessments using theseadvanced techniques.Focusing on the ultimate load-carrying capacity of existing concrete bridges, this thesispresents a procedure for structural assessments. The fundamental idea is to improve theassessment successively, as necessary to predict bridges’ structural behaviour adequately.The procedure involves a multi-level assessment strategy with four levels of structuralanalysis, and an integrated framework for safety verification. At the initial level (Level 1)of the multi-level strategy, traditional standardised methods are used, no failures arecovered implicitly in the structural analysis and action effects are verified using localresistances calculated using analytical models. In the subsequent enhanced levels (Levels2 – 4), nonlinear FE analysis is used for stepwise integration of the verification of flexural,shear-related and anchorage failures into the structural analysis. The framework for safetyverifications includes partial safety factor (PSF), global resistance safety factor (GRSF) andfull probabilistic methods. Within each of these groups, verifications of desired safetymargins can be conducted with varying degrees of complexity.To demonstrate and evaluate the proposed structural assessment procedure, comparativestudies have been carried out, based on full-scale tests of a prestressed concrete bridge.This was the Kiruna Bridge, located in the northernmost city in Sweden, which was duefor demolition as part of a city transformation project, necessitated by large grounddeformations caused by the large nearby mine. Thus, it was available for destructiveexperimental investigation within the doctoral project presented in this thesis. The bridgehad five continuous spans, was 121.5 m long and consisted of three parallel girders with a connecting slab at the top. Both the girders and slab were tested to failure to investigatetheir structural behaviour and load-carrying capacity. Non-destructive and destructivetests were also applied to determine the residual prestress forces in the bridge girders andinvestigate the in situ applicability of methods developed for this purpose. The so-calledsaw-cut method and decompression-load method were used after refinement to enabletheir application to structures of such complexity. The variation of the experimentallydetermined residual prestress forces was remarkably high, depending on the sectioninvestigated. There were also high degrees of uncertainty in estimated values, and thusare only regarded as indications of the residual prestress force.Level 1 analysis of the multi-level assessment strategy consistently underestimatedcapacity, relative to the test results, and did not provide accurate predictions of the shearrelatedfailure observed in the test. With linear FE analysis and local resistance modelsdefined by the European standard, Eurocode 2, the load-carrying capacity wasunderestimated by 32 % for the bridge girder and 55 % for the bridge deck slab. At theenhanced level of structural analysis (Level 3), nonlinear FE analyses predicted thecapacities with less than 2 % deviation from the test results and correctly predicted thefailure mode. However, for existing bridges there are many uncertainties, for instance,the FE simulations were sensitive to the level of residual prestressing, boundaryconditions and assumed material parameters. To accurately take these aspects intoaccount, bridge-specific information is crucial.The complete structural assessment procedure, combining the multi-level strategy andsafety verification framework, was evaluated in a case study. Experiences from theprevious comparative studies were used in an assessment of the Kiruna Bridge followingthe Swedish assessment code. The initial assessment at Level 1 of the multi-level strategyand safety verification, using the PSF method, indicated that the shear capacity of one ofthe girders was critical. The most adverse load case (a combination of permanent loads,prestressing and variable traffic loads) was further investigated through enhancedstructural analyses implicitly accounting for flexural and shear-related failures (Level 3).Nonlinear FE analysis and safety evaluation using the PSF method, several variants of theGRSF method and the full probabilistic analysis for resistance indicated that the permittedaxle load for the critical classification vehicle could be 5.6 – 6.5 times higher than thelimit obtained from the initial assessment at Level 1. However, the study also indicatedthat the model uncertainty was not fully considered in these values. The modeluncertainty was shown to have strong effects on the safety verification and (thus)permissible axle loads. The case study also highlighted the need for a strategy forsuccessively improving structural analysis to improve understanding of bridges’ structuralbehaviour. The refined analysis indicated a complex failure mode, with yielding of thestirrups in the bridge girders and transverse flexural reinforcement in the bridge deck slab,but with a final shear failure of the slab. It would be impossible to capture suchcomplexity in a traditional standardised assessment, which (as mentioned) indicated thatthe shear capacity of the girder limited permissible axle loads. However, nonlinear FEanalyses are computationally demanding, and numerous modelling choices are required.Besides a strategy for rationally improving the analysis and helping analysts to focus oncritical aspects, detailed guidelines for nonlinear FE analysis should be applied to reduce the analyst-dependent variability of results and (thus) the model uncertainty. Clearly, toensure the validity of bridge assessment methods under in situ conditions, theirevaluations should include in situ tests. This thesis presents outcomes of such tests, therebyhighlighting important aspects for future improvements in the assessment of existingbridges.

Page generated in 0.0384 seconds