Spelling suggestions: "subject:"fue®"" "subject:"flux®""
131 |
CO2 Recovery by Scrubbing with Reclaimed Magnesium HydroxideGreen, Vicki C. 16 September 2013 (has links)
No description available.
|
132 |
Evaluating the constituent leaching from flue gas desulfurization gypsum (FGDG) under different leaching conditions, its geochemical interactions with main soil constituents and identifying potential beneficial applicationsKoralegedara, Nadeesha H. 30 September 2016 (has links)
No description available.
|
133 |
Novel Regenerable Adsorbents for Wastewater Treatment from Wet Flue Gas ScrubbersSanghavi, Urvi January 2016 (has links)
No description available.
|
134 |
MEASUREMENT OF ALGAL GROWTH RATE BETWEEN HARVESTS IN AN ARTIFICIALLY LIT PHOTOBIOREACTOR UNDER FLUE GAS CONDITIONSDoshi, Viral V. 22 December 2006 (has links)
No description available.
|
135 |
Modeling and optimization of a cross-flow, moving-bed, flue gas desulfurization reactorDuespohl, Dale W. January 1995 (has links)
No description available.
|
136 |
Preliminary investigation on flue gas desulfurization in an in-duct spray dryer using condensation aerosolsChang, Sen-min January 1991 (has links)
No description available.
|
137 |
Design of a bench scale apparatus for the evaluation of the gamma alumina flue gas desulfurization processNorman, Christian G., III January 1985 (has links)
No description available.
|
138 |
Characterization of trace elements in dry flue gas desulfurization (FGD) by-productsTaerakul, Panuwat 14 July 2005 (has links)
No description available.
|
139 |
The dissolution of limestone, coal fly ash and bottom ash in wet flue gas desulphurizationKoech, Lawrence 03 1900 (has links)
M. Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology): Vaal University of Technology / Strict environmental regulation on flue gas emission has led to the implementation of FGD technologies in power stations. Wet FGD technology is commonly used because it has high SO2 removal efficiency, high sorbent utilization and due to availability of the sorbent (limestone) used. SO2 is removed by passing flue gas through the absorber where it reacts with the slurry containing calcium ions which is obtained by dissolution.
This study presents the findings of the dissolution of a calcium-based material (limestone) for wet FGD process. This was done using a pH stat apparatus and adipic acid as acid titrant. Adipic acid was used because of its buffering effect in wet FGD process. The conditions used for this study are similar to what is encountered in a wet FGD process. The extent of dissolution was determined by analyzing the amount of calcium ions in solution at different dissolution periods. The dissolution kinetics were correlated to the shrinking core model and it was found out that chemical reaction at the surface of the particle is the rate controlling step. This study also investigated the dissolution of coal fly ash and bottom ash. Their dissolution kinetics showed that the diffusion through the product layer was the rate controlling step due to an ash layer formed around the particle. The formation of ash layer was attributed to pozzolanic reaction products which is calcium-alumino-silicate (anorthite) compounds were formed after dissolution.
The effect of fly ash on the dissolution of rate of limestone was also studied using response surface methodology. Limestone reactivity was found to increase with increase in the amount of fly ash added and the pH was found to be strong function of the rate constant compared to other dissolution variables. The presence of silica and alumina in fly ash led to a significant increase in the specific surface area due to hydration products formed after dissolution. / Eskom
|
140 |
Återvinning av rökgaskondensat på Moskogen : Ett investeringsunderlag för minskad vattenkonsumtion på ett kraftvärmeverkGunnars, Hans, Magnusson, Gustav January 2020 (has links)
Det här projektet har varit på uppdrag av Kalmar Energi AB och har utförts på kraftvärmeanläggningen Moskogen. Projektet syftade till att undersöka om återvinning av rökgaskondensat till spädvatten var möjlig och ekonomiskt försvarbart. Denna åtgärd skulle potentiellt kunna minska anläggningens råvattenkonsumtion och det skulle leda till en ekonomisk besparing. Åtgärden skulle även bidra till att anläggningen blev mer självförsörjande och mindre känslig vid störningar på det lokala råvattennätet. Mätningar av flöden på rökgaskondensatsproduktionen, halter av föroreningar och råvattenkonsumtionen gav viktiga parametrar för kontakt med leverantör av reningssystem. Samarbete upprättades med Eurowater AB där två olika reningsanläggningar togs fram och delgavs Kalmar Energi AB. Kostnaden för de två olika förslagen och respektive råvattenbesparing gav två avskrivningstider för investeringarna. Slutsatsen som drogs av projektet var att en installation av en reningsanläggning för återvinning av rökgaskondensatet var möjlig. / This project has been commissioned by Kalmar Energi AB and has been carried out at the CHP plant Moskogen. The project aimed to investigate whether recycling of flue gas condensate was possible and economically justifiable. This measure could potentially reduce the plant´s raw water consumption and would result in economic savings. The measure would also help the plant become more self-sufficient and less sensitive to disturbances on the local raw water distribution net. Measurements of the flow of flue gas condensate, levels of pollution and raw water consumption gave important parameters for contact with the purification supplier. We entered a collaboration with Eurowater AB where two different purification plants were presented to Kalmar Energi AB. The cost of the two different proposals and their respective raw water savings gave two different payback periods in which the initial investment would be recouped by the client. The conclusion drawn from the project is that the installation of a purification plant for recycling of flue gas condensate was possible.
|
Page generated in 0.05 seconds