Spelling suggestions: "subject:"foi"" "subject:"fois""
71 |
Thermal Stability and Performance of Foil Thrust BearingsStahl, Brian James 26 June 2012 (has links)
No description available.
|
72 |
Guldgubbar : En studie om guldgubbars gestik och manipulationer / Gold goil figures : A study on the gestures and manipulations of gold foil figuresRudenlöv, Ruth January 2022 (has links)
The size of the gold foil figures is about the size of half a postal stamp and consists of millimeter-thin gold plates with depicted motifs. They may be the smallest artefact that we have left from the Late Iron Age, more specifically 6th and 7th Century CE. Despite this, it has not stopped the craftsman from creating such detailed motifs that are almost impossible to see to the naked eye. In previous research, the gold foil figures have been treated as representative images, however, this present work shows that these small gold plates have been considered as more than just images. An investigation is conducted of phenomenological aspects that can be observed in the picture, and of different conditions in which the find arises. By studying and discussing the collection of gold foil figures from four locations in southern Sweden and comparing various aspects that arise in the material, interesting patterns and details are noted which did not receive much attention previously.
|
73 |
Effects of Harmonic Voltage Distortion on Partial Discharge Characteristics on Polymeric Insulation FoilLinde, Thomas, Schlegel, Stephan 21 November 2024 (has links)
The partial discharge (PD) characteristics of polymeric insulation foil are investigated under harmonic distorted voltage waveforms. Distorted voltage waveforms can cause intensified aging, leading to preliminary insulation failure, especially when PD are present. The exact mechanism in which way harmonic distortion influences the PD activity and hence the degradation of e.g. polymeric insulation is not yet clear. The contribution presents results of parameter measurements of surface discharges on polyethylen terephtalat (PET) insulation foil. Voltage waveforms with different superimposed harmonic voltages up to 31st order and total harmonic distortions up to 20% but constant peak voltage are utilized to isolate principal influencing factors on the PD activity. The measurements show that the shape of the voltage waveform, expressed by a shape factor, has a significant effect on the apparent charge and repetition rate as well as the phase interval per period in which PD are present. Hereby, the frequency of the superimposed harmonic affects the PD activity more than the total harmonic distortion. The implications of the obtained measurement results are discussed in the context of intensified degradation and hence accelerated aging of polymeric insulation systems.
|
74 |
Creation of an Orderly Jet and Thrust Generation in Quiescent Fluid from an Oscillating Two-dimensional Flexible FoilShinde, Sachin Yashavant January 2012 (has links) (PDF)
In nature, many of the flapping wings and fins in swimming and flying animals have various degrees of flexibility with strong and coupled solid-fluid interactions between the structure and the fluid. In most cases, the wing structure, the flow and their interactions are complex. This thesis experimentally investigates a ‘simple’ fluid-flexible foil interaction problem: flow generated by a pitching foil with chordwise flexibility.
To explore the effect of flexibility on the flow, we study the flow generated in quiescent water (the limiting case of infinite Strouhal number) by a sinusoidally pitching rigid symmetrical NACA0015 foil to which is attached a 0.05 mm thick chordwise flexible polythene flap at the trailing edge. The chordwise length of flap is 0.79 c, where c = 38 mm is the chord length of the rigid foil; span of the foil and flap is 100 mm. Detailed particle image velocimetry (PIV) and flow visualization measurements have been made for twelve cases, corresponding to three pitching amplitudes, ±10◦,± 15◦, ±20◦, and four frequencies, 1, 2, 3 and 4 Hz for each amplitude.
For most of these cases, a narrow coherent jet aligned along the center-line, containing a reverse B’enard–K´arm´an vortex street, and a corresponding unidirectional thrust are generated. This thrust is similar to the upward force generated during hovering, but motion of our foil is much simpler than the complex wing kinematics found in birds and insects; also the thrust generation mechanism seems to be different. In our case, the thrust is from a coordinated pushing action of the rigid foil and the flexible flap. Control volume analysis reveals the unsteady nature of thrust generation. In this intricately coupled flow generation problem, chordwise flexibility is found to be crucial in producing the coherent jet. In this thesis, we explore in detail the physics of jet flow produced by the foil with a flexible flap, and identify the importance of flexibility in flow generation. Flap motion ensures appropriate spatial and temporal release of vortices, and also imparts them convective motion, to obtain the staggered pattern that produces the jet. To describe the fluid-flap interaction, we conveniently characterize the flap through a non-dimensional stiffness, ‘effective stiffness’ (EI)∗ of the flap, that captures the effects of both the flap properties as well as the external forcing. With the same flap by changing the pitching parameters, we cover a fairly large (EI)∗ range varying over nearly two orders of magnitude. However, we observed that only moderate (EI)∗ (~0.1 - 1) generates sustained narrow, orderly jet. We provide thrust estimates useful for the design of flapping foil thrusters/propulsors. Although this study has only indirect connections with the hovering in nature, it may be useful in understanding the role of flexibility of bird and insect wings during hovering.
In contrast, a foil with a rigid trailing edge produces a weak jet whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions over a wide range of pitching parameters.
|
75 |
A simple one step process for enhancement of titanium foil dye sensitised solar cell anodesLinnemann, J., Giorgio, J., Wagner, K., Mathieson, G., Wallace, G. G., Officer, D. L. 19 December 2019 (has links)
The photo-conversion efficiency and stability of back-illuminated dye sensitised solar cells with titanium foil based photoanodes are enhanced by a simple nitric acid treatment through which the foil is passivated. This treatment changes the morphology of the titanium foil and increases its electrochemical double layer capacitance.
|
76 |
High Pressure Performance of Foil Journal Bearings in Various GasesBriggs, Maxwell H. January 2008 (has links)
No description available.
|
77 |
Sputtered Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) thin films on copper foil substrates / Sputtered Pb(Zr0.52Ti0.48)O3 (PZT) thin films on copper foil substratesWalenza-Slabe, Joel 20 December 2012 (has links)
Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) thin films are of interest for their large dielectric permittivity, ferroelectric, and piezoelectric properties. The material has been widely studied for use in high frequency transducers, multi-layered capacitors, and ferroelectric random access memory. Copper foils are an inexpensive, flexible substrate with a low resistivity which makes them ideal for many transducer and capacitor applications. PZT thin films on copper foils were produced by RF sputtering and crystallized under reducing conditions. Causes and prevention of a cuprous oxide interlayer are discussed. The film structure was characterized by XRD, SEM, and AFM. The permittivity was low, but remanent polarization increased to as high as ~40 μC/cm² as film thickness and crystallization temperature increased. Residual stresses were measured by x-ray diffraction using the sin²ψ method. The relative permittivity of the PZT/Cu films was measured as a function of applied AC electric field. By performing a Rayleigh analysis on this data one can determine the relative contributions of the intrinsic, reversible, and irreversible components to the permittivity. The residual stress could be correlated to the reversible part of the permittivity. The first order reversal curves (FORCs), which characterize the ferroelectric switching, give indications of the defect state of the film. Cantilever energy harvesters were fabricated. Large electrodes were able to be evaporated onto the films after oxidizing pinholes and cracks on a hot plate. Devices were tested on a shaker table at < 100 Hz. A dynamic model based on Euler-Bernoulli beam equations was used to predict power output of the fabricated devices. The observed output was comparable to model predictions. Resonant frequency calculations were in line with observed first and second resonances at ~17 Hz and ~35 Hz which were also close to those predicted by the dynamic model. / Graduation date: 2013
|
78 |
Formal Object Interaction Language: Modeling and Verification of Sequential and Concurrent Object-Oriented SoftwarePamplin, Jason Andrew 03 May 2007 (has links)
As software systems become larger and more complex, developers require the ability to model abstract concepts while ensuring consistency across the entire project. The internet has changed the nature of software by increasing the desire for software deployment across multiple distributed platforms. Finally, increased dependence on technology requires assurance that designed software will perform its intended function. This thesis introduces the Formal Object Interaction Language (FOIL). FOIL is a new object-oriented modeling language specifically designed to address the cumulative shortcomings of existing modeling techniques. FOIL graphically displays software structure, sequential and concurrent behavior, process, and interaction in a simple unified notation, and has an algebraic representation based on a derivative of the π-calculus. The thesis documents the technique in which FOIL software models can be mathematically verified to anticipate deadlocks, ensure consistency, and determine object state reachability. Scalability is offered through the concept of behavioral inheritance; and, FOIL’s inherent support for modeling concurrent behavior and all known workflow patterns is demonstrated. The concepts of process achievability, process complete achievability, and process determinism are introduced with an algorithm for simulating the execution of a FOIL object model using a FOIL process model. Finally, a technique for using a FOIL process model as a constraint on FOIL object system execution is offered as a method to ensure that object-oriented systems modeled in FOIL will complete their processes based activities. FOIL’s capabilities are compared and contrasted with an extensive array of current software modeling techniques. FOIL is ideally suited for data-aware, behavior based systems such as interactive or process management software.
|
79 |
Transport hochgeladener Ionen durch Nanokapillarfolien und makroskopische GlaskapillarenKreller, Martin 04 July 2013 (has links) (PDF)
In dieser Arbeit wird die Transmission von hochgeladenen Ionen durch Nanokapillarfolien und makroskopische Glaskapillaren untersucht. Die systematische Analyse des übertragenen Ionenstrahls liefert Informationen zur Physik der Ionentransmission und hier insbesondere zum Einfluss des Anstellwinkels zwischen Kapillarachse und Richtung des einfallenden Ionenstrahls und zum Einfluss der kinetischen Energie des einfallenden Ionenstrahls auf den Transmissionsprozess. Es werden Ionenoptiken aus Nanokapillarfolien und makroskopischen Glaskapillaren konstruiert und deren Eigenschaften zur Ionenstrahlformierung untersucht.
Der durch das Kapillartarget transportierte Ionenstrahl wird durch die Ausfallsrichtung μ, die Divergenz Γ, der Intensität N und des Anteils umgeladener Teilchen charakterisiert. Es wird die Abhängigkeit dieser charakteristischen Eigenschaften von der in die Kapillaren eingetragen Ladung untersucht. Weiterhin erfolgt eine exponentielle Annäherung an die Gleichgewichtswerte mit der Aufladungskonstante ρ. Die Aufladungskonstante wächst mit steigendem Anstellwinkel und steigender kinetischer Energie der einfallenden Teilchen, ist aber für alle oben genannten Eigenschaften des ausfallenden Ionenstrahls gleich.
Erstmalig werden gleichzeitig alle oben genannten Eigenschaften des transportierten Ionenstrahls in Abhängigkeit von der kinetischen Energie der einfallenden Teilchen untersucht. Die Energieabhängigkeit der Eigenschaften des übertragenen Ionenstrahls wird mit einer exponentiellen Annäherung an einen Grenzwert für hohe kinetische Energien beschrieben und durch den Parameter charakterisiert. Dieser ist für alle Eigenschaften des ausfallenden Ionenstrahls im Rahmen des Messfehlers gleich.
Die in dieser Arbeit im Bereich von Ekin. = q · 630 eV bis Ekin. = q · 5600 eV gemessene exponentielle Abhängigkeit des Guiding-Prozesses von der kinetischen Energie unterscheidet sich von der in der Literatur zu findenden Abhängigkeit.
Die Divergenz des ausfallenden Ionenstrahls wird gesondert betrachtet. Die Experimente zeigen eine größere Divergenz des ausfallenden Ionenstrahls in Ablenkrichtung als senkrecht zur Ablenkrichtung. Die Strahldivergenz senkrecht zur Ablenkrichtung steigt im untersuchten Energiebereich mit steigendem Anstellwinkel. In Ablenkrichtung wird in Abhängigkeit von der kinetischen Energie eine unterschiedliche Abhängigkeit der Divergenz vom Anstellwinkel gemessen. Das Verhalten wird unter Berücksichtigung des Guiding-Modells diskutiert.
Untersuchungen hinsichtlich einer möglichen technischen Anwendbarkeit des Guiding-Prozesses führen zu differenzierten Ergebnissen. Die Messungen mittels einer aus einer Nanokapillarfolie geformten Linse zeigen ein geringes technischen Potenzial, da die Fokussierung des einfallenden Strahls durch die Divergenz des ausfallenden Ionenstrahls kompensiert wird. Im Gegensatz dazu zeigt die Verwendung einer makroskopischen Glaskapillare ein großes Anwendungspotenzial. Die Ionenstromdichte des einfallenden Ionenstrahls konnte mit einer konischen Glaskapillare um den Faktor 8 erhöht werden. Durch die Realisierung eines Potenzialunterschieds zwischen dem Ein- und Ausgang einer makroskopischen Kapillare wird ein Ionenstrahl innerhalb der Kapillare abgebremst. Es wird gezeigt, dass der Guiding-Effekt die Aufweitung des Ionenstrahls während der Abbremsung effektiv verhindert. Dies ermöglicht die Konstruktion einer kompakten Ionenabbremseinheit.
|
80 |
Design of a Boron Neutron Capture Enhanced Fast Neutron Therapy AssemblyWang, Zhonglu 22 August 2006 (has links)
A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient¡¯s head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm B-10 for a 5.0-cm tungsten filter and 29.8% for an 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively.
To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 ¡À 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4¡À 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 ¡À 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm2 treatment beam.
The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom.
|
Page generated in 0.0467 seconds