• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 22
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 131
  • 57
  • 45
  • 23
  • 19
  • 17
  • 16
  • 15
  • 15
  • 13
  • 12
  • 11
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Análise do fluxo glotal em modelo da laringe baseado em tomografia computadorizada / Glotal fluid flow analysis in Larynx model based on computed tomography scans

Fernando Roberto Hebeler Andrade 15 March 2013 (has links)
A voz é a principal ferramenta de comunicação da espécie humana e quase 70% da população economicamente ativa dos países desenvolvidos dependem direta ou indiretamente dela em sua profissão. Sua produção deve-se ao funcionamento harmônico de sistemas fisiológicos distintos, nos quais a laringe desempenha um importante papel. É nela que as funções de deglutição, respiração e fonação se encontram e também onde o pulso glotal é formado durante a passagem do ar pelas pregas vocais. Se os nervos e músculos da região por alguma razão são lesionados, o funcionamento dessas funções é prejudicado, causando sérios danos à qualidade de vida do indivíduo. Em virtude disso, diversas pesquisas tem sido realizadas visando adquirir informações que auxiliem as tomadas de decisões clínicas e cirúrgicas. Embora diversos avanços tenham sido realizados no campo de modelagens das pregas vocais e nos estudos da laringe, modelos baseados em geometrias de pacientes específicos que possam colaborar mais ativamente no planejamento cirúrgico, permanecem um desafio. Nesse sentido, este trabalho apresenta o desenvolvimento de um modelo computacional tridimensional, com base em imagens de tomografia computacional. Tendo por objetivo impulsionar a modelagem das características fisiológicas de pacientes reais e assim proporcionar maiores informações para tomadas de decisões. Esse modelo foi utilizado em simulações de escoamento de fluido solucionadas por elementos finitos, apresentando possibilidades satisfatórias de contribuir para avanços na modelagem de pacientes com patologias e em abordagens interativas, tal como interferências nos modelos virtuais por interfaces hápticas e simulações virtuais de cirurgia da laringe. / The voice is the main instrument for communication of human beings and almost 70% of the economically active population in the developed countries depends, directly or indirectly, on it for their profession. Its production is due to the harmonious interaction of different physiological systems, in which the larynx plays an important role. The larynx is involved in the deglutition, breathing and phonation functions and it is where the glottal pulse is formed during airflow through the vocal folds. If the nerves and muscles in this region for some reason are injured, this functions are adversely affected, causing serious damages to the individuals quality of life. As a result, several researches have been carried out, aiming at acquiring information that help in the clinical and surgical decision making. Although many progresses had been reached in the field of vocal folds modeling and in larynx studies, patientspecific geometry modeling that may take an active part in the surgical planning are still a challenge. In this regard, this work presents the development of a threedimensional computational model, based on images from computed tomography (CT) scans. This model was used in fluid flow simulations, solved by finite element analysis, showing satisfactory possibilities for contributions to progresses in the modeling of patients with lesions and in interactive approaches, such as interferences in the models with haptic interface and virtual surgery of the larynx.
112

Výpočtové modelování interakce kmitajících hlasivek s proudem vzduchu / Computational modelling of interaction between oscillating vocal folds and air flow

Pavlica, Ondřej January 2011 (has links)
Master thesis deals with creating numerical model of the human vocal folds. Calculation algorithm includes interaction between vocal chords and the air flow. Modal analysis of structural and acoustic environment, backround research of vocal folds function and summary of some published overviews of numerical models are parts of this work. Analysis of the results achieved by the numerical simulations and calculations are focused on the pressure and velocity conditions in the areas under vocal folds, between vocal folds and above vocal folds. Movement and stress analysis of individual layers of vocal folds has been made. Impact of tissue thickness on resulting behaviour has been assessed.
113

Development of a 3D Computational Vocal Fold Model Optimization Tool

Vaterlaus, Austin C. 09 June 2020 (has links)
One of the primary objectives of voice research is to better understand the biomechanics of voice production and how changes in properties of the vocal folds (VFs) affect voice ability and quality. Synthetic VF models provide a way to observe how changes in geometry and material property affect voice biomechanics. This thesis seeks to evaluate an approach of using a genetic algorithm to design synthetic VF models in three ways: first, through the development of a computationally cost-effective 3D vocal fold model; second, by creating and optimizing a variation of this model; and third, by validating the approach. To reduce computation times, a user-defined function (UDF) was implemented in low-fidelity 2D and 3D computational VF models. The UDF replaced the conventional meshed fluid domain with the mechanical energy equation. The UDF was implemented in the commercial finite element code ADINA and verified to produce results that were similar to those of 2D and 3D VF models with meshed fluid domains. Computation times were reduced by 86% for 2D VF models and 74% for 3D VF models while core vibratory characteristic changes were less than 5%. The results from using the UDF demonstrate that computation times could be reduced while still producing acceptable results. A genetic algorithm optimizer was developed to study the effects of altering geometry and material elasticity on frequency, closed quotient (CQ), and maximum flow declination rate (MFDR). The objective was to achieve frequency and CQ values within the normal human physiological range while maximizing MFDR. The resulting models enabled an exploration of trends between objective and design variables. Significant trends and aspects of model variability are discussed. The results demonstrate the benefit of using a structured model exploration method to create models with desirable characteristics. Two synthetic VF models were fabricated to validate predictions made by models produced by the genetic algorithm. Fabricated models were subjected to tests where frequency, CQ, and sound pressure level were measured. Trends between computational and synthetic VF model responses are discussed. The results show that predicted frequency trends between computational and synthetic models were similar, trends for closed quotient were inconclusive, and relationships between MFDR and sound pressure level remained consistent. Overall, while discrepancies between computational and synthetic VF model results were observed and areas in need of further study are noted, the study results provide evidence of potential for using the present optimization method to design synthetic VF models.
114

The Effect of Electronic Nicotine Delivery Systems on the Vocal Folds

Sample, Hilary Gayle 12 June 2019 (has links)
No description available.
115

Influence of Material and Geometric Parameters on the Flow-Induced Vibration of Vocal Folds Models

Pickup, Brian A. 13 July 2010 (has links) (PDF)
The vocal folds are an essential component of human speech production and communication. Advancements in voice research allow for improved voice disorder treatments. Since in vivo analysis of vocal fold function is limited, models have been developed to simulate vocal fold motion. In this research, synthetic and computational vocal fold models were used to investigate various aspects of vocal fold vibratory characteristics. A series of tests were performed to quantify the effect of varying material and geometric parameters on the models' flow-induced responses. First, the influence of asymmetric vocal fold stiffness on voice production was evaluated using life-sized, self-oscillating vocal fold models with idealized vocal fold geometry. Asymmetry significantly influenced glottal jet flow, glottal area, and vibration frequency. Second, flow-induced responses of simplified and MRI-based synthetic models were compared. The MRI-based models showed remarkable improvements, including less vertical motion, alternating convergent-divergent glottal profile patterns, and mucosal wave-like movement. Third, a simplified model was parametrically investigated via computational modeling techniques to determine which geometric features influenced model motion. This parametric study led to identification and ranking of key geometric parameters based on their effects on various measures of vocal fold motion (e.g., mucosal wavelike movement). Incorporation of the results of these studies into the definition of future models could lead to models with more life-like motion.
116

Flow-induced Responses of Normal, Bowed, and Augmented Synthetic Vocal Fold Models

Murray, Preston Roylance 10 August 2011 (has links) (PDF)
The voice is the primary mode of communication for humans. Because the voice is so important, voice disorders tend to severely diminish quality of life. A better understanding of the physics of voice production can help to improve treatment of voice disorders. For this thesis research a self-oscillating synthetic vocal fold model was developed, compared with previous synthetic vocal fold models, and used to explore the physical effects of augmentation injections on vibration dynamics. The research was conducted in two stages. First, four vocal fold models were evaluated by quantifying onset pressure, frequency, maximum glottal gap, flow rate, and medial surface motion. The newly developed model, differentiated from the other models by the inclusion of more layers, adjusted geometry, and an extremely soft superficial lamina propria layer, was included in this study. One of the models, created using MRI-derived geometry, had the most defined mucosal wave. The newly-developed model had the lowest onset pressure, flow rate, and smallest maximum glottal width, and the model motion compared very well with published excised human larynx data. Second, the new model was altered to simulate bowing by decreasing the volume of the body layer relative to that of a normal, unbowed model. Two models with varying degrees of bowing were created and tested while paired with normal models. Pre- and post-injection data (onset pressure, vibration frequency, glottal flow rate, open quotient, and high-speed image sequences) were recorded and compared. General pre- to post-injection trends included decreased onset pressure, glottal flow rate, and open quotient, and increased vibration frequency. Additionally, there was a decrease in mucosal wave velocity and an increase in phase angle. The thesis results are anticipated to aid in better understanding the physical effects of augmentation injections, with the ultimate goal of obtaining more consistent surgical outcomes, and also to contribute to the advancement of voice research through the development of the new synthetic model.
117

Kinematic Analysis And Metamorphic Character Of A Shear Zone In The Thelon Front, Artillery Lake Area, District of Mackenzie, N.W.T.

Miller, Stuart Malcolm 04 1900 (has links)
<p>The Artillery Lake area is diagonally bisected by the north-northeasterly trending Thelon Front. The best single surface feature to represent the Thelon Front is the "straight zone" which is a zone of porphyroclastic metasediments that also contains the study area. Kinematic indicators observed in the study area include extensional shear surfaces, C&S fabric, mica "fish", asymmetrical porphyroclast tails, asymmetrical folds, microfaulted porphyroclasts and secondary quartz subgrain foliations. Kinematic analysis of these features has shown that right lateral simple shear displacements and "east-side-up" vertical shear displacements have been accommodated within the rocks of the study area. The displacement senses determined by kinematic analysis are consistent with the regional data indicating progressively deeper exposures of structural levels to the east which suggests vertical motions localized at the domain boundaries. The stretching lineation present in the area is a combination of passive and direct extensions due to sub-vertical motions in the shear zone. A transition from early-ductile to late-brittle feldspar deformation textures indicates that metamorphic conditions during initial deformation were at epidoteamphibolite facies and relaxed during the later stages of deformation to greenschist facies. </p> / Thesis / Bachelor of Science (BSc)
118

Intraglottal Glottal Pressure Distributions for Three Oblique Glottal Angles

Li, Jun 18 August 2010 (has links)
No description available.
119

The Nucleation and Evolution of Riedel Shear Zones as Deformation Bands in Porous Sandstone

Ahlgren, Stephen G. January 1999 (has links)
Riedel shear zones are geometric fault patterns commonly associated with strike-slip fault systems. The progressive evolution of natural Riedel shear zones within the Navajo Sandstone of southern Utah is interpreted from the spatial evolution of small-scale, incipient Proto-Riedel Zones (PRZs) to better-developed Riedel shear zones using field mapping and three-dimensional digital modeling. PRZs nucleate as a tabular zone of localized shearing marked by en èchelon deformation bands, each of which is no more than a few mm wide and tens of cm long, and oriented at 55° - 85° to the trend of the zone. With increasing strain, deformation bands and sedimentary markers are sheared ductily through granular flow and assume a sigmoidal form. The temporal and spatial evolution of bands comprising a Riedel shear zone suggests that PRZs nucleate as transitional-compactional deformation bands under localized, supra-lithostatic fluid pressure. Subsequent bands develop under modified regional stresses as conjugate shear fractures within the strain- hardened axis of the PRZ. These antithetic driven systems are not compatible with traditional synthetic driven models of Riedel shear zones. Unlike most synthetic driven examples, these antithetic driven systems are not controlled by preexisting "basement" structures, thus their geometries reflect a primary propagation or secondary passive deformation mechanism.
120

Analýza vybraných antropomotorických ukazatelů vojáků Hradní stráže / Analysis of specific anthropomotoric indicators of the Castle guard soldiers

Procházka, Josef January 2012 (has links)
The work deals with the analysis of selected anthropomotorics indicators members of the military unit of the Castle Guard. These indicators are: skin thickness measured at four part in the body posture and the level of performance in the annual examination of physical training. Is complemented by a survey, investigating the relationship of soldiers to physical activity. The theoretical part describes the military department of the Castle Guard, measurement of skin fold thickness, posture assessment, but also the structure and content of the physical training of the Army of the Czech Republic. The practical part contains a methodical workflow and finally analyzes the data Based on the analysis results we developed recommendations for managers concerning the components of physical performance which should be focused on in the training lessons. The results show that most of the soldiers are in the normal range (average) values of subcutaneous fat. Nevertheless, more than 10% of soldiers were found above- average amount of fat in the subcutaneous layer. Posture has almost 90% of the tested men was good, but the horizontal axis misalignment arms was confirmed in 78% of tested men. Changes in assessment disciplines annual examination of physical training in 2011 may also be the cause of the distribution...

Page generated in 0.0378 seconds