Spelling suggestions: "subject:"fonctions harmonique""
11 |
PROPRIÉTÉS AU BORD DES FONCTIONS HARMONIQUES POUR LES DIFFUSIONS, LES PROCESSUS STABLES ET LEURS PERTURBATIONSLuks, Tomasz 12 June 2012 (has links) (PDF)
La thèse se compose de quatre articles. Dans l'article I, " Hardy spaces for the Laplacian with lower order perturbations ", on considère les espaces de Hardy des fonctions harmoniques pour le Laplacien avec une perturbation de type gardient ou de Schrödinger, sous des conditions de Kato. On y montre le théorème de représentation pour les espaces de Hardy sur les domaines bornés au bord lisse dans l'espace euclidien. L'article II, " On hardy spaces ", traite des caractérisations des espaces de Hardy et des espaces de Hardy conditionnels du Laplacien et du Laplacien fractionnaire à l'aide des identités de Hardy-Stein. Dans l'article III, " Boundary behavior of alpha-harmonic functions on the complement of the sphere and hyperplane ", on étudie les fonctions harmoniques pour le Laplacien fractionnaire sur l'espace euclidien privé d'une sphère ou d'un hyperplan. On obtient les théorèmes de représentation pour les espaces de Hardy ainsi que les théorèmes de Fatou. On établit également la formule explicite pour le noyau de Martin sur l'espace euclidien privé d'une sphère et pour la fonction de Green, le noyau de Martin et la mesure harmonique sur l'espace euclidien privé d'un hyperplan. L'article IV, " Martin représentation, Relative Fatou Theorem and Hardy spaces for fractional Laplacian with a gardient perturbation ", concerne la théorie du potentiel pour le Laplacien fractionnaire avec une perturbation de type gardient. On y montre l'existence de noyau de Martin pour les domaines bornés au bord lisse ainsi que la représentation de Martin pour les fonctions harmoniques. Le théorème de Fatou relatif et le théorème de représentation pour les espaces de Hardy y sont également établis.
|
12 |
Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de HeisenbergPetit, Camille 19 June 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière.
|
13 |
Probabilités et géométrie dans certains groupes de type finiMathéus, Frédéric 25 November 2011 (has links) (PDF)
Dans de nombreux phénomènes régis par le hasard, le résultat de l'observation provient de la combinaison aléatoire d'événements élémentaires : le gain d'un joueur au jeu de pile ou face est le résultat de parties successives, mélanger un jeu de cartes s'effectue en plusieurs battages consécutifs, l'enchevêtrement d'une molécule d'ADN dans une cellule est le produit, entre autres, de croisements successifs. Ces événements élémentaires ont la particularité d'être réversibles (gagner/perdre au pile ou face, croiser/décroiser des brins d'ADN) et l'aléa régissant leur combinaison possède une certaine indépendance (l'issue d'une partie de pile ou face n'a a priori aucune influence sur la suivante). Un modèle possible pour ces phénomènes consiste à considérer un groupe G, fini ou dénombrable, que l'on munit d'une mesure de probabilité μ. On effectue des tirages successifs d'éléments dans G avec les hypothèses suivantes : les tirages sont indépendants, et, pour chaque tirage, μ(g) est la probabilité de tirer l'élément g. Si g1, g2,...,gn est le résul- tat de n tirages, on forme le produit g1.g2. ... . gn. C'est, par définition, la position à l'instant n de la marche aléatoire sur G de loi μ, et la question est : que peut-on dire du comportement asymptotique de g1.g2. ... .gn lorsque n augmente in- définiment ? La marche aléatoire s'en va-t'elle à l'infini ? Si oui, dans quelle direction ? Et à quelle vitesse ? Mes travaux depuis 2003 sont consacrés, pour l'essentiel, à l'étude du comportement asymptotique des marches aléatoires dans trois familles de groupes infinis, non abéliens et de type fini : les produits libres de groupes finis, les groupes d'Artin diédraux, ainsi que certaines extensions des groupes libres. Ils sont le fruit de collaborations avec Jean Mairesse (CNRS, Paris VI) et François Gautero (Université de Nice). Dans le cas des produits libres de groupes finis, nous décrivons précisément la mesure harmonique pour les marches aléatoires au plus proche voisin dans ces groupes, ce qui permet de calculer la vitesse et l'entropie asymptotique. En particulier, ces quantités dépendent de façon analytique des coefficients de μ. Considérant l'inégalité fondamentale de Yves Guivarc'h entre vitesse, entropie et croissance, nous montrons que les générateurs canoniques des produits libres de groupes finis sont extrémaux au sens de Vershik. Les groupes d'Artin diédraux forment une classe de groupes d'Artin qui généralise le groupe de tresses à trois brins B3 et pour laquelle nous donnons une description précise des géodésiques. La connaissance de la vitesse de fuite des marches aléatoires au plus proche voisin dans le groupe B3 est un premier outil de mesure de la complexité asymptotique d'une tresse aléatoire. Dans ce cas, on montre que la vitesse dépend de façon lipschitzienne mais non différentiable de μ, faisant apparaître certaines transitions de phase. Enfin, en ce qui concerne les extensions du groupe libre, nous montrons que, dans certains cas (comprenant notamment les extensions cycliques) les fonctions μ-harmoniques bornées sont entièrement décrites via le bord du groupe libre sous-jacent. La preuve repose sur l'existence d'actions non triviales de ces groupes sur des arbres réels, couplée à des critères généraux sur les compactifications des groupes développés par Vadim Kaimanovich.
|
14 |
Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg / Around geometric analysis 1) Boundary behavior of harmonic functions 2) Rectifiability in the Heisenberg groupPetit, Camille 19 June 2012 (has links)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière. / In this thesis, we are interested in two topics of geometric analysis. The first one is concerned with the asymptotic behaviour of harmonic functions in connection with geometry on graphs and manifolds. We study criteria for convergence at boundary of harmonic functions such as non-tangential boundedness, finiteness of non-tangential energy or finiteness of the energy density. We deal with Gromov hyperbolic manifolds, Gromov hyperbolic graphs, Diestel-Leader graphs and with an abstract frame to obtain criteria at minimal Martin boundary points. The methods, coming from probability theory and metric geometry, use the relation between harmonic functions and martingales. The second topic concerns the rectifiability properties of 1-dimensional sets in the Heisenberg group in connection with the boundedness of singular integral operators. We extend to this sub-Riemannian setting parts of the theory of uniformly rectifiable sets due to David and Semmes. In particular, we obtain a geometric traveling salesman theorem which provides a condition for an Ahlfors regular set of the first Heisenberg group to be contained in an Ahlfors regular curve.
|
15 |
Marches aléatoires et arbres de Galton-Watson / Ramdom Walk and Galton-Watson treesBouaziz, Aymen 09 December 2017 (has links)
Dans cette thèse nous nous sommes intéressés de trois types de problèmes : 1 -Existence et unicité d’une fonction harmonique strictement positive associée à une marche aléatoire inhomogène confinée dans un orthant. 2 -Etude de la convergence en loi des arbres de Galton Watson critiques conditionnés à avoir un nombre assez grand de noeuds protégés. 3 -Etude de la convergence en loi des arbres de Galton Watson conditionnés à avoir une génération anormalement grande. / In this thesis we are interested in three types of problems: 1-Existence and uniqueness of a positive harmonic function associated with an inhomogeneous random walk confined in an orthant. 2-Study of convergence in distribution of critical Galton Watson trees conditioned to have a large enoughnumber of protected nodes. 3-Study of the convergence in distribution of Galton Watson trees conditioned to have a large generation.
|
16 |
Étude de problèmes différentiels elliptiques et paraboliques sur un graphe / A qtudy of elliptic and parabolic differential problems on graphsVasseur, Baptiste 06 February 2014 (has links)
Après une présentation des notations usuelles de la théorie des graphes, on étudie l'ensemble des fonctions harmoniques sur les graphes, c'est à dire des fonctions dont le laplacien est nul. Ces fonctions forment un espace vectoriel et sur un graphe uniformément localement fini, on montre que cet espace vectoriel est soit de dimension un, soit de dimension infinie. Lorsque le graphe comporte une infinité de cycles, ce résultat tombe en défaut et on exhibe des exemples qui montrent qu'il existe un graphe sur lequel les harmoniques forment un espace vectoriel de dimension n, pour tout n. Un exemple de graphe périodique est également traité. Ensuite, toujours pour le laplacien, on étudie plus précisément sur les arbres uniformément localement finis les valeurs propres dont l'espace propre est de dimension infini. Dans ce cas, il est montré que l'espace propre contient un sous-espace isomorphe à l'ensemble des suites réelles bornées. Une inégalité concernant le spectre est donnée dans le cas spécial où les arêtes sont de longueur un. Des exemples montrent que ces inclusions sont optimales. Dans le chapitre suivant, on étudie le comportement asymptotique des valeurs propres pour des opérateurs elliptiques d'ordre 2 quelconques sous des conditions de Kirchhoff dynamiques. Après réécriture du problème sous la forme d'un opérateur de Sturm-Liouville, on écrit le problème de façon matricielle. Puis on trouve une équation caractéristique dont les zéros correspondent aux valeurs propres. On en déduit une formule pour l'asymptotique des valeurs propres. Dans le dernier chapitre, on étudie la stabilité de solutions stationnaires pour certains problèmes de réaction-diffusion où le terme de non linéarité est polynomial. / After a quick presentation of usual notations for the graph theory, we study the set of harmonic functions on graphs, that is, the functions whose laplacian is zero. These functions form a vectorial space. On a uniformly locally finite tree, we shaw that this space has dimension one or infinity. When the graph has an infinite number of cycles, this result change and we describe some examples showing that there exists a graph on which the harmonic functions form a vectorial space of dimension n, for all n. We also treat the case of a particular periodic graph. Then, we study more precisely the eigenvalues of infinite dimension. In this case, the eigenspace contains a subspace isomorphic to the set of bounded sequences. An inequality concerning the spectral is given when edges length is equal to one. Examples show that these inclusions are optimal. We also study the asymptotic behavior of eigenvalues for elliptic operators under dynamical Kirchhoff node conditions. We write the problem as a Sturm-Liouville operator and we transform it in a matrix problem. Then we find a characteristic equation whose zeroes correspond to eigenvalues. We deduce a formula for the asymptotic behavior. In the last chapter, we study the stability of stationary solutions for some reaction-diffusion problem whose the non-linear term is polynomial.
|
17 |
Approximation dans des classes de fonctions analytiques généralisées et résolution de problèmes inverses pour les tokamaksFischer, Yannick 03 November 2011 (has links) (PDF)
Cette thèse traite de la résolution théorique et constructive de problèmes inverses pour des équations de diffusion isotropes dans des domaines plan simplement et doublement connexes. A partir de données de Cauchy (potentiel, flux) disponibles sur une partie de la frontière du domaine, il s'agit de retrouver ces quantités sur la partie du bord où l'on ne dispose pas d'information, ainsi qu'à l'intérieur du domaine. L'approche mise au point consiste à considérer les solutions de l'équation de diffusion comme les parties réelles des solutions complexes d'une équation de Beltrami conjuguée. Ces fonctions analytiques généralisées d'un type particulier permettent de définir des classes de Hardy, dans lesquelles le problème inverse est régularisé en étant reformulé comme un problème de meilleure approximation sous contrainte (ou encore problème extrémal borné, d'adéquation aux données). Le caractère bien posé de celui-ci est assuré par des résultats d'existence et de régularité auxquels s'ajoutent des propriétés de densité à la frontière. Une application au calcul de la frontière libre d'un plasma sous confinement magnétique dans le tokamak Tore Supra (CEA-IRFM Cadarache) est proposée. La résolution du problème extrémal à partir d'une base de fonctions adaptées (harmoniques toroïdales) fournit un critère permettant de qualifier les estimations de la frontière plasma. Un algorithme de descente permet de le faire décroître, en améliorant l'estimation de la frontière. Cette méthode, qui ne requiert pas d'intégration de l'équation dans le domaine, fournit de très bons résultats et semble appelée à connaître des extensions pour d'autres tokamaks tels que JET et ITER.
|
Page generated in 0.0862 seconds