• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 219
  • 197
  • 74
  • 26
  • 23
  • 18
  • 11
  • 11
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 682
  • 180
  • 112
  • 81
  • 68
  • 52
  • 50
  • 47
  • 46
  • 46
  • 45
  • 44
  • 43
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Simulation of Engineered Nanostructured Thin Films

Cheung, JASON 01 April 2009 (has links)
The invention of the Glancing Angle Deposition (GLAD) technique a decade ago enabled the fabrication of nanostructured thin films with highly tailorable structural, electrical, optical, and magnetic properties. Here a three-dimensional atomic-scale growth simulator has been developed to model the growth of thin film materials fabricated with the GLAD technique, utilizing the Monte Carlo (MC) and Kinetic Monte Carlo (KMC) methods; the simulator is capable of predicting film structure under a wide range of deposition conditions with a high degree of accuracy as compared to experiment. The stochastic evaporation and transport of atoms from the vapor source to the substrate is modeled as random ballistic deposition, incorporating the dynamic variation in substrate orientation that is central to the GLAD technique, and surface adatom diffusion is modeled as either an activated random walk (MC), or as energy dependent complete system transitions with rates calculated based on site-specific bond counting (KMC). The Sculptured Nanostructured Film Simulator (SNS) provides a three-dimensional physical prediction of film structure given a set of deposition conditions, enabling the calculation of film properties including porosity, roughness, and fractal dimension. Simulations were performed under various growth conditions in order to gain an understanding of the effects of incident angle, substrate rotation, tilt angle, and temperature on the resulting morphology of the thin film. Analysis of the evolution of film porosity during growth suggests a complex growth dynamic with significant variations with changes in tilt or substrate motion, in good agreement with x-ray reflectivity measurements. Future development will merge the physical structure growth simulator, SNS, with Finite-Difference Time-Domain (FDTD) electromagnetics simulation to allow predictive design of nanostructured optical materials. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-03-31 13:22:11.843
652

Analysis of cerebral and respiratory activity in neonatal intensive care units for the assessment of maturation and infection in the early premature infant

Navarro, Xavier 22 October 2013 (has links) (PDF)
This Ph.D. dissertation processes and analyzes signals from the neonatal intensive care units (NICUs) for the study of maturity, systemic infection (sepsis) and the influence of immunization in the premature newborn. A special attention is payed to the electroencephalography and the breathing signal. The former is often contaminated by several sources of noise, thus methods based on the signals decomposition and optimal noise cancellation, adapted to the characteristics of the immature EEG, were proposed and evaluated objectively on real and simulated signals. By means of the EEG and delta burst analysis, detected automatically by a proposed classifier, infant's maturation and the effects of vaccination are studied. Concerning the second signal, breathing, non-linear and fractal methods are adapted to evaluate maturity and sepsis. A robustness study of estimation methods is also conducted, showing that the Hurst exponent, estimated on respiratory variability signals, is a good detector of infection.
653

Entwicklung einer lichtbogengestützten PECVD-Technologie für die Synthese siliziumbasierter Schichtsysteme unter Atmosphärendruck – Untersuchung des diffusionslimitierten Wachstumsregimes

Rogler, Daniela 29 October 2012 (has links) (PDF)
Atmosphärendruckplasmen sind aufgrund ihrer vergleichsweise einfachen Anlagentechnik, potentiell geringen Betriebs- und Investitionskosten sowie ihrer Flexibilität bezüglich Substratgröße seit vielen Jahren von großem Interesse. Die Nutzung von Plasmaquellen mit hoher Precursoranregungseffizienz und ausgedehnter Beschichtungszone ist in diesem Zusammenhang besonders vorteilhaft. In der vorliegenden Arbeit wird deshalb erstmals eine neuartige Langlichtbogenplasmaquelle vom Typ LARGE (Long Arc Generator) zur plasmagestützten Synthese von Schichten bei AP (Atmosphärendruck) eingesetzt. Bei der Remoteaktivierung des Precursors erweisen sich insbesondere sauerstoff- sowie stickstoffhaltige Plasmagase als geeignet, um einen signifikanten Anteil der Plasmaenergie in den Remotebereich zu transferieren. Die entwickelte bogenbasierten PECVD (Plasma Enhanced Chemical Vapour Deposition) unter Atmosphärendruckbedingungen ist durch die Erzeugung hochenergetischer Plasmen gekennzeichnet, der Precursor wird stark fragmentiert und ursprüngliche Bindungen des Precursormoleküls werden vollkommen aufgebrochen. Die Ergebnisse der Gasphasencharakterisierung mittels optischer Emissions- sowie Infrarotspektroskopie lassen beim Prozess der Precursorfragmentierung im Remoteplasma auf eine zentrale Bedeutung metastabiler sowie dissoziierter Spezies schließen. Weiterhin sind hohe Plasmaleistungen, Molekulargasanteile im Plasmagas und große Plasmagasflüsse für eine wirkungsvolle Remoteaktivierung des Precursors von Vorteil. Einen wichtigen Aspekt des Verfahrens stellt darüber hinaus die Möglichkeit der Synthese sauerstofffreier Schichtmaterialien dar. Es konnte gezeigt werden, dass sowohl der genutzte Atmosphärendruckreaktoraufbau mit seinem Gasschleusenkonzept, als auch die Gasreinheit des verwendeten Prozessgases zu keiner nennenswerten Einlagerung von Sauerstoff in die Schicht führt. Die Schichthärte synthetisierter Siliziumnitrid-Schichten lässt sich ohne zusätzliche Substratheizung durch Prozessparameteroptimierung bis auf eine Härte von 17 GPa steigern. Die dynamische Abscheiderate ist mit 39 nm∙mm/s ebenfalls für eine technische Anwendung ausreichend hoch. Eine eingehende Analyse aller Daten legt den Schluss nahe, dass das Schichtwachstum bei der Atmosphärendruck Remote-PECVD häufig kinetisch gehemmt ist und nicht im thermodynamischen Gleichgewicht stattfindet. Der Wachstumsprozess ist in diesem Fall durch das Phänomen des DLG (Diffusion Limited Growth) gekennzeichnet. Homogennukleation bzw. Gasphasennukleation spielt anders als bislang angenommen auch bei Atmosphärendruckbedingungen keine bzw. eine nur untergeordnete Rolle und ist damit nicht limitierend für die erzielbare mechanische und chemische Stabilität der gebildeten Schichten. Mit steigender Diffusionslimitierung des Schichtbildungsvorganges wird eine Zunahme der Schichtrauheit beobachtet, daraus und aus dem Zuwachs an strained sowie dangling Bonds in der Schicht resultiert eine gesteigerte Affinität der synthetisierten Schichten gegenüber Sauerstoff. Als Schlüsselparameter bezüglich Schichtmorphologie sowie Topographie wird der DLG-Quotient angesehen, welcher das Verhältnis aus Oberflächendiffusionskoeffizient und Auftreffrate schichtbildender Spezies auf dem Substrat darstellt. Damit wurden im Rahmen dieser Arbeit die entscheidenden und verfahrenslimitierenden Aspekte identifiziert und die Grundlage für die weitere Optimierung dieses und anderer Remote-AP-PECVD-Verfahren geschaffen. In ähnlicher Weise wie dies auch durch die Bereitstellung einer verbesserten thermischen Aktivierung des Diffusionsprozesses schichtbildender Spezies auf der Substratoberfläche geschieht, lässt sich mit Hilfe eines niedrigen Stickingkoeffizienten eine Diffusionslimitierung des Schichtbildungsvorgangs bei AP-PECVD unterdrücken. In diesem Zusammenhang besitzt insbesondere Ammoniak im Remotegas einen günstigen Einfluss auf die entstehende Schichtmorphologie und Konformalität der Beschichtung.
654

The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore Deposits

Robinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
655

The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore Deposits

Robinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
656

Drinking water treatment sludge production and dewaterabilityф

Verrelli, D. I. January 2008 (has links)
The provision of clean drinking water typically involves treatment processes to remove contaminants. The conventional process involves coagulation with hydrolysing metal salts, typically of aluminium (‘alum’) or trivalent iron (‘ferric’). Along with the product water this also produces a waste by-product, or sludge. The fact of increasing sludge production — due to higher levels of treatment and greater volume of water supply — conflicts with modern demands for environmental best practice, leading to higher financial costs. A further issue is the significant quantity of water that is held up in the sludge, and wasted. / One means of dealing with these problems is to dewater the sludge further. This reduces the volume of waste to be disposed of. The consistency is also improved (e.g. for the purpose of landfilling). And a significant amount of water can be recovered. The efficiency, and efficacy, of this process depends on the dewaterability of the sludge.In fact, good dewaterability is vital to the operation of conventional drinking water treatment plants (WTP’s). The usual process of separating the particulates, formed from a blend of contaminants and coagulated precipitate, relies on ‘clarification’ and ‘thickening’, which are essentially settling operations of solid–liquid separation.WTP operators — and researchers — do attempt to measure sludge dewaterability, but usually rely on empirical characterisation techniques that do not tell the full story and can even mislead. Understanding of the physical and chemical nature of the sludge is also surprisingly rudimentary, considering the long history of these processes. / The present work begins by reviewing the current state of knowledge on raw water and sludge composition, with special focus on solid aluminium and iron phases and on fractal aggregate structure. Next the theory of dewatering is examined, with the adopted phenomenological theory contrasted with empirical techniques and other theories.The foundation for subsequent analyses is laid by experimental work which establishes the solid phase density of WTP sludges. Additionally, alum sludges are found to contain pseudoböhmite, while 2-line ferrihydrite and goethite are identified in ferric sludges. / A key hypothesis is that dewaterability is partly determined by the treatment conditions. To investigate this, numerous WTP sludges were studied that had been generated under diverse conditions: some plant samples were obtained, and the remainder were generated in the laboratory (results were consistent). Dewaterability was characterised for each sludge in concentration ranges relevant to settling, centrifugation and filtration using models developed by LANDMAN and WHITE inter alia; it is expressed in terms of both equilibrium and kinetic parameters, py(φ) and R(φ) respectively.This work confirmed that dewaterability is significantly influenced by treatment conditions.The strongest correlations were observed when varying coagulation pH and coagulant dose. At high doses precipitated coagulant controls the sludge behaviour, and dewaterability is poor. Dewaterability deteriorates as pH is increased for high-dose alum sludges; other sludges are less sensitive to pH. These findings can be linked to the faster coagulation dynamics prevailing at high coagulant and alkali dose.Alum and ferric sludges in general had comparable dewaterabilities, and the characteristics of a magnesium sludge were similar too.Small effects on dewaterability were observed in response to variations in raw water organic content and shearing. Polymer flocculation and conditioning appeared mainly to affect dewaterability at low sludge concentrations. Ageing did not produce clear changes in dewaterability.Dense, compact particles are known to dewater better than ‘fluffy’ aggregates or flocs usually encountered in drinking water treatment. This explains the superior dewaterability of a sludge containing powdered activated carbon (PAC). Even greater improvements were observed following a cycle of sludge freezing and thawing for a wide range of WTP sludges. / Further aspects considered in the present work include deviations from simplifying assumptions that are usually made. Specifically: investigation of long-time dewatering behaviour, wall effects, non-isotropic stresses, and reversibility of dewatering (or ‘elasticity’).Several other results and conclusions, of both theoretical and experimental nature, are presented on topics of subsidiary or peripheral interest that are nonetheless important for establishing a reliable basis for research in this area. / This work has proposed links between industrial drinking water coagulation conditions, sludge dewaterability from settling to filtration, and the microstructure of the aggregates making up that sludge. This information can be used when considering the operation or design of a WTP in order to optimise sludge dewaterability, within the constraints of producing drinking water of acceptable quality.
657

The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore Deposits

Robinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
658

Hatten’s theory of musical gesture : an applied logico-deductive analysis of Mozart’s Flute quartet in D, K.285

Scott, Douglas Walter 06 1900 (has links)
This study investigates the possibility of applying Hatten’s theory of musical gesture to a formal system of musical analysis. Using historical antecedents and established musicological practice as a guide, a range of musical parameters in a motive length span of music are incorporated into a single gesture. This gesture forms the basic semantic unit upon which an analytical tableau structure is built, and a syntax is developed to allow derivations of new gestures; a large scale structure displaying fractal-like self-similarity is then proposed. The completed system is applied to the analysis of the ‘Adagio’ of Mozart’s Flute Quartet K.285 to test whether it can consistently be implemented and whether it produces falsifiable results while maintaining predictive power. It is found that these requirements are indeed met and that a set of inference rules can be derived suggesting that the proposed system has ample scope for further development. / Art History, Visual Arts and Musicology / M. Mus.
659

Polyphibianism : evolving transdisciplinarity into an imaginary organism of living knowledge

Ljubec, Ziva January 2015 (has links)
Transdisciplinarity emerged from the urge to grasp the elusive knowledge in the most fertile zone in between and beyond disciplines that escapes even the most elaborate interdisciplinary operations. While interdisciplinary protocol enables experts to operate within foreign disciplines, in the extreme case as diverse as art and science (by inviting artists into scientific departments and vice versa), the production of knowledge remains confined to particular domains. To transcend these confinements and access the knowledge that evades institutionalisation Basarab Nicolescu’s Manifesto of Transdisciplinarity sets up conditions for an open structure to be grown outside the current compartmentalisation into a living knowledge. This thesis imagines a possible evolution of transdisciplinarity into knowledge to be lived internally rather than learnt externally in order to overcome the anxiety in transcending the established culture of disciplinary research. By entering the transdisciplinary zone, the identity of experts-specialists dissolves, even the crudest separation into artists and scientists becomes obsolete. From the illusion of losing control over knowledge arises the fear of a return to archaic, mystic or even shamanic ways of knowing. Far from proposing a return to shamanism in its ancient forms this thesis imagines the way of polyphibianism – an imaginary solution to navigate efficiently the protoplasmic state of knowledge that would be indigenous to culture of disciplinary researchers. With every significant discovery the disciplinary researchers already intuitively trespass into the very zone that the Manifesto of Transdisciplinarity invites them to enter intentionally. From examination of documented introspective inquiries into their act of discovery the thesis infers the necessary sensibilities and adaptabilities of the individuals to cross the borders of their disciplines. Their seemingly lost identity is temporarily restored with the term polyphibian (analogous to amphibian) designating their ability to survive and explore multiple environments. With each change of circumstances in research a polyphibian adapts by swiftly reinventing its instinctive instruments, mutating its organs of knowing, indifferently to conventional habits of thought. Through their introspective writings this thesis investigates the polyphibic aptitude of Henri Poincaré, Henri Bergson and Marcel Duchamp to scout at the periphery of physics, metaphysics and ‘pataphysics, to intuitively anticipate the role of chance, chaos and complexity in both arts and sciences. A threshold of complexity has to be surpassed in order to bring the current apparatus of knowledge to life. Bergson’s insight on laughter and dreams suggests how intellect could transcend itself. The thesis proposes to consider laughter as faculty that could induce self-awareness in the intellectual apparatus while dreams are considered to facilitate self-organisation of intellect on higher orders of awareness. In Deleuzian manner of mutating Bergson’s work into Bergsonism, polyphibianism is a mutation in transcribing the code of Creative Evolution where Bergson insisted on interdependency between the theory of knowledge and the theory of evolution. The scholarly dispute on Bergsonian and anti-Bergsonian tendencies present in Marcel Duchamp’s work is revisited in the thesis by interpreting the higher dimensional Bride as a polyphibic organism of living knowledge with access to higher orders of awareness, able to guide the Bachelor’s apparatus of mechanical production and preservation of knowledge out of its predicament. Informed by peculiar Duchampian experiments that challenged both the domain of art and science the research projects in this thesis consist of an intervention at CERN that tested the impenetrability of institutionalised art-science collaborations and installation of the Interval of Suspended Judgement with high mathematical precision at the threshold between physics and ‘pataphysics. With these projects the problems of categorising researchers into artists and scientists are revealed. As Deleuze suggested, to effectively formulate the problem, to realize it in multiplicity of contexts, a new concept must be invented, a new organism must be conceived. This thesis gave birth to an imaginary organism of living knowledge in order to relieve the unnecessary anxieties and to fully engage in transdisciplinary research.
660

Analysis of cerebral and respiratory activity in neonatal intensive care units for the assessment of maturation and infection in the early premature infant / Analyse des signaux issus des unités de soins intensifs néonatales pour l'étude de la maturité, de l'infection généralisée et de l'influence de l'immunisation chez le nouveau-né prématuré

Navarro, Xavier 22 October 2013 (has links)
Ce mémoire de thèse porte sur le traitement et l'analyse des signaux issus des unités de soins intensifs néonatales (USIN) pour l'étude de la maturité, de l'infection généralisée et de l'influence de l'immunisation chez le nouveau-né prématuré. Une attention particulière est portée sur l'électroencéphalographie et le signal de respiration. Pour le premier, ce signal est souvent bruité en USIN et des méthodes de décomposition du signal et d'annulation optimale du bruit, adaptées aux particularités des EEG immatures, ont été proposées et évaluées objectivement sur signaux réels et simulés. L'analyse de l'EEG et des bouffées delta, repérées automatiquement par un classificateur proposé, ont permis d'étudier la maturation et les effets de la vaccination. Pour la seconde modalité, la respiration, des méthodes non-linéaires et fractales sont retenues et adaptées pour évaluer la maturité et l'infection généralisée. Une étude de robustesse des méthodes d'estimation est menée et on montre que l'exposant de Hurst, estimé sur des signaux de variabilité respiratoire, est un bon détecteur de l'infection. / This Ph.D. dissertation processes and analyzes signals from the neonatal intensive care units (NICUs) for the study of maturity, systemic infection (sepsis) and the influence of immunization in the premature newborn. A special attention is payed to the electroencephalography and the breathing signal. The former is often contaminated by several sources of noise, thus methods based on the signals decomposition and optimal noise cancellation, adapted to the characteristics of the immature EEG, were proposed and evaluated objectively on real and simulated signals. By means of the EEG and delta burst analysis, detected automatically by a proposed classifier, infant's maturation and the effects of vaccination are studied. Concerning the second signal, breathing, non-linear and fractal methods are adapted to evaluate maturity and sepsis. A robustness study of estimation methods is also conducted, showing that the Hurst exponent, estimated on respiratory variability signals, is a good detector of infection.

Page generated in 0.06 seconds