Spelling suggestions: "subject:"friedrich""
1 |
Approximation of scalar and vector transport problems on polyhedral meshes / Approximation des problèmes de transport scalaire et vectoriel sur maillages polyédriquesCantin, Pierre 14 November 2016 (has links)
Cette thèse étudie, au niveau continu et au niveau discret sur des maillages polyédriques, les équations de transport tridimensionnelles scalaire et vectorielle. Ces équations sont constituées d'un terme diffusif, d'un terme advectif et d'un terme réactif. Dans le cadre des systèmes de Friedrichs, l'analyse mathématique est effectuée dans les espaces du graphe associés aux espaces de Lebesgue. Les conditions de positivité usuelles sur le tenseur de Friedrichs sont étendues au niveau continu et au niveau discret afin de prendre en compte les cas d'intérêt pratique où ce tenseur prend des valeurs nulles ou raisonnablement négatives. Un nouveau schéma convergeant à l'ordre 3/2 est proposé pour le problème d'advection-réaction scalaire en considérant des degrés de liberté scalaires associés aux sommets du maillage. Deux nouveaux schémas considérant également des degrés de libertés aux sommets sont proposés pour le problème de transport scalaire en traitant de manière robuste les différents régimes dominants. Le premier schéma converge à l'ordre 1/2 si les effets advectifs sont dominants et à l'ordre 1 si les effets diffusifs sont dominants. Le second schéma améliore la précision de ce schéma en convergeant à l'ordre 3/2 lorsque les effets advectifs sont dominants. Enfin, un nouveau schéma convergeant à l'ordre 1/2 est obtenu pour le problème d'advection-réaction vectoriel en considérant un seul et unique degré de liberté scalaire sur chaque arête du maillage. La précision et les performances de tous ces schémas sont examinées sur plusieurs cas tests utilisant des maillages polyédriques tridimensionnels / This thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes
|
2 |
Chaos, entropie et durée de vie dans les systèmes classiques et quantiques.Saberi Fathi, Seyed Majid 19 July 2007 (has links) (PDF)
Dans cette thèse, nous étudions un modèle de décroissance (decay) d'un système quantique à plusieurs niveaux appelé le modèle de Friedrichs. Dans un premier travail, nous considérons un couplage d'un kaon avec un environnement décrit par un continuum d'énergie. On montre que les oscillations du kaon entre les états K_1, K_2, leur decay et la violation CP sont bien décrits par ce type de modèle. Ensuite, nous appliquons à ce modèle le formalisme de l'opérateur de temps qui décrit la résonance, c'est-à-dire la probabilité de survie des états instables. Enfin, nous considérons un gaz de Lorentz comme un ensemble de boules de billard avec des collisions élastiques contre des obstacles et un système de sphères dures en dimension 2. Nous étudions la simulation numérique de la dynamique du système et calculons l'augmentation de l'entropie de non-équilibre au cours du temps sous l'effet des collisions et sa relation avec les exposants de Lyapounov positifs.
|
3 |
Construction de méthodes de volumes finis tridimensionnelles sans solveur de Riemann pour les systèmes hyperboliques non-linéairesSt-Cyr, Amik January 2002 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
4 |
Construction de méthodes de volumes finis tridimensionnelles sans solveur de Riemann pour les systèmes hyperboliques non-linéairesSt-Cyr, Amik January 2002 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur. / Dans cette thèse nous abordons la conception de nouveaux schémas de type volumes finis pour la résolution de systèmes hyperboliques non-linéaires pour la prédiction des écoulements compressibles instationnaires. Les nouveaux schémas présentés s'appuient tous sur les schémas proposés par Arminjon-Viallon et Arminjon-Stanescu-Viallon en 2 dimensions spatiales qui, eux, furent dérivés du schéma de Nessyahu-Tadmor en une dimension d'espace construit à partir du schéma décalé bien connu de Lax-Friedrichs. Ces schémas peuvent être considérés comme étant tous du type de Godunov et ont pour caractéristique principale d'éviter la résolution des problèmes de Riemann aux interfaces en utilisant 2 maillages différents pour, respectivement, les pas de temps pairs et impairs. Pour éviter la trop grande diffusion amenée par le schéma de Lax-Friedrichs, on a eu recours à l'utilisation d'une technique nommée MUSCL, originalement proposée par van Leer, consistant à reconstruire la solution constante par cellule en une solution linéaire par cellule tout en limitant les oscillations grâce à l'utilisation de fonctions non-linéaires. On obtient tout d'abord une extension en 3 dimensions spatiales sur des maillages cartésiens structurés. Ensuite, nous abordons le cas de maillages non-structurés composés de tétraèdres, et la formulation mathématique du schéma associé à ces cellules. Pour réduire les temps de calcul, un nouveau, schéma de type centré fondé sur celui de Nessyahu-Tadmor mais évitant l'utilisation d'un pas intermédiaire, et composé d'un nouveau flux est proposé en une et 2 dimensions spatiales pour des maillages structurés, puis en 3 dimensions sur des maillages non structurés composés de tétraèdres. Les résultats obtenus démontrent que les nouvelles méthodes sont moins sensibles aux maillages déformés et qu'elles sont plus simples à mettre en œuvre du fait que le problème de Riemann est évité et qu'aucune information sur la décomposition de la discontinuité en les différents champs caractéristiques du système n'est nécessaire.
|
5 |
Tlumení tlakových pulsací v pružných potrubích / Damping of Pressure Pulsations in Elastic PipesPanko, Martin January 2008 (has links)
This diploma thesis deals with numerical simulation of pressure pulsations in elastic pipes. Continuity relation of fluid in elastic pipes, when calculating some damping in pipe material, is derived into practice. Rheological model of such a pipe corresponds to Voigt (Kelvin) model. For analysing dynamic effects in time periods are used numerical methods that deal with flow of compressible fluid: FTCS, Lax-Friedrichs and Lax-Wendroff method. The numerical results are confronted with the experiment. During the experiment simulation the method considers speed of sound in liquid like a function of pressure. This diploma thesis lays partial principles for finding elastic constants for describing dynamic characteristics of elastic pipes by measuring the pressure pulsations.
|
6 |
Approximation de haute précision des problèmes de diffraction.Laurens, Sophie 01 March 2010 (has links) (PDF)
Cette thèse examine deux façons de diminuer la complexité des problèmes de propagation d'ondes diffractées par un obstacle borné : la diminution des domaines de calcul à l'aide de milieux fictifs absorbants permettant l'adjonction de conditions aux limites exactes et la recherche d'une nouvelle approximation spatiale sous forme polynomiale donnant lieu à des schémas explicites où la stabilité est indépendante de l'ordre choisi. Dans un premier temps, on réduit le domaine de calcul autour de domaines non nécessairement convexes, mais propres aux problèmes de scattering (non trapping), à l'aide de la méthode des Perfectly Matched Layers (PML). Il faut alors considérer des domaines d'exhaustion difféomorphes à des convexes avec des hypothèses "presque" nécessaires. Pour les Equations de type Maxwell et Ondes, l'existence et l'unicité sont montrées dans tout l'espace et en domaine artificiellement borné, tant en fréquentiel qu'en temporel. La décroissance est analysée localement et asymptotiquement et des simulations numériques sont proposées. La deuxième partie de ce travail est une alternative à l'approximation de type Galerkin Discontinu, inspirée des résultats de régularité de J. Rauch, présentant l'avantage de conserver une condition CFL de type Volumes Finis indépendante de l'ordre d'approximation, aussi bien pour des maillages structurés que déstructurés. La convergence de cette méthode est démontrée via la consistance et la stabilité, grâce au théorème d'équivalence de Lax-Richtmyer pour des domaines structurés. En déstructuré, la consistance ne pouvant plus s'établir au moyen de la formulation de Taylor, la convergence n'est plus assurée, mais les premiers tests numériques bidimensionnels donnent d'excellents résultats.
|
7 |
Construction et analyse numérique de schéma asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de FriedrichsFranck, Emmanuel 17 October 2012 (has links) (PDF)
L'équation de transport, dans le régime fortement collisionnel admet une limite asymptotique de diffusion. Les discrétisations angulaires comme la méthode des ordonnées discrètes Sn où le développement tronqué en harmonique sphérique Pn préservent aussi cette limite de diffusion. Par conséquent, il est intéressant de construire pour de tels systèmes des méthodes de volumes finis sur maillages non structurés qui préservent cette limite de diffusion pour des grilles grossières. En effet, ces modèles peuvent être couplés avec des codes hydrodynamiques Lagrangiens qui génèrent des maillages très tordus. Pour commencer, on considère la discrétisation angulaire la plus simple de l'équation de transport appelée le modèle P1. Après une rapide introduction sur les méthodes 1D, on commence par modifier le schéma acoustique en dimension deux avec la méthode de Jin-Levermore. Le schéma ainsi obtenu n'est pas convergent dans le régime de diffusion car le schéma de diffusion valide n'est pas consistant sur maillages non structurés. Pour résoudre ce problème, on a proposé de nouvelles méthodes valides sur maillages non structurés. Ces méthodes sont basées sur un autre formalisme des méthodes de volumes finis ou les flux sont localisés aux interfaces, couplé avec la méthode de Jin-Levermore. On obtient deux schémas convergents qui dérivent sur les schémas asymptotic preserving 1D. Le schéma limite de diffusion obtenu est un nouveau schéma pour lequel on a donné une preuve de convergence. Dans un second temps, on a proposé une extension du travail réalisé pour le modèle P1 dans le cadre des discrétisations angulaires d'ordres élevés. Pour obtenir une discrétisation asymptotic preserving pour ces modèles on a utilisé une décomposition entre la discrétisation angulaire de premier ordre et les discrétisations angulaires d'ordres supérieurs. Enfin on a étudié la discrétisation du problème d'absorption/émission présent en transfert radiatif ainsi que la discrétisation du modèle non linéaire M1. L'approximation du modèle M1 est basé sur un couplage entre un schéma Lagrange+projection pour une reformulation du modèle M1 et la méthode de Jin-Levermore. La méthode numérique obtenue préserve la limite asymptotique, l'inégalité d'entropie et le principe du maximum associé au système sur maillages non structurés.
|
8 |
Contrôle des perturbations aéroacoustiques par impédances de parois : application à un modèle de matériaux poreuxVentribout, Yoann 20 January 2006 (has links) (PDF)
Pour réduire les nuisances sonores produites par un avion, les traitements acoustiques se doivent d'être réalisables par des matériaux caractérisés par des impédances complexes réglables.<br />L'objet de cette thèse est l'étude et le contrôle d'un modèle de perturbations aéroacoustiques d'un écoulement porteur stationnaire et subsonique, le système régi par les équations d'Euler linéarisées (EEL). Le but est de contrôler les phénomènes de propagations aéroacoustiques, générés dans un domaine (a priori infini) et localisés sur un observatoire spatio-temporel, en utilisant comme variables de contrôle des paramètres locaux d'impédances complexes caractérisant la frontière d'un obstacle solide situé à l'intérieur du domaine. En utilisant dans le cadre de l'aéroacoustique la théorie des systèmes de Friedrichs, et en classifiant les conditions aux limites admissibles à adjoindre au système des EEL, nous montrons le caractère bien posé sur un domaine spatio-temporel borné, d'un problème direct régissant les phénomènes physiques mis en jeu, ainsi que d'un problème adjoint rétrograde, étape indispensable à la résolution de problèmes inverses. <br />La méthode d'approximation choisie pour résoudre ces problèmes est une méthode de type Galerkine discontinue reposant sur un flux-splitting décentré en espace, combinée avec un schéma de type Runge-Kutta pour l'approximation temporelle. Comme toujours en propagations d'ondes, la simulation de l'espace libre est primordiale. Dans cette optique, une méthode PML adaptée aux EEL est proposée et numériquement validée.<br />Enfin, une attention toute particulière est portée à la signification physique de ce travail. Un modèle d'homogénéisation de matériaux poreux est utilisé, permettant de relier les variables de contrôle à des paramètres physiques caractérisant la faisabilité expérimentale de matériaux absorbants. Les résultats numériques obtenus sur un modèle académique de prise d'air, illustrent la nécessité de la mise en place de cette méthodologie pour résoudre les problèmes inverses en aéroacoustique dans toutes leurs complexités.
|
9 |
Two-dimensional Finite Volume Weighted Essentially Non-oscillatory Euler Schemes With Different Flux AlgorithmsAkturk, Ali 01 July 2005 (has links) (PDF)
The purpose of this thesis is to implement Finite Volume Weighted Essentially Non-Oscillatory (FV-WENO) scheme to solution of one and two-dimensional discretised Euler equations with different flux algorithms. The effects of the different fluxes on the solution have been tested and discussed. Beside, the effect of the grid on these fluxes has been investigated.
Weighted Essentially Non-Oscillatory (WENO) schemes are high order accurate schemes designed for problems with piecewise smooth solutions that involve discontinuities. WENO schemes have been successfully used in applications, especially for problems containing both shocks and complicated smooth solution structures. Fluxes are used as building blocks in FV-WENO scheme. The efficiency of the scheme is dependent on the fluxes used in scheme
The applications tested in this thesis are the 1-D Shock Tube Problem, Double Mach Reflection, Supersonic Channel Flow, and supersonic Staggered Wedge Cascade.
The numerical solutions for 1-D Shock Tube Problem and the supersonic channel flow are compared with the analytical solutions. The results for the Double Mach Reflection and the supersonic staggered cascade are compared with results from literature.
|
10 |
Existência de Soluções e Estabilidade de Equilíbrios de um Modelo de Retroalimentação Clima-VegetaçãoLuiz Henrique, Marcos 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:28:30Z (GMT). No. of bitstreams: 2
arquivo587_1.pdf: 827834 bytes, checksum: df4220bca077e08d08ae55d954933064 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2011 / Universidade de Pernambuco / Neste trabalho de tese, estudamos uma modelagem de um sistema de três equações diferenciais
parciais com condição de fronteira do tipo Neumann do modelo Daisyworld unidimensional,
problema de retroalimentação clima-vegetação com difusão, dando origem a uma equação diferencial
funcional ordinária abstrata, onde a parte linear gera um semigrupo analítico em um
espaço de Banach X e a parte não-linear satisfaz a condição localmente contínua Lipschitz com
respeito à α-norma. Para isto primeiro estudaremos teoria de semi-grupos de operadores e
operadores setoriais e depois determinaremos a extensão de Friedrichs do operador Laplaciano
unidimensional com condição de fronteira do tipo Neumann.
Estudamos também a existência e unicidade de soluções fortes locais do problema de valor
inicial associado ao modelo, com condições iniciais em um aberto de uma potência fracionária
de X, cuja existência é demonstrada usando o teorema do ponto fixo de Banach e as
propriedades do operador linear da equação. Usando o argumento principio do máximo, determinamos
um subconjunto fechado positivamente invariante C para as condições iniciais, tais
que as soluções são globais, para isso usaremos o lema de Gronwall, a desigualdade de Young,
características da parte não linear e o intervalo de valores para a radiação solar R do modelo.
Por fim, estudamos algumas soluções de equilíbrios e o comportamento assintótico das
soluções, por uma aproximação linear numa vizinhança de um ponto de equilíbrio. Usando a
solução global com condições iniciais em C, definimos um sistema dinâmico S em C
|
Page generated in 0.0569 seconds