• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 323
  • 164
  • 73
  • 20
  • 12
  • 9
  • 8
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 689
  • 214
  • 154
  • 128
  • 95
  • 94
  • 92
  • 74
  • 71
  • 65
  • 55
  • 55
  • 53
  • 53
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Novel methods for allylic amination by an intramolecular nitroso ene reaction

Atkinson, Duncan January 2013 (has links)
C-H functionalisation reactions aim for the selective cleavage of C-H bonds, and formation of a new carbon or heteroatom bond, often with the use of a transition metal catalyst. These reactions offer potential for functionalisation of hydrocarbons in fewer steps than conventional methods, and with high atom efficiency. They are therefore a subject of intense research in organic synthesis. Carbon-heteroatom bond forming reactions are particularly sought after, and useful in the efficient synthesis of many biologically significant groups such as oxazolidinone rings, 1,2 or 1,3 amino alcohols and amino acid analogues. An efficient, cheap and robust method for C-H amination would also be adaptable to varied syntheses of important large molecules. The necessity for complex and efficient transformations with a minimal number of steps means that heteroatom ring closures are also attractive and widely used reactions in such large molecule syntheses. The nitroso group is a highly reactive species which is normally generated in situ by oxidation of a hydroxylamine, for carbon-nitrogen bond forming reactions including the nitroso Heteroatomic Diels Alder reaction, nitroso ene reaction, and nitroso aldol reaction. Nitroso group reactions often show high stereo- and regioselectivity, and have formed key components of the syntheses of important biological molecules. Enantioselectivive protocols for the nitroso-ene reaction and, to a lesser extent, the nitroso HDA reaction, are poorly developed, however, and the range of available intramolecular nitroso reactions is limited. We aimed to establish efficient single-step intermolecular C-H amination reactions, to give 1,2 and 1,3 heteroatom functionalised molecules, and to develop the capacity for enantioselective induction in this reaction, if possible. Having synthesised a model set of unsaturated hydroxycarbamates, we identified a suitable system for nitroso generation, using a catalytic metal and stoichiometric oxidant. This resulted in in situ generation of cyclised product, with the olefin functionality intact. This cyclisation was then optimised and used to obtain a range of new heterocycles. The possibility of enantioselective induction via chiral catalysts was explored, as well as catalytic systems to increase the stereoselectivity of the reaction. In summary, a cheap, novel and reliable method was developed for formation of oxazolidinone rings from unsaturated hydroxycarbamates using an original intramolecular nitroso ene reaction, and a range of unsaturated heterocycles were synthesised in fairly good yields. Distereoselectivity of the nitroso ene cyclisations was optimised. However, to-date, we were unable to develop an enantioselective varient of the reaction. Several related aminations, as well as transformations of N-hydroxyoxazolidinone products, were also attempted during the project.
122

SELECTIVE GROWTH OF CARBON NANOTUBES AND OXIDE NANOWIRES: APPLICATIONS IN SHADOW LITHOGRAPHY AND FABRICATION OF ALIGNED CARBON NANOTUBE MEMBRANES

Chopra, Nitin 01 January 2006 (has links)
A promising approach investigated here is to utilize thin film multilayer structures where the thickness of a catalyst layer at an exposed edge of photolithographically defined pattern determines the diameter of the nanotubes/nanowires grown from it. This can in turn be incorporated into photolithographically defined post structures resulting in an array of suspended nanowires for line-of-site shadow lithography. Success of the diameter control approach has been shown by selectively growing carbon nanotubes (CNTs) from narrow lines (12-60 nm) of SiO2, Fe, Ni, Co on micron-scale patterned substrates in a ferrocene or nonferrocene catalyzed CVD process. In addition, the concept has been extended to VS growth of CuO nanowires and VLS growth of ZnO nanowires from an exposed edge in a Al2O3/Cu(40-100 nm)/Al2O3 and Al2O3/Au(10 nm)/Al2O3 thin film multilayer structures. The exposed middle layer of patterned thin-film multilayer acts as a nm-scale wide selective growth area. The resultant CNT/nanowire diameter is directly related to the catalyst/catalyst support size. Growth kinetic studies of CuO nanowires from a thin film multilayer structure indicate diffusion controlled process. Dispersion of CNTs between lithographically defined trenches of width of 200 nm and depth of 500 nm when coupled with line-of-site deposition resulted in nm-scale line underneath the suspended CNT. The width of the resulting shadow is nearly a simple function of CNT/nanowire diameter, incident evaporation angle, and height of CNT above the substrate in a line-of-site evaporation geometry. Another promising approach to control the placement of nanotubes/nanowires is the selective functionalization of only their tips followed by selfassembly onto chemically patterned substrates. Towards this goal, arrays of aligned CNTs were impregnated with polystyrene to form aligned CNT membranes. These CNT membranes were also studied for gas and ionic transport studies. Different functionalization chemistry was performed on each side of the membrane. After dissolution of polymer matrix, a suspension of CNTs with different functionality at each tip was formed, allowing for sophisticated selfassembled architectures.
123

N-DOPED MULTIWALLED CARBON NANOTUBES: FUNCTIONALIZATION, CHARACTERIZATION AND APPLICATION IN LI ION BATTERIES

Kaur, Aman Preet 01 January 2013 (has links)
The focus of this dissertation is to utilize chemical functionalization as a probe to investigate the reactivity of N-doped multiwalled carbon nanotubes (N-MWCNTs). The surface of N-MWCNTs, being a set of potentially reactive graphene edges, provides a large number of reactive sites for chemical modification, so considerable changes in chemical and physical properties can be envisaged. We observed that both reduction (dissolving metal reduction/alkylation) and oxidation (H2SO4/HNO3 and H2SO4/KMnO4 mixtures) of N-MWCNTs lead to formation of interesting spiral channels and spiraled carbon nanoribbons. A variety of techniques, including TGA, SEM, TEM, XRD and surface area measurements were used to analyze these new textural changes. We have developed methods to demonstrate that specific chemistry has occurred on these new structures. To this end, we introduced metal-binding ligands that could be used as probes in imaging and spectroscopic techniques including TEM, STEM, EDX, and EELS. A proposal for the underlying structure of N-MWCNTs responsible for the formation of the new textures is presented. We have investigated the performance of our materials as potential negative electrodes for rechargeable lithium ion batteries.
124

PHYSICOCHEMICAL MODIFICATIONS AND APPLICATIONS OF CARBON NANO-ONIONS FOR ELECTROCHEMICAL ENERGY STORAGE

Borgohain, Rituraj 01 January 2013 (has links)
Carbon nano-onions (CNOs), concentrically multilayered fullerenes, are prepared by several different methods. We are studying the properties of two specific CNOs: A-CNOs and N-CNOs. A-CNOs are synthesized by underwater arc discharge, and N-CNOs are synthesized by high-temperature graphitization of commercial nanodiamond. In this study the synthesis of A-CNOs are optimized by designing an arc discharge aparatus to control the arc plasma. Moreover other synthesis parameters such as arc power, duty cycles, temperature, graphitic and metal impurities are controlled for optimum production of A-CNOs. Also, a very efficient purification method is developed to screen out A-CNOs from carboneseous and metal impurities. In general, A-CNOs are larger than N-CNOs (ca. 30 nm vs. 7 nm diameter). The high surface area, appropriate mesoporosity, high thermal stability and high electrical conductivity of CNOs make them a promising material for various applications. These hydrophobic materials are functionalized with organic groups on their outer layers to study their surface chemistry and to decorate with metal oxide nanoparticles. Both CNOs and CNO nanocomposites are investigated for application in electrochemical capacitors (ECs). The influences of pH, concentration and additives on the performance of the composites are studied. Electrochemical measurements demonstrate high specific capacitance and high cycling stability with high energy and power density of the composite materials in aqueous electrolyte.
125

DEVELOPMENT AND CHARACTERIZATION OF STABILIZED PHOSPHOLIPID COATINGS FOR OPEN TUBULAR AND PACKED CAPILLARY SEPARATIONS

Adem, Seid Muhie January 2010 (has links)
Phosphorylcholine (PC) based phospholipid bilayers have been explored as coating materials for various substrates due to their inherent resistance to non-specific protein adsorption. Phospholipids have been used for coatings in capillary electrophoresis (CE) to suppress electroosmotic flow (EOF) and to obtain better separation of proteins. Here, a series of investigations geared towards developing highly stable phospholipid based biomimetic stationary phases for chromatographic separations was performed.Fluid phospholipid bilayers lack the desired chemical and physical stability to serve as long-term coatings. In this work, highly stable phospholipid coatings generated via crosslinking polymerization of bis-SorbPC monomers were investigated. Reproducible EOF and migration times for model proteins were obtained for coated capillaries that were kept at room temperature for up to two months. Furthermore, the effects of surfactants, pH and capillary inner diameter (i.d.) on the stability of the lipid coating were investigated.In an alternate approach, stabilized phospholipid coatings for capillary electrophoresis were investigated via formation of hybrid monolayers. The capillary surface was chemically modified with a cyano group followed by deposition of phospholipid monomers. In this approach, marked enhancements in coating stability were attained with commercially available reagents. The hybrid coating was utilized for protein separations and gave efficiencies comparable to non-stabilized lipid coated capillaries.Fused silica capillaries were modified with phospholipid bilayers that were chemically tuned to introduce specific affinity binding agents, while minimizing nonspecific protein adsorption to the capillary wall. The wall of fused silica was functionalized with DOGS-NTA-Ni2+ lipid to present binding sites inside the capillary for 6xHis-tagged proteins. Fluorescence microscopy and changes in electrophoretic mobility were used to follow the interaction of the model proteins with the functionalized silica surface.The structural similarity of lipid vesicles to cell membranes made them attractive in developing stationary phases for both liquid chromatography and capillary electrophoresis to study interactions between analytes and phospholipid membranes. Stabilized PLB coated silica microspheres were prepared via polymerization of lipid monomers and displayed enhanced stability to extended storage and organic solvent. These highly stable microspheres, while minimizing nonspecific protein adsorption, were also functionalized with DOGS-NTA-Ni2+ and effectively bind 6xHis-EGFP proteins.
126

Palladium-Catalyzed C(sp2)-C(sp3) Bond Formation

Rousseaux, Sophie 16 July 2012 (has links)
Palladium-catalyzed reactions for carbon-carbon bond formation have had a significant impact on the field of organic chemistry in recent decades. Illustrative is the 2010 Nobel Prize, awarded for “palladium-catalyzed cross couplings in organic synthesis”, and the numerous applications of these transformations in industrial settings. This thesis describes recent developments in C(sp2)-C(sp3) bond formation, focusing on alkane arylation reactions and arylative dearomatization transformations. In the first part, our contributions to the development of intramolecular C(sp3)-H arylation reactions from aryl chlorides are described (Chapter 2). The use of catalytic quantities of pivalic acid was found to be crucial to observe the desired reactivity. The reactions are highly chemoselective for arylation at primary aliphatic C-H bonds. Theoretical calculations revealed that C-H bond cleavage is facilitated by the formation of an agostic interaction between the palladium centre and a geminal C-H bond. In the following section, the development of an alkane arylation reaction adjacent to amides and sulfonamides is presented (Chapter 3). The mechanism of C(sp3)-H bond cleavage in alkane arylation reactions is also addressed through an in-depth experimental and theoretical mechanistic study. The isolation and characterization of an intermediate in the catalytic cycle, the evaluation of the roles of both carbonate and pivalate bases in reaction mechanism as well as kinetic studies are reported. Our serendipitous discovery of an arylation reaction at cyclopropane methylene C-H bonds is discussed in Chapter 4. Reaction conditions for the conversion of cyclopropylanilines to quinolines/tetrahydroquinolines via one-pot palladium(0)-catalyzed C(sp3)-H arylation with subsequent oxidation/reduction are described. Initial studies are also presented, which suggest that this transformation is mechanistically unique from other Pd catalyzed cyclopropane ring-opening reactions. Preliminary investigations towards the development of an asymmetric alkane arylation reaction are highlighted in Chapter 5. Both chiral carboxylic acid additives and phosphine ligands have been examined in this context. While high yields and enantiomeric excesses were never observed, encouraging results have been obtained and are supported by recent reports from other research groups. Finally, in part two, the use of Pd(0)-catalysis for the intramolecular arylative dearomatization of phenols is presented (Chapter 7). These reactions generate spirocyclohexadienones bearing all-carbon quaternary centres in good to excellent yields. The nature of the base, although not well understood, appears to be crucial for this transformation. Preliminary results in the development of an enantioselective variant of this transformation demonstrate the influence of catalyst activation on levels of enantiomeric excess.
127

Toxicity evaluation and medical application of multi-walled carbon nanotubes

Zhou, Lulu January 2015 (has links)
Carbon nanotubes (CNTs) are of special interest to industry and they have been increasingly utilised as advanced nanovectors in drug/gene delivery systems. They possess significant advantages including high surface area, welldefined morphologies, unique optical property, superior mechanical strength and thermal conductivity. However, despite their unique and advanced physicochemical properties, the low compatibility of some of those materials [e.g. multiwalled CNTs (MWCNTs)] in most biological and chemical environments has also generated some serious health and environment concerns. Chemical functionalization broadens CNT applications, conferring new functions, and at the same time was found potentially altering toxicity. Although considerable experimental data related to functionalised CNT toxicity, at the molecular and cellular levels, have been reported, there is very limited information available for the corresponding mechanism involved (e.g. cell apoptosis, genotoxicity. The toxicity of carbon nanotubes has been confirmed on many cell lines including A549 (lung cancer cell line) and MRC-5 (lung fibroblasts). However, the sensitivity of each cell line in terms of cellular morphology, apoptosis and DNA damage are still unknown. In this report the different levels of cellular response to oxidative stress and phagocytosis have been investigated in A549, MCF-7 and MRC-5 cell lines to better understand the mechanisms of the toxicity pathway. siRNA as an ideal personalized therapeutics can specifically regulate gene expression, but efficient delivery of siRNA is difficult while it has been shown that MWCNTs protect siRNA, facilitate entry into cells. In this study, we comprehensively evaluated the in vitro cytotoxicity of pristine and functionalized (-OH, -COOH) multi-wall carbon nanotubes (MWCNTs), via cell viability test, reactive oxygen species (ROS) generation test, cell apoptosis and DNA mutation detection, to investigate the non-toxic dose and influence of functional group in A549, MCF-7 and MRC-5 cells exposed to 1-1000 μg/mL MWCNTs from 6 to 72 hours. In addition, 84 toxicity related genes have been detected to investigate the change of RNA regulation after treatment with MWCNTs. The research findings suggest that functionalized MWCNTs are more genotoxic compared to their pristine form, and the level of both dose and dispersion in the matrix used should be taken into consideration before applying further clinical applications of MWCNTs. Among all three cell lines, MCF-7 was the most sensitive to cell death and DNA damage induced by pristine carbon nanotubes. The majority of MCF-7 cell death was in necrotic. In A549 cells, apoptosis played a notable role in cytotoxicity. MRC-5 didn’t show significant cell loss or membrane damage, which might be explained by its low cell growth rate, notably however, a great reduction of the F-actin and attachment points was observed after treatment which indicates that MRC-5 cells are under very unhealthy condition and less attached to the bottom of flasks. Despite their toxicity, which is still being researched, carbon nanotubes have a great potential in clinical medicine. Thus, understanding the sensitivity of different cell lines could offer a more individualized approach for future treatment regimes. In regards to gene delivery, MWCNTs were found to be less toxic than chemical agents (positive control) without weakening the delivery efficiency, which proves that MWCNTs have a good potential in medicine area.
128

Synthesis, Surface Functionalization, and Biological Testing of Iron Oxide Nanoparticles for Development as a Cancer Therapeutic

Gilliland, Stanley E, III 01 January 2015 (has links)
Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in vivo testing of surface functionalized iron oxide nanoparticles in delivering effective hyperthermia or radiotherapy. The benzyl alcohol modified seed growth method of synthesizing iron oxide nanoparticles using iron acetylacetonate as an iron precursor was investigated to identify significant nanoparticle properties that effect radiofrequency induced magnetic hyperthermia. Investigation of this synthesis under atmospheric conditions revealed a combination of thermal decomposition and oxidation-reduction mechanisms that can produce nanoparticles with larger crystallite sizes and decreased size distributions. Nanoparticles were easily surface functionalized with (3-Glycidyloxypropyl)trimethoxysilane (GLYMO) without the need for organic-aqueous phase transfer methods. The epoxy ring on GLYMO facilitated post-modifications via a base catalyzed epoxy ring opening to obtain nanoparticles with different terminal groups. Glycine, serine, γ-aminobutryic acid (ABA), (S)-(-)-4-amino-2-hydroxybutyric acid (SAHBA), ethylenediamine, and tetraethylenepentamine were successful in modifying GLYMO coated-iron oxide nanoparticles to provide colloidal and varying biological stability while also allowing for further conjugation of chemotherapeutics or radiotherapeutics. The colloidal stability of cationic and anionic nanoparticles in several biologically relevant media was studied to address claims of increased cellular uptake for cationic nanoparticles. The surface functionalized iron oxide nanoparticles were investigated to determine effects on cellular uptake and viability. In vitro tests were used to confirm the ability of iron oxide nanoparticles to provide effective hyperthermia treatment. S-2-(4-Aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA) was coupled to SAHBA and carboxymethylated polyvinyl alcohol surface functionalized iron oxide nanoparticles and radiolabeled with 177Lu. The capability of radiolabeled iron oxide nanoparticles for delivering radiation therapy to a U87MG murine orthotopic xenograft model of glioblastoma was initially investigated.
129

Biochemical and microscale modification of polymer for endothelial cell angiogenesis / Fonctionnalisation de polymère par des ligands bioactifs et contrôle de leurs distributions à l'échelle micrométrique pour l'induction de l'angiogenèse

Lei, Yifeng 10 October 2012 (has links)
La création d'un réseau vasculaire fonctionnel est une préoccupation importante afin d'assurer la parfaite vitalité des produits d’ingénierie tissulaire (IT). La compréhension des mécanismes de l'angiogenèse est essentielle dans un objectif de synthèse de produits d’ingénierie tissulaire vascularisés. Dans ce travail, nous avons visé à caractériser le microenvironnement responsable de l'angiogenèse des cellules endothéliales (CEs). Pour cela, nous avons élaboré des biomatériaux bioactifs (polymères fonctionnalisés par des peptides, et contrôlé leur distribution à l'échelle micrométrique) afin de mimer une situation physiologique des CEs.Dans en premier temps, nous avons mis au point une stratégie de fonctionnalisation biochimique d’un matériau polymère (le polyéthylène téréphtalate, PET) en utilisant des peptides spécifiques des CEs. L'immobilisation de ces peptides a permis d’assurer une bioactivité de ces surfaces, et l’amélioration des fonctions des CEs comme l'adhésion, l’étalement et la migration cellulaire.Ensuite, notre travail s’est inscrit dans l’évaluation de l’impact d’une distribution contrôlée de peptides en surface de matériaux (acquise par photolithographie) sur le comportement des CEs et sur l’angiogenèse. Nos résultats ont montré que les CEs adhèrent et sont alignés sur les « micropatterns » peptidiques quelle que soit la taille de ces « micropatterns » (lignes de largeurs comprises entre 10 et 100 µm). Nous avons mis en évidence que la taille des « micropatterns » bioactifs a un réel impact sur le comportement des CEs (l’étalement, l'orientation et la migration cellulaire). La morphogenèse des CEs (la formation d’un « tube-like ») a été mise en évidence sur des matériaux microstructurés par des lignes peptidiques de 10 et 50 µm de largeur, quels que soient les peptides RGD ou SVVYGLR immobilisés en surface. Nous avons montré que la lumière de structures tubulaires peut être constituée d’une à quatre cellules selon la contrainte géométrique appliquée sur les « micropatterns ». Nos travaux ont montré que le « sprouting » ainsi que la formation du réseau vasculaire peuvent être induits seulement sur des surfaces « micropatternés » par des peptides SVVYGLR. Nos résultats démontrent que l'induction de l'angiogenèse est multiparamétrique. Celle-ci est dépendante de constituants biochimiques ainsi que de leur micro-distribution.Troisièmement, nous avons utilisé la modélisation mathématique pour comprendre l'impact de « micropatterns » bioactifs sur la migration des CEs. Un modèle de type continu Patlak-Keller-Segel a été utilisé, et les résultats numériques sont bien conformes avec nos résultats expérimentaux. Pour finir, nos travaux se sont focalisés sur l'étude de la stabilisation de ces structures tubulaires. Les résultats ont montré que les cocultures de CEs avec les péricytes, ainsi que le recrutement de composant de membrane basale (Matrigel) peuvent stabiliser ces structures vasculaires.En conclusion générale, le travail réalisé dans cette thèse a prouvé que le « micropatterning » des principes bioactifs sur polymères est efficace pour stimuler l'angiogenèse et pour construire une vascularisation fonctionnelle. Enfin, ce travail a permis de comprendre la biologie de l’angiogenèse et pourra aider indéniablement tous les travaux en cours s’inscrivant dans l’ingénierie tissulaire. / The creation of a functional vascular network is a major concern to ensure the vitality of perfect tissue engineered products. Understanding the mechanisms of angiogenesis is essential for the vascularization in tissue engineering. In this work, we aimed to characterize the microenvironment responsible for angiogenesis of endothelial cells. To achieve this request, we developed bioactive biomaterials (polymers functionalized mainly with peptides, and controlled their distribution at micrometer scale) to mimic a physiological microenvironment of endothelial cells. First, we developed the biochemical functionalized of polymer materials (polyethylene terephthalate, PET) using endothelial cell specific peptides. The peptide immobilization ensured the bioactivity onto material surfaces, and enhanced endothelial cell functions such as cell adhesion, spreading and migration. Second, we introduced photolithographical technique to control geometrical distribution of peptides on material surfaces, and studied the effects of peptide micropatterning onto endothelial cell (EC) angiogenesis. ECs were adhered and aligned onto peptides micropatterns whatever the size of peptide micropatterns. However, EC behaviors (cell spreading, orientation and migration) were significantly more regulated on smaller micropatterns (10 and 50 µm) than on larger stripes (100 µm). EC morphogenesis into tube formation can also switch onto the smaller micropatterns (10 and 50 µm) with either RGD or SVVYGLR peptides. The central lumen of tubular structures can be formed by single-to-four cells due to geometrical constraints applied on the micropatterns. Sprouting angiogenesis of ECs and vascular network formation can be induced on surfaces micropatterned with angiogenic SVVYGLR peptides. Our overall results revealed that the induction of angiogenesis is multi-parametric. This is dependent on biochemical constituents and their micro-distributions. Third, we employed mathematical modeling to understand the impact of bioactive micropatterns on endothelial cell migration. A continuous Patlak-Keller-Segel type model was used, and the numerical results were in well accordance with our experimental results.Furthermore, we also developed the study of stabilization of tubulogenenic structure in this thesis. The results showed that the co-cultures of endothelial cells with pericytes, as well as the recruitment of basement membrane components (Matrigel) can stabilize the vascular tube structures. In general conclusion, our work in this thesis proved that bioactive micropatterning of polymer is effective to stimulate angiogenesis and to construct functional vascularization. This work helps us to understand the fundamental biology of angiogenesis, and has great potential for application in tissue engineering.
130

Développement de nanovecteurs polymériques et lipidiques fonctionnalisés par des anticorps pour cibler des cellules cancéreuses / Development of antibody functionalized polymeric and lipidic nanoparticles for targeting cancer cells

Wan, Yali 20 December 2012 (has links)
Ce travail, qui fait partie d’un projet européen, « NANOTHER », est focalisé sur la fonctionnalisation de nanoparticules polymériques et lipidiques fonctionnalisées par des anticorps Herceptine® pour cibler des cellules du cancer du sein HER2+. Deux stratégies de fonctionnalisation ont été étudiées : une a reposé sur l’utilisation de protéines de fusion, l’Anx5-ZZ, composée d’Annexine A5 et deux domaines Z homologues de la protéine A de Staphylococcus aureus qui peuvent se fixer des anticorps d’une manière orientée par leur fragment cristallisable ; l’autre a porté sur le couplage direct d’anticorps modifiés pour exposer des groupes sulfhydryles aux nanoparticules exposant des groupes maléimides.La première partie concerne le développement d’un agent de ciblage simplifié du complexe l’Anx5-ZZ-anticorps, à savoir l’Anx5-scFv (single-chain variable fragment). Puisque la cible n’avait pas été décidée au début de ce travail, deux scFvs ont été utilisé comme système modèle. L’expression de protéines de fusion a été essayée chez Escherichia Coli avec différentes constructions de protéines de fusion, différentes conditions d’expression et différentes souches bactériennes. Toutes les protéines sont soient agrégées soient non surexprimées.La deuxième partie consiste à fonctionnaliser les polymersomes par l’Herceptine® via l’Anx5-ZZ. D’abord, nous avons validé une méthode de modification de la surface de polymersome pour présenter des groupes maléimides. Ensuite, le couplage covalent de l’Anx5(SH)-ZZ aux polymersomes-maléimide a été réalisé et quantifié. Nous avons obtenu maximum 30 Anx5-ZZ par polymersome. Puis, la liaison d’affinité d’anticorps aux polymersomes-Anx5-ZZ a été caractérisée, réalisée et quantifiée. Pour 30 Anx5-ZZ par polymersome, nous avons 60 Herceptine® par polymersome. Cependant, l’efficacité de ciblage de ces systèmes est très faible.La troisième partie consiste à fonctionnaliser les liposomes par l’Herceptine® via couplage direct. Tout d’abord, la modification de l’Herceptine® pour présenter des groupes SH a été caractérisée et contrôlée. Ensuite, le couplage covalent d’Herceptine®-SH aux liposomes-maléimides a été réalisé et quantifié. L’étude de ciblage montre que les liposomes fonctionnalisés par une molécule d’Herceptine® sont capable de cibler les cellules HER2+. / This work, which is part of a European project "NANOTHER", focus on the functionalization of polymeric and lipidic nanoparticles by Herceptin® to target HER2+ cancer cells. Two functionalization strategies were studied: one was based on the use of a fusion protein, Anx5-ZZ, composed of Annexin A5 and two Z domains which are homologous with the protein A of Staphylococcus aureus that can bind antibodies by their crystallizable fragment in a oriented way; the other focused on the direct coupling of modified antibodies exposing sulfhydryl groups to nanoparticles exposing maleimid groups.The first part concerns the development of a targeting agent simplified from the Anx5-ZZ-antibody complex, namely Anx5-scFv (single-chain variable fragment). Since the target had not been decided at the beginning of this work, two scFvs were used as model system. The expression of fusion proteins was tested in Escherichia coli with different fusion protein constructions, different expression conditions and different bacterial strains. All proteins are either aggregated or non-overexpressed.The second part is to functionalize the polymersomes by Herceptin® via Anx5-ZZ. First, we validated a method for modifying the surface of polymersome to expose maleimid groups. Then, the covalent coupling of Anx5(SH)-ZZ to polymersomes-maleimid was performed and quantified. We obtained maximum 30 Anx5-ZZ per polymersome. Then, the affinity binding of antibodies to polymersomes-Anx5-ZZ was characterized, performed and quantified. For 30 Anx5-ZZ per polymersome, we have 60 Herceptin® per polymersome. However, the targeting efficiency of this system is very low.The third part consists in functionalizing the liposomes by Herceptin® via direct coupling. Firstly, the modification of Herceptin® to expose SH groups was characterized and controlled. Then, the covalent coupling of Herceptin®-SH to liposomes exposing maleimid groups was performed and quantified. The targeting study shows that liposomes functionalized with one Herceptin® are able to target HER2+ cells.

Page generated in 0.1237 seconds