• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 15
  • 11
  • 4
  • 2
  • 2
  • Tagged with
  • 67
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigation of film forming properties of β-chitosan from jumbo squid pens (Dosidicus gigas) and improvement of water solubility of β-chitosan / Investigation of film forming properties of beta-chitosan from jumbo squid pens (Dosidicus gigas) and improvement of water solubility of beta-chitosan

Chen, Jeremy L. 27 April 2012 (has links)
The objectives of this project were to investigate the critical factors impacting the physicochemical and antibacterial properties of β-chitosan based films derived from jumbo squid (Dosidicus gigas) pens, and to evaluate the feasibility of improving water solubility of β-chitosan through Maillard reaction. The studies examined the effect of molecular weight (1,815 and 366 kDa), acid (formic, acetic, propionic, and lactic acid), and plasticizer (glycerol and sorbitol) on the film properties, as well as reducing sugar (fructose and glucosamine) and heat treatment (high temperature short time (HTST), low temperature long time (LTLT)) on water solubility of chitosan. Results on β-chitosan were compared with α-chitosan in both studies. Tensile strength (TS) and elongation (EL) of β-chitosan films were influenced by molecular weight (Mw), acid and plasticizer types (P < 0.05). High molecular weight (Hw) β-chitosan films had an overall TS of 44 MPa, 53% higher than that of low molecular weight (Lw) β-chitosan films (29 MPa) across all acid types used. The mean TS of β-chitosan acetate and propionate films (43 and 39 MPa) were higher (P < 0.05) than that of β-chitosan formate and lactate films (34 and 29 MPa). Films incorporated with plasticizer (32 MPa) had lower TS than those without plasticizer (48 MPa). Mean EL of Hw β-chitosan films was 10% versus approximately 4% in Lw β-chitosan films. Formate and acetate films had higher EL than that of propionate film. Glycerol and sorbitol increased (P < 0.001) EL 151% and 106% compared with the films without plasticizer, respectively. Water vapor permeability (WVP) of the films was affected by acid and plasticizer. Formate films (34 g mm/m² d KPa) had higher WVP than other acid films. Adding plasticizer increased (11% to 31%) WVP of propionate films except the Lw β-chitosan propionate film with sorbitol. The antibacterial activity of Lw β-chitosan and α-chitosan films delayed (P < 0.05) the proliferation of E. coli, where lactate films showed the strongest effect. The growth of L. innocua at 24 h was completely (P < 0.05) inhibited by chitosan films except Hw β-chitosan acetate film. A soft and cotton-like water soluble chitosan with mesopores was acquired after freeze-drying the Maillard reacted chitosan-sugar solution. The yield of β-chitosan-derivatives (8.48%) was 1.21 times higher than that of α-chitosan products (7.00%) (P < 0.01). Heat treatment only affected the yield of chitosan-glucosamine derivatives. Sugar type did not indicate any impact on the yield of the chitosan-derivative products in general (P > 0.05). The solubility was affected by sugar type (P < 0.01) only occurred in the β-chitosan products prepared with LTLT (P<0.05), where β-chitosan-fructose derivatives (9.56 g/L) had higher solubility than the glucosamine (5.19 g/L).LTLT treatment had given all chitosan-derivatives a higher solubility (8.44 g/L) than HTST (3.83 g/L) did (P<0.001). The results from this study demonstrated the feasibility of creating β-chitosan based film from jumbo squid pens with similar mechanical, water barrier and antibacterial properties compare to α-chitosan films as a food wrap and controlled the properties with several important factors, and developing water soluble chitosan through Maillard reaction that possess the potential as functional substance in a wider range of applications. / Graduation date: 2012
62

Estudo da atividade dos sulfatos de condroitina e glucosamina na formação de vasos sanguíneos em modelos in vitro e in vivo

BORBA, Fernanda Katharine de Souza Lins 29 February 2012 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2016-06-01T16:45:23Z No. of bitstreams: 1 Fernanda Katharine de Souza Lins Borba.pdf: 4059966 bytes, checksum: cce20c494a8d5b3926e4508d0ff50750 (MD5) / Made available in DSpace on 2016-06-01T16:45:23Z (GMT). No. of bitstreams: 1 Fernanda Katharine de Souza Lins Borba.pdf: 4059966 bytes, checksum: cce20c494a8d5b3926e4508d0ff50750 (MD5) Previous issue date: 2012-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Chondroitin Sulfate (CS) and Glucosamine Sulfate (GS) are functional constituents of vertebrate tissues. GS is an amino sugar and CS is part of the glucosaminoglycans group (GAGs). Studies have suggested CS and GS to have anti-inflammatory properties, however it has also been shown that these compounds promote scarring and proliferation of fibroblasts, which express molecules important for blood vessel growth (angiogenesis). This study was aimed at evaluating the effects of CS and GS on in vitro models regarding cell viability (cytotoxicity - MTT), proliferation (BrdU incorporation) and differentiation (tubulogenesis in Matrigel support) on human umbilical vein endothelial cells (HUVEC line). In vivo angiogenesis was also evaluated in (1) extraembryonic membranes of Gallus domesticus (number of chorioallantoic vessels - CAM assay and vitelinic YSM assay; and fractal geometry analysis); (2) and subcutaneous tissue of adult mice (Mus muscullus) by hemoglobin quantification (Spectroscopy) in Gelfoam implants. In the HUVEC assay, both CS and GS (1-3000 g/mL) displayed partial cytotoxic effect (~50% viability), but only in the highest tested concentrations (3000 and 1000 g/mL). It was observed that CS (3 g/mL), but not GS, promoted proliferation and tubulogenesis of HUVEC in 40% (P < 0.05) and 64% (P < 0.05), respectively, relative to control (RPMI-1640 medium). These effects did not significantly differ from the respective 28% and 53% promoted by the well known angiogenic growth factor FGF-2 (50 ng/mL). In the in vivo vasculoangiogenesis YSM assay on 2 to 4-day old embryos, GS (0.001-0.1mg/disk) and, to a lesser extent, CS (0.030-0.1mg/disk) increased the amount of vessels relative to control (P < 0.05). The effects of administration of CS and GS (0.1mg/disk) did not differ from what was observed in groups treated with 50 ng/mL FGF2. In the CAM angiogenesis assay on 6 to 8-days old embryos, again both CS and GS increased the amount of vessels relative to control, but only in concentrations as high as 2.0 mg/disk. This effect was no different from what was observed in groups treated with 50 ng/mL FGF2. The pro-angiogenic effects of CS (2 mg/disk) in embryonary angiogenesis were confirmed in the advanced angiogenesis of mice: only the group treated with CS (2 mg/implant) displayed a significant increase in the amount of blood vessels, expressed as hemoglobin content (0.52 ± 0.08g/dL), relative to control (vehicle; PBS; 0.20 ± 0.07 g/dL). This pro-angiogenic effect was no different than that of FGF2 (0.53 ± 0.1g/dL). The in vitro and in vivo results indicate the pro-angiogenic properties of CS and GS. However, CS (GAG) was the more effective compound in the tests performed. As a constituent of proteoglycans, it is suggested that CS exerts its effects by interacting with FGF and other angiogenic factors in the extracellular matrix, stabilizing the receptor, and thus positively modulating the pro-angiogenic signal in endothelial cells. While the cellular mechanisms underlying CS and GS activity demand more specific research, there is an evident potential therapeutic use for both compounds in clinical situations, such as those related to vascular discrepancy. / Sulfato de glucosamina (SG) e Sulfato de condroitina (SC) são constituintes funcionais dos tecidos de vertebrados. O SG é um aminoaçúcar e o SC integra o grupo das glicosaminoglicanas (GAG). Estudos apontam propriedades antiinflamatórias do SC e SG, e demonstram ainda que essas substâncias promovem a cicatrização e a proliferação de fibroblastos, os quais expressam moléculas que atuam na formação de vasos sanguíneos (angiogênese). Os objetivos deste estudo foram avaliar a ação do SC e SG em modelos in vitro sobre a viabilidade (citotoxicidade pelo MTT), proliferação (incorporação por BrdU) e diferenciação (tubulogênese em suporte matrigel) na linhagem de células endoteliais de veia umbilical humana (HUVEC). Também se investigou a angiogênese in vivo: (1) em membranas anexas de embriões de Gallus domesticus (número de vasos corioalantóides - ensaio da CAM, e vitelínicos – ensaio da YSM; e análise por geometria fractal); (2) e no tecido subcutâneo de camundongos adultos por meio de quantificação da hemoglobina em implantes de Gelfoam. No ensaio com HUVEC, SC e SG (1-3000 g/mL) exerceram efeito citotóxico parcial (~50% de viabilidade), e somente nas respectivas maiores concentrações (3000 e 1000 g/mL). Verificou-se que o SC (3 g/mL), mas não o SG, estimulou a proliferação e a tubulogênese de HUVEC em 40% (p < 0,05) e em 64% (p < 0,05) respectivamente, em relação ao controle (meio RPMI-1640). Estes efeitos não diferiram estatisticamente dos 28% e 53%, respectivamente, promovidos pelo bem conhecido fator de crescimento angiogênico FGF-2 (50 ng/mL). No ensaio de vasculo-angiogênese na YSM de embriões de 2-4 dias de idade o SG (0,001-0,1mg/disco) principalmente, e o SC (0,030-0,1mg/disco) aumentaram o número de vasos em relação ao grupo controle (p < 0,05). Os efeitos da administração de SC e SG (0,1 mg/disco) não diferiram do observado no grupo tratado com 50 ng/mL de FGF-2. No ensaio de angiogênese na CAM de embriões de 6-8 dias de idade, ambos, SC e SG também elevaram o número de vasos em relação ao controle na concentração elevada de 2,0 mg/disco. Este efeito também não diferiu do observado no grupo exposto a 50 ng/mL de FGF- 2. O efeito pró-angiogênico do SC (2 mg/disco) na angiogênese embrionária foi confirmado na angiogênese avançada de camundongos adultos. Apenas o grupo que recebeu SC (2 mg/implante) mostrou um aumento significativo de vasos sanguíneos, expresso como conteúdo de hemoglobina (0,52 ± 0,08g/dL), comparado ao controle (veículo; PBS; 0,20 ± 0,07 g/dL). Este efeito pró-angiogênico não diferiu do obtido com FGF2 (0,53 ± 0.1g/dL). Os resultados in vitro e in vivo demonstram as propriedades pró-angiogênicas do SC e SG, contudo o SC (GAG) foi o mais efetivo nos ensaios. Como um constituinte de proteoglicanas, o SC sugere exercer seus efeitos pela interação com o FGF e outros fatores angiogênicos na matriz extracelular, estabilizando-os nos receptores e modulando assim, positivamente, o sinal pró-angiogênico nas células endoteliais. Embora mecanismos celulares subjacentes à atividade de SC e SG demandem mais estudos, evidencia-se um potencial papel terapêutico das duas substâncias em situações clínicas relacionadas à defasagem vascular.
63

Mechanisms of hexosamine-induced cholesterol accumulation and therapeutic actions of chromium

Penque, Brent A. 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Excess caloric intake and/or obesity currently remain the largest predisposing risk factors for the development of type 2 diabetes. Discerning the cellular and molecular mechanisms responsible and amendable to therapy represents a growing challenge in medicine. At a cellular level, increased activity of the hexosamine biosynthesis pathway (HBP), a sensor of excess energy status, has been suggested to promote the exacerbation of insulin resistance through increasing adipose tissue and skeletal muscle membrane cholesterol content. This in turn compromises cortical filamentous actin structure necessary for proper incorporation of the insulin-sensitive glucose transporter GLUT4 into the plasma membrane. The current studies attempted to elucidate the mechanism by which hexosamines provoke membrane cholesterol toxicity and insulin resistance. In 3T3-L1 adipocytes cultured with pathophysiologic hyperinsulinemia to induce insulin resistance, increased HBP flux was observed. This occurred concomitant with gains in the mRNA and protein levels of HMG-CoA reductase (HMGR), the rate limiting enzyme in cholesterol synthesis. Mechanistically, immunoprecipitation demonstrated increased HBP-induced N-acetylglucosamine (O-GlcNAc) modification of specificity protein 1 (Sp1), a regulator of HMGR synthesis. This was associated with increased affinity toward and activity of Hmgcr, the gene encoding HMGR. Global HBP inhibition or Sp1 binding to DNA prevented membrane cholesterol accrual, filamentous actin loss, and glucose transport dysfunction. Furthermore, hyperinsulinemia and HBP activation impaired cholesterol efflux in adipocytes, exacerbating cholesterol toxicity and potentially contributing to cardiovascular disease. In this regard, chromium picolinate (CrPic), known to have beneficial effects on glucose and lipoprotein metabolism, improved cholesterol efflux and restored membrane cholesterol content. To test the role of membrane cholesterol accumulation in vivo, studies were conducted on C57Bl/6J mice fed a low or high fat diet. High fat feeding promoted increased HBP activity, membrane cholesterol accumulation, and insulin resistance. Supplementation of mice with CrPic in their drinking water (8µg/kg/day) countered these derangements and improved insulin sensitivity. Together, these data provide mechanistic insight for the role of membrane cholesterol stress in the development of insulin resistance, as well as cardiovascular disease, and highlight a novel therapeutic action of chromium entailing inhibition of the HBP pathway.
64

Regulation of glucosamine-6-phosphate synthase synthesis by a hierarchical acting cascade composed of two small regulatory RNAs in <i>Escherichia coli</i>. / Regulation der Synthese der Glukosamin-6-Phosphat Synthase durch eine aus zwei kleinen regulatorischen RNAs bestehende hierarchische Kaskade in <i>Escherichia coli</i>.

Reichenbach, Birte 19 October 2009 (has links)
No description available.
65

Immunobiology and Application of Toll-Like Receptor 4 Agonists to Augment Host Resistance to Infection

Hernandez, Antonio, Patil, Naeem K., Stothers, Cody L., Luan, Liming, McBride, Margaret A., Owen, Allison M., Burelbach, Katherine R., Williams, David L., Sherwood, Edward R., Bohannon, Julia K. 01 December 2019 (has links)
Infectious diseases remain a threat to critically ill patients, particularly with the rise of antibiotic-resistant bacteria. Septic shock carries a mortality of up to ∼40% with no compelling evidence of promising therapy to reduce morbidity or mortality. Septic shock survivors are also prone to nosocomial infections. Treatment with toll-like receptor 4 (TLR4) agonists have demonstrated significant protection against common nosocomial pathogens in various clinically relevant models of infection and septic shock. TLR4 agonists are derived from a bacteria cell wall or synthesized de novo, and more recently novel small molecule TLR4 agonists have also been developed. TLR4 agonists augment innate immune functions including expansion and recruitment of innate leukocytes to the site of infection. Recent studies demonstrate TLR4-induced leukocyte metabolic reprogramming of cellular metabolism to improve antimicrobial function. Metabolic changes include sustained augmentation of macrophage glycolysis, mitochondrial function, and tricarboxylic acid cycle flux. These findings set the stage for the use of TLR4 agonists as standalone therapeutic agents or antimicrobial adjuncts in patient populations vulnerable to nosocomial infections.
66

Aberrations in Cytokine Signaling in Leukemia: Variations in Phosphorylation and O-GlcNAcylation

Tomic, Jelena 31 August 2012 (has links)
Tumor-induced immunosuppression can occur by multiple mechanisms, each posing a significant obstacle to immunotherapy. Evidence presented in this dissertation suggests that aberrant cytokine signaling, as a result of altered metabolism of Chronic Lymphocytic Leukemia (CLL) cells, confers a selective advantage for tumor survival and growth. Cells from CLL patients with aggressive disease (as indicated by high-risk cytogenetics) were found to exhibit prolongation in Interferon (IFN)-induced STAT3 phosphorylation, and increased levels of reactive oxygen species (ROS) in these cells reflected these signaling processes. Changes in the relative balance of phospho-STAT3 and phospho-STAT1 levels, in response to combinations of IL-2 + Toll-like receptor (TLR)-7 agonist + phorbol esters, as well as IFN, were associated with the immunosuppressive and immunogenic states of CLL cells. In addition, immunosuppressive leukemic cells were found to express high levels of proteins with O-linked N-acetylglucosamine (O-GlcNAc) modifications, due to increased metabolic activity through the Hexosamine Biosynthetic Pathway (HBP), which caused impaired intracellular signaling responses and affected disease progression. A conclusion of the studies presented here is that the intrinsic immunosuppressive properties of leukemic cells may be overcome by agents such as Resveratrol that target metabolic pathways of these cells.
67

Aberrations in Cytokine Signaling in Leukemia: Variations in Phosphorylation and O-GlcNAcylation

Tomic, Jelena 31 August 2012 (has links)
Tumor-induced immunosuppression can occur by multiple mechanisms, each posing a significant obstacle to immunotherapy. Evidence presented in this dissertation suggests that aberrant cytokine signaling, as a result of altered metabolism of Chronic Lymphocytic Leukemia (CLL) cells, confers a selective advantage for tumor survival and growth. Cells from CLL patients with aggressive disease (as indicated by high-risk cytogenetics) were found to exhibit prolongation in Interferon (IFN)-induced STAT3 phosphorylation, and increased levels of reactive oxygen species (ROS) in these cells reflected these signaling processes. Changes in the relative balance of phospho-STAT3 and phospho-STAT1 levels, in response to combinations of IL-2 + Toll-like receptor (TLR)-7 agonist + phorbol esters, as well as IFN, were associated with the immunosuppressive and immunogenic states of CLL cells. In addition, immunosuppressive leukemic cells were found to express high levels of proteins with O-linked N-acetylglucosamine (O-GlcNAc) modifications, due to increased metabolic activity through the Hexosamine Biosynthetic Pathway (HBP), which caused impaired intracellular signaling responses and affected disease progression. A conclusion of the studies presented here is that the intrinsic immunosuppressive properties of leukemic cells may be overcome by agents such as Resveratrol that target metabolic pathways of these cells.

Page generated in 0.0362 seconds