Spelling suggestions: "subject:"good cluster"" "subject:"god cluster""
1 |
Studies of Self-Assembled Biferrocenyl Alkanethiol Monolayers on Au (111) Surface and on Gold Clusters.Tseng, I-Min 27 June 2002 (has links)
We examine the electrochemical properties of SAM of alkanethiols terminated with biferrocenyl group (complex 7) to understand the interactions between metal surface and molecules.
The cyclic voltammogram of complex 8 shows two successive reversible one-electron redox waves corresponding to the oxidation of the biferrocenyl moiety and all peak-to-peak separations are smaller than 59 mV (ideal value of one electron transfer with diffusing controlling). In addition, the peak currents are linear to scan rate, i.e., i£\V. This observation is corresponding to the electrochemical property of SAM, and we would like to suggest that the electron transfer process in the electrochemical measurements is direct controlling.
Furthermore, we synthesized a nano-material by using of redox stable biferrocenylalkanethiol attached to gold cluster (complex 10). The clusters are stable in air, soluble in nonpolar organic solvents and the characters could be examining by traditional chemical instruments such as NMR, IR, UV/Vis, TEM. The cyclic voltammogram shows that the electron transfer process in the electrochemical measurements is also direct controlling.
Finally, the well-known mechanism of intramolecular electron transfer in mixed-valence biferroceniums and the stable biferrocene on Au (111) surface and on gold clusters let to the more advanced concept. We believe that the microstructure of biferrocene assembled on an electrode surface or on gold clusters might enable to carry out a particular function extraordinarily well, for example, optical switch.
|
2 |
Studies of Molecular Self-Assembled Monolayers of Alkanethiols and Biferrocenylalkanethiols on Au(111) and Au ClustersChang¡@, Ling-Shao 11 February 2003 (has links)
none
|
3 |
Gold-based Nanomaterials: Spectroscopy, Microscopy and Applications in Catalysis and SensingAdnan, Rohul January 2015 (has links)
The birth of nanotechnology era has revolutionized materials science, catalysis and field of optoelectronics. Novel and unique phenomena emerge when material dimensions are reduced to ultra-small size regime and enter nanometre (2-100 nm) realm. Such novel materials are expected to replace bulk materials, offering lower cost of manufacturing and enabling progress in many areas such as solar cell, drug delivery, quantum communication and computing, catalysis and sensing applications. With the progress in nanomaterial synthesis and fabrication, the need for the state-of-art characterization techniques became obvious; such techniques help to establish a complete understanding of the nature and interactions of nanosized materials.
In this thesis, the first part focuses on the synthesis of gold and ruthenium clusters, namely Au8, Au9, Au101, Ru3, Ru4 and AuRu3, using the well-established synthetic protocols in the literature. Apart from the standard lab-based characterization techniques such as nuclear magnetic resonance (NMR), UV-visible spectroscopy (UV-vis) and Fourier Transform Infra-red (FTIR), a less explored but useful technique far infra-red (far IR) spectroscopy, available at the Australian Synchrotron (AS), was employed to investigate the vibrational modes in these clusters. Peaks in the experimental far IR spectra were assigned unambiguously to specific vibrations by comparing with the ones generated via DFT calculations with the help of collaborators, group of Professor Gregory Metha, University of Adelaide. For the Au9 cluster, three significant gold core vibrations are observed at 157, 177 and 197 cm-1 in the experimental spectrum. In the case of the Ru3 cluster, only a single ruthenium core vibration is identified within the spectrum, at 150 cm-1 with the calculated force constant, k = 0.33 mdyne/Å. The Ru4 cluster exhibits two metal core vibrations at 153 and 170 cm-1 with force constants of 0.35 and 0.53 mdyne/Å, respectively. Substitution with a gold atom yielding a mixed metal AuRu3 cluster shifts the core transitions toward higher wavenumbers at 177 and 299 cm-1 with an increase in force constants to 0.37 and 1.65 mdyne/Å, respectively. This is attributed to the change in chemical composition and geometry of the metal cluster core. A combination of the DFT calculations and high quality synchrotron-based experimental measurements allowed the full assignment of the key transitions in these clusters.
Next, these clusters were fabricated into heterogeneous catalysts by depositing on different metal oxide nanopowders. Synchrotron X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) studies were performed at the Australian Synchrotron and the Photon Factory synchrotron in Japan to investigate the electronic structure of Au8, Au9 and Au101 on TiO2 catalysts. The XPS analysis reveals that “as-deposited” Au8 and Au9 retain some un-aggregated clusters while Au101 show bulk-like gold. These findings are in line with TEM observations, where the aggregates (large particles, > 2 nm) of Au8, Au9 and Au101 are hardly seen under HRTEM. UV-visible diffuse reflectance spectroscopy (UV-vis DRS) studies show the absence of localised surface plasmon resonance (LSPR) peaks in these “as-deposited” clusters, suggesting they are below 2 nm in size. Importantly, the XAS spectrum of “as-deposited” Au9 clusters estimates that 60% of pure, un-aggregated Au9 clusters and 40% of bulk gold in the sample. Upon calcination under O2 and combined O2 and H2 (O2-H2), Au8, Au9 and Au101 clusters form larger nanoparticles (> 2 nm) with the appearance of LSPE peak in UV-vis DR spectra. In addition, majority of the phosphine ligands (that stabilise the gold core) dislodge and form phosphine oxide-like species by interacting with oxygen on the TiO2 surface.
The third part focused on testing the catalytic performance of the supported Au8, Au9, Au101, Ru3, Ru4 and AuRu3 clusters on different TiO2, SiO2, ZnO and ZrO2 in benzyl alcohol oxidation. Au101-based catalysts display the highest catalytic activity with a turn-over frequency (TOF) up to 0.69 s-1. The high catalytic activity is attributed to the formation of large Au nanoparticles (> 2 nm) that coincides with the partial removal of capping ligands. Au8 and Au9 clusters which contain NO3- counter anions are found to be inactive in benzyl alcohol oxidation. Further work shows that the presence of NO3- species diminishes the catalytic activity. Monometallic ruthenium clusters, Ru3 and Ru4, are found to be inactive yet the bimetallic AuRu3 clusters are active in benzyl alcohol oxidation, suggesting the synergistic effect between ruthenium and gold metal. Investigation of catalytic testing parameters reveals that tuning selectivity of the product is possible through manipulating the reaction temperature.
Finally, a joint experiment with Prof. Wojtek Wlodarski’s group at RMIT, Melbourne was undertaken to test the sensing ability of Au9 clusters for hydrogen detection. Au9 clusters were deposited onto radio-frequency (RF) sputtered WO3 films at two different concentrations; 0.01(S1) and 0.1(S2) mg/mL. It was found that the optimal temperatures for sensor S1 and S2 were 300 °C and 350 °C, respectively. The sensor with lower Au9 concentration (S1) displays a faster response and recovery time, and a higher sensitivity toward H2. HRTEM studies reveal that the sensor S1 contain a significant population of sub-5 nm Au nanoparticles which might be responsible for a faster rate of H2 adsorption and dissociation. The key finding in this study suggest that the addition of catalytic layer such as ultra-small Au9 clusters results in improved sensitivity and dynamic performance (response and recovery time) of H2 sensors.
In summary, this thesis demonstrated that cluster-based nanomaterials have wide range of applications spanning from catalysis to sensing. Further improvements in material synthesis and use of multiple complimentary characterization techniques allowed better understanding of the nature of the key active species (metal nanoparticles) assisting design of catalysts and sensors with enhanced performance.
|
4 |
Evaluation of Hypervelocity Gold Nanoparticles for Nanovolume Surface Mass SpectrometryDeBord, John 1986- 14 March 2013 (has links)
Impacts of high kinetic energy massive gold clusters (~ 500 keV Au400+4) exhibit significantly enhanced secondary ion yields relative to traditional atomic or polyatomic primary ions (e.g. Au3 and C60). The one-of-a-kind instrument used to generate these hypervelocity nanoparticles (~2 nm diameter, ~30 km/s) and monitor emissions from their impacts (SIMS) is described in detail for the first time.
The projectile range of 520 keV Au400+4 is measured to be ~20 nm in amorphous carbon and projectile disintegration is observed at the exit of carbon foils as thin as 5 nm. These experiments were performed by monitoring carbon cluster ions emitted from both sides of a foil impacted by the projectile. Surprisingly, clusters emitted in the forward direction are larger than those emitted backward. The composition of the mass spectra is shown to depend on both the thickness of the foil and the size of the projectile.
Secondary ion yields for a variety of materials including peptides, lipids, drugs, polymers, inorganic salts, and various small molecules have been measured and molecular ion yields for many of these species exceed unity. Multiplicity measurements show that up to seven molecular ions of leucine-enkephalin (YGGFL) can be detected from the impact of a single projectile. SI yields measured with ~500 keV Au400+4 are generally one to two orders of magnitude greater than those obtained with 130 keV Au3+ and 50 keV C60+ projectiles.
The high molecular ion yields observed suggest the internal energies of ions emitted from massive cluster impacts are relatively low. In order to address this hypothesis, a novel method for measuring secondary ion internal energies was developed using a series of benzylpyridinium salts. Using this method, the internal energies were measured to be ~0.19 eV/atom, which is a factor of five less than that seen in atomic-SIMS.
Sample metallization is shown to be ineffective for further increasing secondary ion yields with Au400, despite observations from previous molecular dynamic simulations. Coincidence mass spectrometry is applied to nanometric chemical segregations found on samples coated with thin layers of gold and silver. It is possible to measure the surface coverages of the metallic and underlying organic layers using mass spectrometry in a non-imaging mode.
|
5 |
Abtrennung und Charakterisierung von Polyelektrolyt-modifizierten Nanopartikeln / Separation and characterization of polyelectrolyte-modified nanoparticlesLemke, Karina January 2013 (has links)
Gegenstand der Dissertation ist die größen- und eigenschaftsoptimierte Synthese und Charakterisierung von anorganischen Nanopartikeln in einer geeigneten Polyelektrolytmodifizierten Mikroemulsion. Das Hauptziel bildet dabei die Auswahl einer geeigneten Mikroemulsion, zur Synthese von kleinen, stabilen, reproduzierbaren Nanopartikeln mit besonderen Eigenschaften. Die vorliegende Arbeit wurde in zwei Haupteile gegliedert. Der erste Teil befasst sich mit der Einmischung von unterschiedlichen Polykationen (lineares Poly (diallyldimethylammoniumchlorid) (PDADMAC) und verzweigtes Poly (ethylenimin) (PEI)) in verschiedene, auf unterschiedlichen Tensiden (CTAB - kationisch, SDS - anionisch, SB - zwitterionisch) basierenden, Mikroemulsionssysteme. Dabei zeigt sich, dass das Einmischen der Polykationen in die Wassertröpfchen der Wasser-in-Öl (W/O) Mikroemulsion prinzipiell möglich ist. Der Einfluss der verschiedenen Polykationen auf das Phasenverhalten der W/O Mikroemulsion ist jedoch sehr unterschiedlich. In Gegenwart des kationischen Tensids führen die repulsiven Wechselwirkungen mit den Polykationen zu einer Destabilisierung des Systems, während die ausgeprägten Wechselwirkungen mit dem anionischen Tensid in einer deutlichen Stabilisierung des Systems resultieren. Für das zwitterionische Tensid führen die moderaten Wechselwirkungen mit den Polykationen zu einer partiellen Stabilisierung. Der zweite Teil der Arbeit beschäftigt sich mit dem Einsatz der unterschiedlichen, Polyelektrolyt- modifizierten Mikroemulsionen als Templatphase für die Herstellung verschiedener, anorganischer Nanopartikel. Die CTAB-basierte Mikroemulsion erweist sich dabei als ungeeignet für die Herstellung von CdS Nanopartikeln, da zum einen nur eine geringe Toleranz gegenüber den Reaktanden vorhanden ist (Destabilisierungseffekt) und zum anderen das Partikelwachstum durch den Polyelektrolyt-Tensid-Film nicht ausreichend begrenzt wird. Zudem zeigt sich, dass eine Abtrennung der Partikel aus der Mikroemulsion nicht möglich ist. Die SDS-basierten Mikroemulsionen, erweisen sich als geeignete Templatphase zur Synthese kleiner anorganischer Nanopartikel (3 – 20 nm). Sowohl CdS Quantum Dots, als auch Gold Nanopartikel konnten erfolgreich in der Mikroemulsion synthetisiert werden, wobei das verzweigte PEI einen interessanten Templat-Effekt in der Mikroemulsion hervorruft. Als deutlicher Nachteil der SDS-basierten Mikroemulsionen offenbaren sich die starken Wechselwirkungen zwischen dem Tensid und den Polyelektrolyten während der Aufarbeitung der Nanopartikel aus der Mikroemulsion. Dabei erweist sich die
Polyelektrolyt-Tensid-Komplexbildung als hinderlich für die Redispergierung der CdS Quantum Dots in Wasser, so dass Partikelaggregation einsetzt. Die SB-basierten Mikroemulsionen erweisen sich als günstige Templatphase für die Bildung von größen- und eigenschaftenoptimierten Nanopartikeln (< 4 nm), wobei insbesondere eine Modifizierung mit PEI als ideal betrachtet werden kann. In Gegenwart des verzweigten PEI gelang es erstmals ultrakleine, fluoreszierende Gold Cluster (< 2 nm) in einer SB-basierten Mikroemulsion als Templatphase herzustellen. Als besonderer Vorteil der SB-basierten Mikroemulsion zeigen sich die moderaten Wechselwirkungen zwischen dem zwitterionischen Tensid und den Polyelektrolyten, welche eine anschließende Abtrennung der Partikel aus der Mikroemulsion unter Erhalt der Größe und ihrer optischen Eigenschaften ermöglichen. In der redispergierten wässrigen Lösung gelang somit eine Auftrennung der PEI-modifizierten Partikel mit Hilfe der asymmetrischer Fluss Feldflussfraktionierung (aF FFF). Die gebildeten Nanopartikel zeigen interessante optische Eigenschaften und können zum Beispiel erfolgreich zur Modifizierung von Biosensoren eingesetzt werden. / This work is focused on the formation, recovery and characterisation of inorganic nanoparticles in a tailor-made polycation-modified reverse microemulsion. The main aim is the choice of an adequate microemulsion for the synthesis of small, uniform, reproducible nanoparticles with specialn characteristics. The first part is focused on the incorporation of two different polycations, low molecular weight linear poly(diallyldimethylammonium chloride) (PDADMAC) and low molecular weight branched poly(ethyleneimine) (PEI) in different surfactant-based (CTAB – cationic, SDS – anionic, SB - zwitterionic) w/o microemulsions. In principle the incorporation of the polycations in the small water droplets is possible, but the influence of the polycations on the phase behaviour is different. Repulsive interactions induce a destabilisation of the w/o microemulsion for cationic surfactant CTAB, while the distinctive interactions between the anionic surfactant SDS and the polycations induce an extension of the phase range and a considerable stabilisation. In case of zwitterionic surfactant SB a partial destabilisation can be observed, according to the lower interactions with the polycations. The second part is focused on the formation of different, inorganic nanoparticles in these polyelectrolyte-modified reverse microemulsions as a template phase. The CTAB-based microemulsion is not adequate for the formation of CdS nanoparticles, according to the low tolerance towards the reactants (destabilisation effect). Furthermore the particle growth cannot be limited by the surfactant-polycation-film and a recovery of the nanoparticles from the microemulsion is not possible. The results show that the SDS-based quaternary template phase consisting of water, toluene-pentanol (1:1), and the anionic surfactant SDS in presence of PEI or PDADMAC can be successfully used for the synthesis of polymer capped inorganic nanoparticles (3 – 20 nm). CdS quantum dots, as well as gold nanoparticles are successfully synthesised in the microemulsion droplets. Especially PEI acts as a reducing and stabilizing agent and shows an additional, interesting template effect in the microemulsion. Unfortunately a recovery of the nanoparticles without a particle aggregation is not possible due to the strong surfactant polycation interactions, which lead to polycation-surfactant complexes. The SB-based microemulsion can be successfully used as a tailor-made polycation-modifiedreverse microemulsion for the formation of small, uniform nanoparticles (< 4 nm) with special characteristics. Especially a modification with PEI is optimal and for the first time small, fluorescent gold cluster (< 2 nm) can be synthesised in a SB-based microemulsion as template phase. The results show that the electrostatic interactions between the polycation and the surfactant are of high relevance especially in the solvent evaporation and redispersion process. That means only in the case of moderate polycation-surfactant interactions a redispersion of the polymer capped particles without problems of aggregation is possible and the size and characteristics are unchanged in the redispersed solution. By means of asymmetric flow field flow fractionation (af-fff) it becomes possible to separate the two cluster fractions from each other as well as from the nanoparticle fraction with diameter > 5 nm. This opens a way to use the nanoparticles with their interesting, optical characteristics in different new fields of application for example for modification of biosensors.
|
6 |
High Functionalization of Nanomaterials by Controlling Organic-Inorganic Interface / 有機-無機界面制御によるナノ材料の高性能化に関する研究Eguchi, Daichi 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20657号 / 理博第4322号 / 新制||理||1621(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 寺西 利治, 教授 島川 祐一, 教授 小野 輝男 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
7 |
Zweidimensionale Architekturen organischer Adsorbate: Untersuchung mittels STM, LEED, TDS und KraftfeldsimulationenGriessl, Stefan Josef Helmuth 05 November 2003 (has links) (PDF)
Die vorliegende Arbeit beschreibt die experimentelle Untersuchung organischer Adsorbate mit Hilfe der Raster-Tunnel-Mikroskopie im Ultrahochvakuum (UHV) und an ambienten Bedingungen. Im Zentrum dieser Arbeit stehen Untersuchun-gen an selbstassemblierten Monolagen von Trimesinsäure. Eine vorgeschlagene Gast-Wirt-Struktur aus Trimesinsäure wurde erzeugt und mit submolekularer Auf-lösung abgebildet. Ferner ist es gelungen gezielt Gäste in die Wirtstruktur einzu-lagern und zu manipulieren. Als Gäste konnten, neben Trimesinsäure selbst, Coronen, Fullerene und Gold-Cluster gezeigt werden.
|
8 |
Dynamics of ligands on gold surfaces to obtain Janus nanoclusters : a theoretical and experimental investigation / Dynamique d'échange de ligands sur des sufaces d'or pour obtenir des nanoclusters Janus : une approche théorique et expérimentaleLugo Preciado, Jesus Gustavo 13 September 2016 (has links)
Une étude théorique couplée à une partie expérimentale a été entreprise sur la dynamique de l'échange de ligand sur des surfaces de nanoclusters (GNC) dans le but de montrer qu'il était possible de contrôler les propriétés structurales et optiques de GNC à travers la composition de la couronne de ligand. Nos études de calcul ont été effectuées par la théorie fonctionnelle de la densité en chimie quantique (approche Kohn - Sham). Nous avons analysé les principales caractéristiques UV - Visible des spectres calculés par TD - DFT / niveau de CAMB3LYP pour les clusters métalliques Au13, Au25 et Au28 protégées par des ligands thiolate, chlorure, et phosphine. Nos résultats montrent qu'il est possible de régler l'énergie de la bande d'absorption la plus basse des clusters d'or par une répartition spécifique des ligands qui contrôle de fait la répartition des charges entre la couronne de ligand et le noyau métallique.En parallèle, nous avons synthétisé une série de clusters de composition Au25 (ATP)x (TP) 18 - x avec 4ATP (4 - aminothiophénol) et TP (thiophénol) par synthèse directe et par échange de ligands. Les mesures de spectroscopie de masse ESI - MS montrent que la nucléarité Au25 est préservée pour tous ces différents clusters. En revanche, l'échange de ligands TP par le DDT (1 - dodécanethiol) dans le mélange conduit à la formation de nanoparticules. Les mesures de spectroscopies IR confirment la présence de deux ligands différents sur la surface de l'or et les analyses SAXS montrent que nous avons une bonne corrélation entre la distance entre deux cœurs métalliques et la longueur du ligand de surface. / We performed a joint computational – experimental investigation of the dynamics of ligand exchange on gold nanoclusters (GNC) surface with the aim to understand how to control the structural and optical properties of GNC through the design of their ligand shell. Our computational studies were carried out in the framework of the Kohn – Sham implementation of density functional theory in quantum chemistry. We analyzed the main features of UV – Vis spectra computed at the TD – DFT / CAMB3LYP level for the Au13, Au25, and Au28 metallic cores protected by thiolate, chloride, and phosphine ligands. Our results show that it is possible to tune the energy of the lowest absorption band of gold clusters by ligand shell engineering in order to control the charge redistribution between ligand shell and metallic core.In parallel we synthesized a set of Au25(ATP)x(TP)18 – x clusters with different ATP/TP ratios using an adapted Demessence protocol by combining 4ATP (4 – aminothiophenol) and TP (thiophenol) ligands. ESI – MS measurements evidence that for these mixed ligand shells the Au25 nuclearity is preserved. However, the addition of the DDT (1 – dodecanethiol) ligand in the mixture leads to nanoparticle formation. FT – IR spectroscopy confirms the absorption of two different ligands on the gold surface and SAXS shows that we have a good correlation between the distance between two clusters and the length of the ligand protecting them.Finally, we carried out a comparison of the mode of binding and the structural and optical properties of the fully ligated PH3 and NHC GNC with metallic cores of different nuclearities.
|
9 |
Zweidimensionale Architekturen organischer Adsorbate: Untersuchung mittels STM, LEED, TDS und KraftfeldsimulationenGriessl, Stefan Josef Helmuth 16 October 2003 (has links)
Die vorliegende Arbeit beschreibt die experimentelle Untersuchung organischer Adsorbate mit Hilfe der Raster-Tunnel-Mikroskopie im Ultrahochvakuum (UHV) und an ambienten Bedingungen. Im Zentrum dieser Arbeit stehen Untersuchun-gen an selbstassemblierten Monolagen von Trimesinsäure. Eine vorgeschlagene Gast-Wirt-Struktur aus Trimesinsäure wurde erzeugt und mit submolekularer Auf-lösung abgebildet. Ferner ist es gelungen gezielt Gäste in die Wirtstruktur einzu-lagern und zu manipulieren. Als Gäste konnten, neben Trimesinsäure selbst, Coronen, Fullerene und Gold-Cluster gezeigt werden.
|
10 |
Étude des effets environnementaux sur les modes acoustiques confinés de nanoparticules par diffusion inélastique de la lumière / Study of the environmental effects on confined acoustic modes in nanoparticles using inelastic light scatteringMartinet, Quentin 19 September 2019 (has links)
Au cours des vingt dernières années, la diffusion inélastique de la lumière par les modes propres de vibration des nanoparticules, appelés modes de Lamb, s’est avérée être une méthode très efficace pour caractériser la taille et les propriétés mécaniques des nano-objets. La fréquence de résonance d’une nano-sphère, dans la gamme du gigahertz, est donnée, en première approximation, par le ratio de la vitesse acoustique du matériau massif et la taille du confinement. Les raffinements du modèle théorique permettent d’obtenir, à partir de ces modes de vibration, des informations essentielles sur la géométrie et l’environnement local des nano-objets. L’objectif de cette thèse est de sonder le domaine de validité du modèle de Lamb, d’analyser les différents impacts de l’environnement sur ces modes de vibration et de développer de nouvelles méthodes pour les mesurer. Plusieurs aspects de l’interaction avec le milieu extérieur peuvent ainsi être pris en considération selon le type de système étudié. D’une part, la délocalisation de l’onde acoustique dans le cas de systèmes cœur-coquille, qui est gouvernée par les impédances acoustiques respectives du cœur et de la coquille, et qui se traduit par un couplage mécanique. D’autre part, l’effet de masse inertielle induite par la présence de ligands organiques à la surface de la particule qui modifie la fréquence de résonance. La validité de ces deux approches est ainsi discutée en fonction de la configuration des objets considérés, puis ces modèles théoriques sont appliqués à des cas réels tels que des nanoparticules cœur-coquille et des nano-plaquettes de semi-conducteurs ou des agrégats métalliques colloïdaux. L’effet de masse inertielle s’avère non négligeable pour des objets de petites tailles et il est ainsi montré la faisabilité de réaliser des nano-balances ultra-sensibles capable de sonder l’environnement proche des nano-objets. Par ailleurs, dans le cas des agrégats d’or, cette approche permet de discuter les limites du modèle de Lamb, basé sur la théorie des milieux continus, sur des vibrations n’impliquant que six atomes. Ainsi, grâce à la spectroscopie Raman basses fréquences, il apparait que les résultats expérimentaux des vibrations de ces objets s’accordent à la fois avec l’approche des milieux continus en considérant l’effet de masse inertielle et aussi avec les calculs de dynamique moléculaire. Finalement, le développement expérimental d’un montage optique capable de mesurer ces modes Raman basses fréquences sur une particule unique en milieu liquide est présenté. Cette approche nécessite de localiser une particule en milieu liquide à l’aide de nano-pinces plasmoniques puis d’exalter le signal Raman basses fréquences en stimulant les modes de vibration par électrostriction. Les perspectives étant d’appliquer cette méthode à l’étude de la dynamique vibrationnelle de nano-objet unique tel que des virus ou des protéines / Over the past twenty years, inelastic light scattering by vibrational eigenmodes of nanoparticles, called Lamb modes, has proven to be an effective method for characterizing the size and mechanical properties of nano-objects. The resonant frequency of a nano-sphere, in the gigahertz range, is given, as a first approximation, by the ratio of the acoustic velocity of the bulk material and the size of confinement. The refinements of the theoretical model allow to obtain, from these eigenmodes, information on the shape and local environment of nano-objects.The objective of this thesis is to probe the domain of validity of the Lamb model, to analyze the different impacts of the environment on eigenmodes and to develop a new strategy to measure them. Several aspects of interaction with the external medium can be considered depending on the system studied. On the one hand, the delocalization of the acoustic wave in the case of core shell systems is ruled by the acoustic impedance of the core and the shell and leads to a mechanical coupling. On the other hand, the inertial mass effect induced by the presence of organic ligands on the surface of the particle modifies the resonant frequency. The validity of both approaches is discussed according to the configuration and these models are applied to real cases, such as semiconductor core shell nanoparticles and nanoplatelets, or gold colloidal clusters. The inertial mass effect is significant for small objects and it is shown the feasibility to realize ultra-sensitive nano-balance capable of probing the local environment of nano-objects. Furthermore, in the case of gold clusters, this approach makes it possible to discuss the limit of the Lamb model, based on continuum mechanics, to interpret vibrations involving only six atoms. Thanks to low frequency Raman spectroscopy, it appears that the experimental results are in good agreement with both the continuum mechanics approach, by considering the inertial mass effect, and also with density functional theory (DFT) calculations. Finally, the experimental development of an optical set-up capable of measuring low frequency Raman modes on a single nanoparticle in a liquid medium is presented. This technic requires to localize a nanoparticle in a liquid medium with plasmonic tweezers and to enhance the low frequency Raman signal by stimulating vibrational modes with electrostriction. The perspectives are to apply this method to the dynamical study of a single object such as viruses or proteins.
|
Page generated in 0.095 seconds