• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 27
  • 14
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 201
  • 51
  • 33
  • 32
  • 27
  • 25
  • 24
  • 23
  • 23
  • 23
  • 20
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Role of pUL138 In HCMV Persistence

Petrucelli, Alexius January 2011 (has links)
Human cytomegalovirus (HCMV) coexists indefinitely in infected individuals through a poorly characterized latent infection in hematopoietic cells. We previously demonstrated a requirement for UL138 in promoting a latent infection in CD34+ hematopoietic progenitor cells (HPCs). UL138 is encoded on three co-terminal transcripts of, 1.7-, 2.7-, and 3.6-kilobases. Interestingly, the UL138 protein product (pUL138) is necessary but insufficient for HCMV latency. The mechanisms by which pUL138 contributes to the latent infection are unknown, however other viral determinants are required for the latent infection. We identified 3 novel proteins pUL133, pUL135, and pUL136 encoded on the UL138 transcripts. Similar to pUL138, pUL133, pUL135, and pUL136 are Golgi localized type I transmembrane proteins expressed with early kinetics during productive infection. We have named these UL138 related proteins, CLAMPs for HCMV Latency Associated Membrane Proteins. Through a systematic immunoprecipitation analysis, we identified interactions between the CLAMPs and characterized an interaction between pUL133 and pUL138. Further, we mapped the interacting region to a specific domain in the C-terminal, cytosolic tail of pUL138. Additionally, we show that each of the CLAMPs has the ability to self-associate. The localization of the CLAMPs to the Golgi suggests that these proteins likely promote HCMV latency through a novel mechanism involving Golgi functions. Additionally, through a Y2H screen of a human bone marrow cDNA library, we identified an interaction between pUL138 and the heat shock protein 40 (Hsp40) variant MRJ. We confirmed this interaction in mammalian cells and mapped the pUL138 region responsible for this interaction to a domain in the cytoplasmic tail of pUL138. We also demonstrated additional MRJ interactions with pUL133 and pUL136. Importantly, pUL138 specifically interacts with Hsp40 variants during productive infection. Preliminary data suggest that HCMV infection up regulates MRJ mRNA expression and recombinant viruses lacking pUL138 show a disproportionate up regulation of MRJ. pUL138 is the first HCMV protein demonstrated to promote a latent infection. While the mechanisms by which pUL138 contributes to latency remain unknown, the interaction with other CLAMPs and with MRJ, suggest that pUL138 may cooperate with other CLAMPs to modulate the cellular stress response at the Golgi to promote HCMV latency.
32

Initial characterization of mouse Syap1 in the nervous system: Search for interaction partners, effects of gene knockdown and knockout, and tissue distribution with focus on the adult brain / Erste Charakterisierung des Maus-Syap1 im Nervensystem: Suche nach Interaktionspartnern, Auswirkungen von Gen-Knockdown und-Knockout sowie Untersuchungen über die Verteilung im Gewebe mit Fokus auf das adulte Gehirn

Schmitt, Dominique January 2017 (has links) (PDF)
The synapse-associated protein of 47 kDa (Sap47) in Drosophila melanogaster is the founding member of a phylogenetically conserved protein family of hitherto unknown molecular function. Sap47 is localized throughout the entire neuropil of adult and larval brains and closely associated with glutamatergic presynaptic vesicles of larval motoneurons. Flies lacking the protein are viable and fertile and do not exhibit gross structural or marked behavioral deficiencies indicating that Sap47 is dispensable for basic synaptic function, or that its function is compensated by other related proteins. Syap1 - the mammalian homologue of Sap47 - was reported to play an essential role in Akt1 phosphorylation in various non-neuronal cells by promoting the association of mTORC2 with Akt1 which is critical for the downstream signaling cascade for adipogenesis. The function of Syap1 in the vertebrate nervous system, however, is unknown so far. The present study provides a first description of the subcellular localization of mouse Syap1 in cultured motoneurons as well as in selected structures of the adult mouse nervous system and reports initial functional experiments. Preceding all descriptive experiments, commercially available Syap1 antibodies were tested for their specificity and suitability for this study. One antibody raised against the human protein was found to recognize specifically both the human and murine Syap1 protein, providing an indispensable tool for biochemical, immunocytochemical and immunohistochemical studies. In the course of this work, a Syap1 knockout mouse was established and investigated. These mice are viable and fertile and do not show obvious changes in morphology or phenotype. As observed for Sap47 in flies, Syap1 is widely distributed in the synaptic neuropil, particularly in regions rich in glutamatergic synapses but it was also detected at perinuclear Golgi-associated sites in certain groups of neuronal somata. In motoneurons the protein is especially observed in similar perinuclear structures, partially overlapping with Golgi markers and in axons, dendrites and axonal growth cones. Biochemical and immunohistochemical analyses showed widespread Syap1 expression in the central nervous system with regionally distinct distribution patterns in cerebellum, hippocampus or olfactory bulb. Besides its expression in neurons, Syap1 is also detected in non-neuronal tissue e.g. liver, kidney and muscle tissue. In contrast, non-neuronal cells in the brain lack the typical perinuclear accumulation. First functional studies with cultured primary motoneurons on developmental, structural and functional aspects reveal no influence of Syap1 depletion on survival and morphological features such as axon length or dendritic length. Contrary to expectations, in neuronal tissues or cultured motoneurons a reduction of Akt phosphorylation at Ser473 or Thr308 was not detected after Syap1 knockdown or knockout. / Das Synapsen-assoziierte Protein von 47 kDa (Sap47) in Drosophila melanogaster ist das Gründungsmitglied einer phylogenetisch konservierten Proteinfamilie von unbekannter molekularer Funktion. Sap47 ist im gesamten Neuropil des adulten und larvalen Gehirns lokalisiert und mit glutamatergen, präsynaptischen Vesikeln in larvalen Motoneuronen assoziiert. Fliegen, denen das Protein fehlt, sind lebensfähig und fruchtbar und weisen keine schwerwiegenden strukturellen oder ausgeprägten verhaltensbezogenen Defizite auf, was darauf hinweist, dass Sap47 für eine basale synaptische Funktion entbehrlich ist beziehungsweise das Fehlen seiner Funktion durch andere, eventuell verwandte Proteine, kompensiert werden kann. Über Syap1 - das Säugetierhomolog von Sap47 - wurde berichtet, dass es in verschiedenen nicht-neuronalen Zellen eine essentielle Rolle in der Akt1 Phosphorylierung spielt, indem es die Assoziation von mTORC2 und Akt1 begünstigt, welche für den nachgeschalteten Signalweg bei der Adipogenese essentiell ist. Die Funktion von Syap1 im Vertebraten-Nervensystem ist dagegen bislang unbekannt. Die vorliegende Studie liefert die Erstbeschreibung von neuronalem Syap1 über die subzelluläre Lokalisation des Proteins in kultivierten Motoneuronen sowie die Verteilung in ausgewählten Strukturen des adulten Nervensystems der Maus und beschreibt initiale funktionelle Experimente. Allen beschreibenden Experimenten voran, wurden kommerziell erhältliche Syap1 Antikörper auf ihre Spezifität und Tauglichkeit für diese Studie getestet. Einer der Antikörper, der gegen das humane Protein hergestellt wurde, erkennt spezifisch sowohl das humane, als auch das murine Syap1 Protein und stellt somit ein unentbehrliches Werkzeug für alle biochemischen, immunzytochemischen und immunhistochemischen Untersuchungen dar. Im Zuge der Arbeit wurde eine Syap1-Knockout Maus untersucht, welche vital und fruchtbar ist und keine offensichtlichen Veränderungen in ihrem morphologischen Phänotyp aufweist. Wie auch Sap47 in Fliegen, ist Syap1 im synaptischen Neuropil weit verbreitet, insbesondere in Regionen, die reich an glutamatergen Synapsen sind, aber es wurde auch in einer deutlichen, Golgi-assoziierten Akkumulation in bestimmten Gruppen neuronaler Zellkörper beobachtet. In Motoneuronen wurde das Protein besonders in ähnlichen perinukleären Strukturen detektiert, welche zum Teil mit Golgi Markern überlappen und zudem in Axonen, Dendriten und Wachstumskegeln detektiert. Wie biochemische und immunhistochemische Untersuchungen ergaben, zeigt das Syap1 Protein eine weit verbreitete Expression im zentralen Nervensystem mit Regionen-spezifischem Verteilungsmuster wie es beispielsweise im Kleinhirn, dem Hippocampus oder dem olfaktorischen Bulbus beobachtet wurde. Neben der Expression in Neuronen wurde Syap1 auch in nicht neuronalen Geweben wie der Leber, Niere und im Muskel detektiert. Nicht-neuronalen Zellen im Gehirn fehlte dagegen die typische perinukleäre Akkumulation in immunhistochemischen Färbungen. Erste funktionelle Studien mit kultivierten primären Motoneuronen über entwicklungsbezogene, strukturelle und funktionelle Gesichtspunkte ergaben keinen Einfluss einer Syap1 Depletion auf das Überleben oder morphologische Merkmale wie Axon- oder Dendritenlänge. Entgegen den Erwartungen, wurde nach Syap1 Knockdown oder Knockout in neuronalem Gewebe oder kultivierten Motoneuronen keine Reduktion in der Akt1 Phosphorylierung an Ser473 oder Thr308 detektiert.
33

Dinámica de la actina y tráfico de membranas asociado al complejo de Golgi: papel regulador de RhoA, Rac1 y Cdc42

Matas Guadix, Olga Belén 25 May 2005 (has links)
El trabajo llevado a cabo en esta tesis contribuye a esclarecer la relación morfo-funcional entre la actina y el complejo de Golgi. Estudios previos del laboratorio ponen de manifiesto que la actina regula no sólo la posición y morfología del complejo de Golgi en la célula (di Campli et al., 1999; Valderrama et al., 1998) sino también el transporte de proteínas desde el CG al retículo endoplasmático (transporte retrógrado; Valderrama et al., 2001). Un trabajo más reciente de nuestro grupo muestra a la Rho GTPasa Cdc42 como el componente molecular que regula los efectos del citoesqueleto de actina sobre el CG (Luna et al., 2002). En este trabajo se pone de manifiesto que Cdc42 se localiza en el CG y su activación comporta su acumulación en los laterales de las cisternas de este orgánulo. Además, la forma activa de Cdc42 (GTP-Cdc42) regula negativamente el transporte retrógrado de proteínas actuando a través de N-WASP y del complejo multiproteico Arp2/3. De estos resultados concluimos que la vía de señalización Cdc42-N-WASP-Arp2/3 que gobierna la nucleación y polimerización de actina a nivel de la membrana plasmática (Pollard y Borisy, 2003) también es funcional a nivel del complejo de Golgi. En esta Tesis nos planteamos estudiar si al igual que ocurre con Cdc42, sus efectores N-WASP y Arp2/3 se localizan también en el CG. La presencia de todos los componentes necesarios para la polimerización de actina en este orgánulo es requisito necesario para demostrar que efectivamente las membranas del CG pueden polimerizar actina.Otro de los objetivos de esta tesis era determinar de forma definitiva si Rac1 y RhoA regulaban también alguna de las etapas de la dinámica de membranas en la vía secretora temprana. Estas dos proteínas junto con Cdc42 son los miembros mejor conocidos de la familia de las Rho GTPasas. Todas ellas regulan, aunque de diferente forma, la organización del citoesqueleto de actina (Etienne-Manneville y Hall, 2002). En la actualidad son numerosos los estudios que muestran su papel como proteínas reguladoras de diferentes etapas de la vía endocítica (Ridley, 2001(a); Symons y Rusk, 2003) pero menos se conoce sobre su implicación en la vía secretora. Así pues, de los resultados expuestos en este trabajo se puede concluir que: Cdc42 es la única Rho GTPasa asociada al complejo de Golgi.La vía de señalización Cdc42/N-WASP/Arp2/3 implicada en los procesos de nucleación/polimerización de actina se localiza también en el CG y mayoritariamente en la porción cis-media.La activación de esta vía conlleva la redistribución de todos sus componentes a los laterales de las cisternas del CG donde probablemente regulan (junto con otras moléculas) los procesos de formación y/o fisión de los intermediarios de transporte retrógrado a través de la nucleación/polimerización de actina. Lo que finalmente nos indica que la cascada de señalización con actividad nucleadora/polimerizadora de actina que participa en la dinámica de membranas acontece no sólo en la membrana plasmática sino también a nivel del complejo de Golgi.
34

Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters

Guo, Biwei 15 May 2009 (has links)
The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic and biochemical studies. The Arabidopsis thaliana genome encodes a family of six proteins that share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride. Heterologous expression in yeast, and gene expression and localization studies in plants were used to characterize all six members of this Arabidopsis family, which we have named PHT4. All of the PHT4 proteins mediate Pi transport in yeast with high specificity. Bioinformatic analysis and localization of PHT4-GFP fusion proteins indicate that five of the proteins are targeted to the plastid inner envelope membrane, and the sixth resides in the Golgi apparatus. PHT4 genes are expressed in both roots and leaves although two of the genes are expressed predominantly in leaves and one mostly in roots. These expression patterns, together with Pi transport activities and subcellular locations, suggest roles for PHT4 proteins in the transport of Pi between the cytosol and chloroplasts, heterotrophic plastids and the Golgi apparatus.
35

Subcellular localization of TSG101 in the cell

Ye, Tzung-Cheng 12 August 2003 (has links)
TSG101 was identified as a tumor susceptibility gene by Stanley Cohen. In a variety of human cancers, no genomic deletion in TSG101 gene has been reported but many aberrant TSG101 transcripts has been found. Some studies have revealed that TSG101 participates in MDM2/p53 regulatory circuitry¡Bmembrance trafficking and receptor recycling. Other reports also showed that TSG101 might be a transcription regulatory factor. However, mechanism of these TSG101 function awaits further characterization. To further scrutinize the function of TSG101 and its subcellular localization, a varieties of GFP-based recombinant plasmids which contain various length of TSG101 cDNA have been constructed and transfected into cells. Western blot analysis had shown that these constructs could express GFP-TSG101 fusion protein of expected size. The fluorescence and confocal microscopy have shown that wild type TSG101 localized in ER, Golgi and endosome compartments, also amino acid residues 136-233 and 316-390 of TSG101 are two important regions for its subcellular localization. Previous reports had shown that TSG101 interact with OP18 which is an important regulator for spindle formation in M phase. To elucidate the localization of TSG101 and OP18 in M phase cell, we have cloned OP18 and generate GST-OP18 fusion protein for anti-OP18 antiserum production.Then, pDsRed-OP18 fusion protein expressed in OP18/pDsRed recombinant plasmid transfected cell was detected by western blotting analysis using this anti-OP18 antiserum. The subcellular localization of DsRed-OP18 and GFP-TSG(1-390) fluorescence were recorded in double transfected cells which were arrested in M phase by nocodzole treatment. We observed the evenly distribution of pDsRed-OP18 red fluorescence and punctate vesicular localization of GFP-TSG(1-390) green fluorescence. Whether these two protein interact functionally awaits further investigation.
36

Sec16 is a key determinant of transitional ER organization /

Connerly, Pamela L. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Biochemistry and Molecular Biology, December 2003. / Includes bibliographical references. Also available on the Internet.
37

Examining the role of Golgi-associated protein, Lava lamp, in Drosophila development

Wang, Howard 07 January 2011 (has links)
The Golgi body is responsible for the modification and sorting of proteins and lipids in the secretory pathway. The Golgi must coordinate with other endomembrane compartments in order to target cargo to the correct destination. While our understanding of Golgi function is vast, we can extend our knowledge base by examining the functions of Golgi-associated proteins in developing animals. Lava lamp (Lva) is a Golgi-associated protein and a Drosophila golgin. Previously, Lva was shown to facilitate efficient membrane secretion required for cleavage furrow formation in early embryos. By acting as an adaptor molecule between Golgi and microtubule motility factors, Lva is thought to position Golgi bodies for targeted secretion during cellularization, the Drosophila cleavage stage of development. Here, I further characterize the role of Lva during animal development. I demonstrate that Lva is required for animal viability, and gamete production in females but not males. While Lva is expressed in many tissues, adult fat body cells are the most sensitive to decreased Lva activity, resulting in the disorganization of endomembrane compartments. Furthermore, this disruption in adult fat body cells correlates with a defect in neuroendocrine signaling, altering the activity of juvenile hormone. I propose that Lva activity in adult fat body cells is important for recognizing and/or processing juvenile hormone in order to support Drosophila oogenesis. Lva’s role in cellularization, which is a specialized form of cytokinesis in early embryos, provided insights into the combined processes of actomyosin-based contraction and membrane secretion. While some proteins have been implicated in cellularization, there are thought to be many more that have yet to be identified. In an effort to isolate additional genes involved in animal cell cytokinesis, we screened a unique collection of temperature sensitive (ts) mutations on the X-chromosome of Drosophila melanogaster. At the restrictive temperature, we identified five mutants that displayed a cellularization phenotype. For one of the mutants, fs(1)ts242, we narrowed the mutation to a region on the X chromosome consisting of 17 possible gene candidates. Identification of the gene should provide further elucidation of the mechanisms controlling actomyosin-based contraction and membrane secretion. / text
38

Functional characterization of class I Arfs and their Guanine Nucleotide Exchange Factors at the Golgi complex

Manolea, Florin Iulian Unknown Date
No description available.
39

Functional characterization of class I Arfs and their Guanine Nucleotide Exchange Factors at the Golgi complex

Manolea, Florin Iulian 11 1900 (has links)
We examined the function of ADP-ribosylation factors (Arfs) and their guanine nucleotide exchange factors (GEFs) that regulate recruitment of coat proteins on the Golgi complex. The large ArfGEF GBF1 localizes at the cis-Golgi complex while BIG1 and BIG2 localize at the trans-Golgi network (TGN). Complementary overexpression and RNA-based knockdown approaches established that GBF1 but not BIGs, is required for COPI recruitment, Golgi stack maintenance and sub-compartmentalization while BIGs appear specialized for clathrin adaptor recruitment and for assembly and maintenance of the TGN. Our observations disprove two widely accepted mechanisms for cargo export by establishing that COPII is the only coat required for sorting and export from the ER exit sites and that BIGs are not required for traffic of the cargo protein VSVG to the cell surface. Furthermore, we provide evidence that may ultimately explain how these ArfGEFs regulate different coats in spite of their well-characterized promiscuity towards class I and II Arfs. We prove for the first time that Arf3 is activated uniquely by BIGs at the TGN. Also, contrary to expectations, we demonstrate that Arf3 differs from Arf1 in regard to localization pattern as well as temperature sensitivity of membrane recruitment. Shifting temperature to 20C for 2 hours, a method known to block cargo in trans-Golgi compartments, caused a dramatic redistribution Arf3 but not Arf1. Redistribution of Arf3 from Golgi membranes upon shift to 20C was not immediate but occurred gradually over 20 minutes. Arf1 and Arf3 differ in sequence only in two short regions at the N- and C-termini. Analysis of swap constructs established that two amino acids in the N-terminal region of Arf3 and Arf1 are responsible for directing the temperature sensitivity while two amino acids in the C-terminus directs Arf3s specific localization. Arf3 knockdown had no impact on any of the markers tested or on VSVG trafficking to the cell surface. My work provides solid evidence to support that ArfGEFs function at different compartments to regulate membrane recruitment of specific coat proteins, and may also regulate distinct sets of Arfs that localize preferentially to these particular compartments.
40

Functional analysis of PRAF1 and its effect on corticotrophic ACTH secretion

Compton, Shannon Leigh January 2007 (has links) (PDF)
Thesis (Ph.D.)--Auburn University, 2007. / Abstract. Includes bibliographic references (ℓ. 82-100)

Page generated in 0.0786 seconds