• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 33
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of Human Motion in Rehabilitation by Micro-Computer

ITO, FUJIO 03 1900 (has links)
No description available.
12

Passiv rörlighet och ledpositionering i höft-, knä- och fotled undersökt manuellt och med tredimensionell rörelseanalys : En studie av samtidig validitet / Passive hip, knee and ankle range of motion and alignment assessed by goniometer and three-dimensional motion analysis : A criterion validity study

Ore, Viktor January 2018 (has links)
Background: Three dimensional motion analysis systems and goniometer measurement are often analyzed in relation to each other in biomechanical science, although the correlation between the methods are not well researched.  Aim and purpose: To investigate the criterion validity between physical examination of lower extremity using a goniometer with a three dimensional motion analysis system. Method: Six healthy participants (12 lower limbs) were recruited. The variables of interest were passive hip internal and external rotation, knee joint extension, static knee valgus, internal and external tibia rotation, bimalleor angle and ankle dorsal flexion range of motion. Measurements were collected with goniometer and a three dimensional motion analysis system. A modified Helen Hayes marker set was used and the physical examination was made by two physiotherapists using conventional testing positions. Spearman’s rank correlation coefficient and Bland Altman plot were used to describe correlation and level of agreement, respectively. Results: Hip external rotation (rs=0.97), BMA (rs=0.96) and hip internal rotation (rs=0.89) showed acceptable and significant correlation (p<0.01). Tibia internal rotation (0.60, significant p<0.05), ankle dorsiflexion (rs=0.56 p>0.05) tibia external rotation (rs=0.50 p>0.05) knee valgus (rs=-0.16 p>0.05), knee extension (rs=-0.20 p>0.05) did not correlate. Conclusion: The criterion validity were good between the measurements for hip external and internal rotation and BMA. Criterion validity could not be described for the other measurements.
13

Testování MEMS gyroskopů / Testing of MEMS gyroscopes

Hasík, Stanislav January 2016 (has links)
This diploma thesis presents theoretical information regarding MEMS gyroscopes their parameters and designs. The description of measurement chain be used for testing of MEMS gyroscopes in Honeywell International s.r.o. is presented. Special focus is devoted to: the Polytec MSA-500 system, the Standa goniometers and their controller, Peltier cell and its driver. The practical part of this thesis contains the description of the thermal control system and also the description of the developed “Measurement system” in the LabVIEW software which is used for controlling the goniometers position and the Peltier cell. The system is able to fully control two goniometer stages, align the surface of tested MEMS device to orthogonal position with respect to the Polytec MSA-500 measurement head and also control the temperature of the tested device. The last part of this thesis presents the tests of the MEMS gyroscope parameters with special focus to the MEMS gyroscope angle random walk and the bias dependence on the vacuum quality of the structure environment.
14

Improved handling of a sample holder goniometer at Uppsala University’s Tandem Laboratory

WU-VIGNOLO, Alexander January 2020 (has links)
Rutherford backscattering spectrometry are performed at the Tandem Laboratory of Uppsala Univer-sity, providing information on thickness and composition of materials. To avoid the channelling effect,a wiggling routine has been created to randomly move the sample holding goniometer during the spec-trum acquisition. The aim of this project is to incorporate this routine into the batch measurement infrastructure.
15

A Custom Reflectance Goniometer and its Usage in the Development of Gain Reflectors for Electronic-Paper Applications

Skinner, Matthew T. January 2012 (has links)
No description available.
16

Development of a Low Energy Ion Mass Spectrometer

Karapetsas, Spyridon 02 1900 (has links)
<p> The interaction mechanisms of an ion beam with a solid target are identified. Basic parameters associated with ion scattering, charge neutralization, inelastic energy losses and secondary ion production are described. Low energy (1-20 kev) experimental studies on these topics are reviewed. A low energy ion mass spectrometer is described. The ion beam is generated by an existing kev ion accelerator and is directed to a newly constructed UHV target chamer. The energy and angular distributions of the backscattered particles are measured with a hemispherical electrostatic analyser and a channeltron detector. A high precision goniometer allows target rotation about two perpendicular axes by angles of 180° and 90° with an accuracy and repeatability of 0.1°. The interaction chamber is bakeable to 250°c and was designed for an ultimate pressure of 10^-11 torr. The data acquisition system chamber scans the energy spectrum automatically so that the radiation dosage at the target is equalized for all channels. </p> / Thesis / Master of Engineering (MEngr)
17

Oxygen Plasma Surface Activation of Polynorbornene for Bonding to Glass with Applications to Microfluidic Systems

Smith, Russell Lynn 02 May 2011 (has links)
No description available.
18

Rückfußbewegung beim Laufen: Einflussfaktoren, Messmethodik und innovative Messsysteme

Brauner, Torsten 23 March 2011 (has links)
Einführung Der Pronation, als Bewegungsrichtung der Rückfußbewegung, ist in der biomechanischen Forschung in der Vergangenheit sehr viel Aufmerksamkeit geschenkt worden. In den unzähligen Veröffentlichungen zur Pronation wiederholen sich zwei Kernaussagen: Einerseits ist Pronation ein natürlicher Dämpfungsmechanismus, der andererseits bei übermäßiger Ausprägung zu Überlastungsschäden führen kann. Zu beiden Aussagen finden sich viele Untersuchungen, doch eindeutig belegt oder widerlegt sind beide nicht. Die vorliegende Arbeit möchte anhand von Untersuchungen zur Methodik der Bewegungsanalyse des Rückfußes dazu beitragen, den Diskrepanzen der verschiedenen Studienergebnisse auf den Grund zu gehen. Die Arbeit gliedert sich dazu in zwei Teile: Im ersten Teil werden diverse interne und externe Faktoren auf ihr pronationsbeeinflussendes Potential dargestellt. Für den zweiten Teil werden erstens das Elektrogoniometer, als gebräuchliches Messsystem der Rückfußbewegung, mit Hilfe der stereophotogrammetrischen Bewegungsanalyse (Goldstandard) validiert und zweitens innovative Messsysteme mit Schwerpunkt auf mobiler Bewegungsanalyse der Rückfußbewegung (Hall- und Drucksensoren, Gyrometer) entwickelt und ebenfalls validiert. Methodik Im Rahmen dieser Arbeit wurde eine Reihe von Einzelstudien durchgeführt, deren Methodik schwer zu verallgemeinern ist. Grundsätzlich kamen hauptsächlich Laborstudiendesigns zur Anwendung, in denen Gelenkwinkelamplituden, -ausmaße und -geschwindigkeiten der Rückfußbewegung analysiert wurden. In den Laborstudien der Einflussfaktoren wurde die Rückfußbewegung dabei entweder mit stereophotogrammetrischer Bewegungsanalyse oder mit dem Elektrogoniometer erfasst. Bei einer Ermüdungsstudie mit Feldtestdesign wurde die Rückfußbewegung mittels Gyrometer erfasst. Zur Validierung innovativer Messsysteme der Rückfußbewegung wurde entweder die stereophotogrammetrische Bewegungsanalyse oder das Elektrogoniometer verwendet. Ergebnisse Anhand der in der Arbeit vorgenommenen Analyse der pronationsbeeinflussenden Faktoren muss geschlussfolgert werden, dass Einflussfaktoren auf die Rückfußbewegung unzureichend verstanden sind. Die Einflussfaktoren lassen sich grundsätzlich jedoch in drei Gruppen einteilen: 1. kaum erforschte Faktoren (z.B. Alter, Geschlecht, Fußdimensionen, individueller Laufstil und generelle Bewegungsart), 2. kontrovers diskutierte Faktoren (z.B. Fußform, Gelenkkoppelung, genereller Schuheinfluss und Ermüdung) und 3. gesicherte Faktoren (z.B. USG-Achsenorientierung, varus / valgus-modifizierte Schuhgeometrie, Laufgeschwindigkeit). Für Laboruntersuchungen bieten, neben der stereophotogrammetrischen Bewegungsanalyse, zwei weitere Messsysteme, Elektrogoniometer und Gyrometer, vergleichbare Resultate bei der Bestimmung der Rückfußkinematik auf. Das Elektrogoniometer zeigte mittlere bis hohe, das Gyrometer nur mittlere Korrelationen bei den betrachteten Parametern. Hall- und Drucksensoren konnten zwar für eine gegebene Stichprobe rekursiv zur Bestimmung der Rückfußparameter verwendet werden, bei unbekannten Probanden oder alternativen Schuhmodellen lagen die Bestimmtheitsmaße jedoch nicht im akzeptablen Bereich. Dennoch sind für Messungen der Sohlendeformation mit Hilfe von Hallsensoren andere Anwendungsbereiche vorstellbar und auch realisierbar. Für Felduntersuchungen der Rückfußbewegung hat das Gyrometer das größte Potential. Es war im Rahmen dieser Arbeit bereits möglich, einzelne Parameter der Rückfußbewegung (Eversiongeschwindigkeit und -ausmaß) valide in mobilen Einsatzszenarien zu bestimmen. Schlussfolgerungen und Ausblick Die wichtigste Fragestellung für die biomechanische Forschung in Bezug auf die Rückfußbewegung ist die Klärung, ob ein Zusammenhang mit der Entstehung von Überlastungsschäden besteht. Aus den Erkenntnissen dieser Arbeit lassen sich fünf Kernzielstellungen skizzieren, die beachtet werden sollten, um dieser Frage nachzugehen: 1. Entwicklung von mobilen und direkten Messsystemen, zur Erfassung der Rückfußbewegung, nicht der des Schuhs, im natürlichen Bewegungsumfeld, 2. methodische und inhaltliche Diskussion und Standardisierung der Rückfußparameter, 3. Erweiterung der isolierten Betrachtung der Rückfußbewegung auf umliegende Segmente und Gelenke, 4. Kontrolle bzw. Einbeziehung von pronationsbeeinflussenden Faktoren in Untersuchungsdesigns und 5. Durchführung von großangelegten Längsschnittuntersuchungen.:Zusammenfassung ii Abstract v Abbildungsverzeichnis xv Tabellenverzeichnis xvii Abkürzungsverzeichnis xviii Einleitung 1 Vorbemerkung zu den Studiendesigns der Studienreihe 4 I Anatomische und bewegungswissenschaftliche Grundlagen 7 1 Funktionale Anatomie des Sprunggelenks 8 2 Parameter der Rückfußmessung 12 2.1 Benennung 12 2.2 Traditionelle diskrete Parameter 12 2.3 Diskrete Parameter der vorliegenden Studienreihe 17 II Pronationsbeeinflussende Faktoren 21 3 Anatomische Merkmale 23 4 Geschlecht und Alter 27 4.1 Geschlecht als möglicher Einflussfaktor auf die Rückfußbewegung 27 4.2 Alter als möglicher Einflussfaktor auf die Rückfußbewegung 28 5 Bewegungsart 30 5.1 Rückfußbewegung beim Springen 31 5.1.1 Laborstudie: Vergleich der Rückfußbewegung beim Laufen und Springen 33 5.1.1.1 Zielstellung & Hypothesen 33 5.1.1.2 Methodik 33 5.1.1.3 Ergebnisse & Diskussion 35 6 Laufgeschwindigkeit 39 6.1 Laborstudie: Einfluss der Laufgeschwindigkeit auf die Rückfußbewegung 41 6.1.1 Zielstellung & Hypothesen 41 6.1.2 Methodik 41 6.1.3 Ergebnisse & Diskussion 42 6.1.4 Fazit 45 7 Ermüdung 46 7.1 Feldstudie: Einfluss sukzessiver Ermüdung auf Eversionsgeschwindigkeit 49 7.1.1 Zielstellungen & Hypothesen 49 7.1.2 Methodik 49 7.1.3 Ergebnisse & Diskussion 53 7.1.4 Fazit 55 8 Schuh 56 8.1 Laborstudie: Beeinflussung der Rückfußbewegung durch den Schuh 60 8.1.1 Zielstellungen & Hypothesen (vgl. Abbildung 8.2): 60 8.1.2 Methodik 61 8.1.3 Ergebnisse BAFO vs. SHOE 65 8.1.4 Ergebnisse SAND vs. FOOT-SAND 67 8.1.5 Ergebnisse BAFO vs. FOOT-SAND 68 8.1.6 Übergreifende Ergebnisse und Diskussion 70 8.2 Laborstudien: Beeinflussung der Eversion mittels gradueller Varusmodifikationen 72 8.2.1 Zielstellung & Hypothese: 72 8.2.2 Methodik 72 8.2.3 Ergebnisse & Diskussion 74 9 Fazit pronationsbeeinflussende Faktoren 78 III Traditionelle und innovative Messsysteme der Rückfußbewegung 81 10 Einführung Messsysteme 82 11 Subjektive Messungen 85 11.1 Feldstudie: Individuelle Wahrnehmung veränderter Eversion, hervorgerufen durch varus-modifizierte Schuhe 87 11.1.1 Zielstellung & Hypothesen: 87 11.1.2 Methodik 87 11.1.3 Ergebnisse 88 11.1.4 Diskussion 91 12 Elektrogoniometer 93 12.1 Laborstudie: Validierung des Goniometers zur Erfassung der Rückfußbewegung 97 12.1.1 Zielstellungen & Hypothesen: 97 12.1.2 Methodik 97 12.1.3 Ergebnisse & Diskussion 98 13 Gyrometer 101 13.1 Laborstudie: Validierung des Gyrometers als Messsystem zur Erfassung der Rückfußbewegung 104 13.1.1 Zielstellungen & Hypothese 104 13.1.2 Methodik 104 13.1.3 Ergebnisse & Diskussion 106 13.1.4 Fazit 108 13.2 Studie: Entwicklung und Evaluation eines mit Gyrometer instrumentier- ten Schuhs zur mobilen Messung der Rückfußbewegung 109 13.2.1 Zielstellung & Hypothese 109 13.2.2 Methodik 109 13.2.3 Validierung EVvel-Erkennung bei mehreren Läufe eines Probanden 110 13.2.4 Validierung EVvel-Erkennung bei weiteren Probanden 111 13.2.5 Ergebnisse & Diskussion 112 13.2.6 Ausblick 113 14 Druckverteilung & Sohlendeformation 115 14.1 Laborstudie: Eversionsbestimmung mittels plantarer Druckverteilung & Sohlendeformation 121 14.1.1 Zielstellung & Hypothesen 121 14.1.2 Methodik 121 14.1.3 Ergebnisse & Diskussion 125 14.1.4 Fazit 129 14.2 Laborstudienreihe: Algorithmusvalidierung 130 14.2.1 Allgemeine Methodik 131 14.2.1.1 Neue Probanden 131 14.2.1.2 Alternative Schuhmodelle 131 14.2.1.3 Weitere Laufgeschwindigkeiten 134 14.2.2 Ergebnisse & Diskussion 134 14.2.2.1 Neue Probanden 134 14.2.2.2 Alternatives Schuhmodell 136 14.2.2.3 Weitere Laufgeschwindigkeiten 140 14.3 Zusammenfassung Druckverteilung & Sohlendeformation 143 15 Photo- / Filmbasierte Messsysteme 144 15.1 Grundlagen stereophotogrammetrischer Messungen 144 15.2 Methodische Richtlinien für stereophotogrammetrischer Rückfußmessungen der vorliegenden Arbeit 147 16 Zusammenfassung Messsysteme 150 IV Schlussbetrachtung und Ausblick 153 Literaturverzeichnis 157 Anhänge 174 A Fragebogen subjektiven Wahrnehmung der Rückfußbewegung 174 B Wissenschaftlicher Lebenslauf 177 C Selbstständigkeitserklärung 181 / Introduction In previous biomechanical research, a lot of effort has been put into the investigation of rearfoot pronation. In numerous publications, two main assumptions have been postulated: On the one hand, pronation is considered a natural damping mechanism; on the other hand, excessive pronation may lead to overuse injuries. Both assumptions have been intensively investigated; confirmed or negated is neither of the two assumptions so far. Within the frame of this thesis the author tries to contribute to the methodological analysis of rearfoot motion to solve current discrepancies regarding rearfoot motion. The thesis is devided in two parts: In the first part, the influences of various internal and external factors on rearfoot motion are investigated. In the second part, rearfoot motion measurement devices are being validated. Firstly, the elctrogoniometer, a common device used for rearfoot motion measurements, is being validated against the stereophotogrammetric motion analysis system (golden standard) and secondly, innovative devices with their main focus on mobile measurements are being developed and validated. Methods In the case of this thesis, numerous single studies were performed, whose methods vary in such a way, that it is difficult to generalize. Mainly laboratory settings have been used, in which joint angle excursions, ranges of motion and velocities were analysed. In laboratory settings, either a stereophotogrammetric motion analysis system or an electrogoniometer were used to determine rearfoot motion. A gyrometer was utilized in a field test investigating the influence of fatigue on rearfoot motion. Either a stereophotogrammetric motion analysis system or an electrogoniometer were chosen as the golden standard to validate the innovative measurement devices. Results The results of the studies within this thesis regarding pronation influencing factors lead to the conclusion, that factors influencing rearfoot motion are not well understood so far. However, it is possible to divide the investigated factors in three groups: 1. factors, that have received little research attention (e.g. age, gender, foot dimensions, individual running style, general type of movement), 2. factors, that are controversially discussed (e.g. foot shape, joint coupling, general shoe influence, fatigue), and 3. factors that have proven to influence rearfoot motion (e.g. orientation of subtalar joint axis, varus/valgus modified shoes geometry, running velocity). For laboratory investigations two innovative measurements devices, electrogoniometer and gyrometer, have shown similar results compared to the stereophotogrammetric motion analysis system. The correlations of the analyzed parameter were medium to high for the electrogoniometer and medium for the gyrometer. In a known subject sample, using the signals of hall resp. pressure sensors resulted in acceptable rearfoot motion values. However, applied on the data of unknown subjects or alternative shoe models, the calculated rearfoot motion values were way out of an acceptable range. Nevertheless, especially the measurement of midsole deformation by using hall sensors may be useful in further usage scenarios The gyrometer has the highest potential for rearfoot motion measurements within field testings. It was already possible to validly determine various rearfoot motion parameters (eversion velocity and excursion) in mobile testing scenarios. Conclusions and outlook The clarification of a possible correlation between various pronation parameters and the development of overuse injuries turns out to be the most important question for further biomechanical research concerning rearfoot motion. The findings of the thesis indicate five major objectives that should be considered in future research: 1. Development of mobile and direct measurement devices to determine rearfoot motion, not shoe motion, in a natural movement environment, 2. methodological and contentual discussion and standardization of rearfoot motion parameters, 3. extension of the isolated perspective of a single joint motion to adjoining segments and joints, 4. control or integration of rearfoot influencing factors in the testing design and 5. realization of comprehensive longitudinal studies.:Zusammenfassung ii Abstract v Abbildungsverzeichnis xv Tabellenverzeichnis xvii Abkürzungsverzeichnis xviii Einleitung 1 Vorbemerkung zu den Studiendesigns der Studienreihe 4 I Anatomische und bewegungswissenschaftliche Grundlagen 7 1 Funktionale Anatomie des Sprunggelenks 8 2 Parameter der Rückfußmessung 12 2.1 Benennung 12 2.2 Traditionelle diskrete Parameter 12 2.3 Diskrete Parameter der vorliegenden Studienreihe 17 II Pronationsbeeinflussende Faktoren 21 3 Anatomische Merkmale 23 4 Geschlecht und Alter 27 4.1 Geschlecht als möglicher Einflussfaktor auf die Rückfußbewegung 27 4.2 Alter als möglicher Einflussfaktor auf die Rückfußbewegung 28 5 Bewegungsart 30 5.1 Rückfußbewegung beim Springen 31 5.1.1 Laborstudie: Vergleich der Rückfußbewegung beim Laufen und Springen 33 5.1.1.1 Zielstellung & Hypothesen 33 5.1.1.2 Methodik 33 5.1.1.3 Ergebnisse & Diskussion 35 6 Laufgeschwindigkeit 39 6.1 Laborstudie: Einfluss der Laufgeschwindigkeit auf die Rückfußbewegung 41 6.1.1 Zielstellung & Hypothesen 41 6.1.2 Methodik 41 6.1.3 Ergebnisse & Diskussion 42 6.1.4 Fazit 45 7 Ermüdung 46 7.1 Feldstudie: Einfluss sukzessiver Ermüdung auf Eversionsgeschwindigkeit 49 7.1.1 Zielstellungen & Hypothesen 49 7.1.2 Methodik 49 7.1.3 Ergebnisse & Diskussion 53 7.1.4 Fazit 55 8 Schuh 56 8.1 Laborstudie: Beeinflussung der Rückfußbewegung durch den Schuh 60 8.1.1 Zielstellungen & Hypothesen (vgl. Abbildung 8.2): 60 8.1.2 Methodik 61 8.1.3 Ergebnisse BAFO vs. SHOE 65 8.1.4 Ergebnisse SAND vs. FOOT-SAND 67 8.1.5 Ergebnisse BAFO vs. FOOT-SAND 68 8.1.6 Übergreifende Ergebnisse und Diskussion 70 8.2 Laborstudien: Beeinflussung der Eversion mittels gradueller Varusmodifikationen 72 8.2.1 Zielstellung & Hypothese: 72 8.2.2 Methodik 72 8.2.3 Ergebnisse & Diskussion 74 9 Fazit pronationsbeeinflussende Faktoren 78 III Traditionelle und innovative Messsysteme der Rückfußbewegung 81 10 Einführung Messsysteme 82 11 Subjektive Messungen 85 11.1 Feldstudie: Individuelle Wahrnehmung veränderter Eversion, hervorgerufen durch varus-modifizierte Schuhe 87 11.1.1 Zielstellung & Hypothesen: 87 11.1.2 Methodik 87 11.1.3 Ergebnisse 88 11.1.4 Diskussion 91 12 Elektrogoniometer 93 12.1 Laborstudie: Validierung des Goniometers zur Erfassung der Rückfußbewegung 97 12.1.1 Zielstellungen & Hypothesen: 97 12.1.2 Methodik 97 12.1.3 Ergebnisse & Diskussion 98 13 Gyrometer 101 13.1 Laborstudie: Validierung des Gyrometers als Messsystem zur Erfassung der Rückfußbewegung 104 13.1.1 Zielstellungen & Hypothese 104 13.1.2 Methodik 104 13.1.3 Ergebnisse & Diskussion 106 13.1.4 Fazit 108 13.2 Studie: Entwicklung und Evaluation eines mit Gyrometer instrumentier- ten Schuhs zur mobilen Messung der Rückfußbewegung 109 13.2.1 Zielstellung & Hypothese 109 13.2.2 Methodik 109 13.2.3 Validierung EVvel-Erkennung bei mehreren Läufe eines Probanden 110 13.2.4 Validierung EVvel-Erkennung bei weiteren Probanden 111 13.2.5 Ergebnisse & Diskussion 112 13.2.6 Ausblick 113 14 Druckverteilung & Sohlendeformation 115 14.1 Laborstudie: Eversionsbestimmung mittels plantarer Druckverteilung & Sohlendeformation 121 14.1.1 Zielstellung & Hypothesen 121 14.1.2 Methodik 121 14.1.3 Ergebnisse & Diskussion 125 14.1.4 Fazit 129 14.2 Laborstudienreihe: Algorithmusvalidierung 130 14.2.1 Allgemeine Methodik 131 14.2.1.1 Neue Probanden 131 14.2.1.2 Alternative Schuhmodelle 131 14.2.1.3 Weitere Laufgeschwindigkeiten 134 14.2.2 Ergebnisse & Diskussion 134 14.2.2.1 Neue Probanden 134 14.2.2.2 Alternatives Schuhmodell 136 14.2.2.3 Weitere Laufgeschwindigkeiten 140 14.3 Zusammenfassung Druckverteilung & Sohlendeformation 143 15 Photo- / Filmbasierte Messsysteme 144 15.1 Grundlagen stereophotogrammetrischer Messungen 144 15.2 Methodische Richtlinien für stereophotogrammetrischer Rückfußmessungen der vorliegenden Arbeit 147 16 Zusammenfassung Messsysteme 150 IV Schlussbetrachtung und Ausblick 153 Literaturverzeichnis 157 Anhänge 174 A Fragebogen subjektiven Wahrnehmung der Rückfußbewegung 174 B Wissenschaftlicher Lebenslauf 177 C Selbstständigkeitserklärung 181
19

Ganganalytische Bestimmung und Bewertung der Druckverteilung unterm Fuß und von Gelenkwinkelverläufen

Hegewald, Günther 17 May 2000 (has links)
Hauptziel der Arbeit war es einen Ganganalyse-Meßplatz zu entwickeln, der es ermöglicht, sowohl die Kinematik als auch die Kinetik des Ganges zu messen. Für den praktischen Einsatz ist dabei die "online" - Fähigkeit des Meßsystems von Bedeutung. Wichtige Entwicklungskriterien waren auch die Nutzerfreundlichkeit und geringe Kosten. Nicht zuletzt sollte der modulare Aufbau des Systems eine nachträgliche Integration zusätzlicher Meßkomponenten ermöglichen. Die Wahl des Meßprinzips für die Kinetik des Ganges fiel auf den Einsatz von Druckmeßsohlen. Folgende Gründe führten u.a. zu dieser Entscheidung: · Eine Messung mit Druckmeßsohlen erlaubt die Bestimmung der örtlichen Druckverteilung unter dem Fuß beim Gehen, d.h. man erkennt an welcher Stelle des Fußes der Druck auftritt, ob an der Ferse oder am Vorfuß. · Die Auswertung kann anhand einer großen Zahl aufeinanderfolgender Schritte erfolgen. · Bei Messungen mit Sohlen ist man nicht ortsgebunden. Sowohl Untersuchungen auf dem Laufband, als auch im Laufgang sind möglich. Ebenso kann die Messung im beliebigen Gelän-de (z.B. auf dem Sportplatz oder auf der Treppe) durchgeführt werden. Für die Messung der Kinematik finden Goniometer Verwendung. Ebenso wie bei den Druckmeß-sohlen, sind Goniometermessungen nicht ortsgebunden. Wichtig für die Entscheidung zugunsten der Goniometrie ist auch, daß diese preiswerter ist als die meisten anderen kinematischen Meß-verfahren. An das Meßsystem können noch weitere Sensoren angeschlossen werden. Mögliche Sensoren sind zum Beispiel aktive Oberflächenelektroden für Elektromyographie-Messungen oder Beschleu-nigungssensoren. Die Datenübertragung erfolgt über Funk. Eine wesentliche Aufgabe zum Erreichen des Hauptziels, bestand darin, aufbauend auf dem all-gemein anerkannten Erkenntnisstand, Gangparameter zu entwickeln, welche die verschiedenen Einzelaspekte des menschlichen Ganges hinreichend genau beschreiben. Wichtig für die Datenre-duktion war dabei die Berechnung eines für den zu Untersuchenden typischen mittleren Schrittes. Insbesondere aus der Sicht der Nutzerfreundlichkeit ist eine Datenbank für die Charakterisierung des unauffälligen Ganges erstellt worden. Der Nutzer erhält damit die Möglichkeit, seine gemesse-nen Daten mit den Daten einer gangunauffälligen Probandengruppe zu vergleichen. / Main goal of the thesis was the development of a gait analysis measurement system, supporting the measurement of kinetics and kinematics of the gait. For practical application were important the online-abilities of the measuring system. Criteria for development were user friendliness and low cost. The modular build of the system is meant to provide the ability for later integration of other sensors. The choice of measuring principle for the kinetics of gait were pressure measuring insoles. The following reasons led to this decision: · The measurement with insoles allows locating the pressure distribution under the foot during walking, i.e. the point of pressure can be allocated to the forefoot or heel. · The evaluation can be based on many consecutive steps. · The measurement with insoles is not bound to a place. Measurement on a tread mill as well as on a defined stretch of hall. The measurement can take place in the surrounding of choice (for example in a sporting arena or on a stairway). For the kinematic measurements were used goniometers. As with the measurements with insoles the goniometer measurements are not bound to one place. An important reason for the decision to use goniometers rather than other kinematic measurement devices was amongst others it cost effectiveness. A number of different sensors can be attached to the measurement system. Other possible sensors could be active surface electrodes for electromyographic measurements or accelerometers. The data transmission is wireless. A main task on the way to reaching the main goal, was to develop gait parameters basing on the current knowledge which describe the different aspects of human gait appropriately. An important step towards data reduction was the calculation of a typical average step for the examinee. With view towards user friendliness a data base was developed in order to facilitate the characterisation of normal gait. The user can compare his measured data to the data of a group with normal gait.
20

Development of an Instrumented Mannequin for Training of Caregivers in Safe Patient Handling and Movement

Westhoff, Oneida Dugarte 16 March 2004 (has links)
A common problem associated with patient handling is the risk of bodily injury due to acute or cumulative trauma. The objective of this research was to develop an integrated solution, using commercially available components, to help health care providers handle patients in a safe manner. The objective was achieved by retrofitting a mannequin with flex sensors, electrogoniometers, pressure sensors, and photocells. The sensors were capable of quantifying angular displacement, skin pressure distribution and undignified exposure. All of these variables were monitored by a computer-based data acquisition system. The design of this integrated system was implemented using National Instruments LabView software, which possessed the capability to provide both spasm simulation process control and a history of the acquired sensor data. A virtual instrument, (VI), was developed using LabView as the interface between the user or instructor and the instrumented mannequin. The VI had the capability of displaying the history of the acquired data. With access to the data's history the trainer is able to analyze the sensor information and verify the procedural accuracy of the actions performed on the simulated patient by the student. The system technologies employed can help the instructor improve the training of health care workers. Additionally, providing the trainer with useful information about the student's skill building during interaction with a patient enhances evaluation of the student's performance. Once the data is collected, the instrumented mannequin is capable of identifying problems such as excessive force or pressure when health care providers are interacting with patients. This provides the healthcare community with useful information to improve and provide a safer and more comfortable environment for the patient. The instrumented mannequin will be a valuable tool in evaluating and assessing the merits of clinical procedures. It may also be used in biomechanical studies involving patient handling by caregivers.

Page generated in 0.059 seconds