91 |
Process simulation of twin-screw granulation: A reviewArthur, Tony B., Rahmanian, Nejat 02 September 2024 (has links)
Yes / Twin-screw granulation has emerged as a key process in powder processing industries and
in the pharmaceutical sector to produce granules with controlled properties. This comprehensive
review provides an overview of the simulation techniques and approaches that have been employed
in the study of twin-screw granulation processes. This review discusses the major aspects of the
twin-screw granulation process which include the fundamental principles of twin-screw granulation,
equipment design, process parameters, and simulation methodologies. It highlights the importance
of operating conditions and formulation designs in powder flow dynamics, mixing behaviour, and
particle interactions within the twin-screw granulator for enhancing product quality and process
efficiency. Simulation techniques such as the population balance model (PBM), computational
fluid dynamics (CFD), the discrete element method (DEM), process modelling software (PMS), and
other coupled techniques are critically discussed with a focus on simulating twin-screw granulation
processes. This paper examines the challenges and limitations associated with each simulation
approach and provides insights into future research directions. Overall, this article serves as a valuable
resource for researchers who intend to develop their understanding of twin-screw granulation and
provides insights into the various techniques and approaches available for simulating the twin-screw
granulation process.
|
92 |
Advanced Biofilm and Aerobic Granulation Technologies for Water and Wastewater TreatmentSun, Yewei 10 April 2020 (has links)
Attached growth biological processes offer advantages over traditional water purification technologies through high biomass retention, easy sludge-water separation, multiple multispecies synergies in proximity, resilience to shock loading, low space requirements, and reactor operational flexibility. Traditionally, attached growth refers to biofilms that require abiotic carrying media for bacteria to attach and grow on. While biofilms have been broadly applied in wastewater treatment, its potential for potable reuse or stormwater treatment has not been well studied. The treatment trains of pre-ozonation followed by biologically active filtration (ozone- BAF) is an advanced biofilm technology for potable reuse that can generate high-quality potable water at reduced energy and chemical demands by removing pollutant through three different pathways: oxidation, adsorption, and biodegradation. However, these pathways can result in both desirable and undesirable effects, and the mechanism behind it is still unclear. To understand the mechanisms of various pollutant removal, parallel performance comparisons of ozone-BAF treatment trains with spent and regenerated granular activated carbon (GAC), along with a range of pre-oxidant ozone doses were performed. Another common issue of BAF is the headloss buildup during its operation, which has become a significant energy and maintenance burden at many utilities. Thus, a mathematical model was developed to predict BAF headloss buildup in response to organic removal and nitrification. For stormwater treatment, the feasibility of using biofilms for stormwater biological nitrogen removal (BNR) is still largely unknown, as very limited research effort has been dedicated to this aspect. Thus, a mathematical model was developed to evaluate the potential of using BNR techniques for stormwater nitrogen removal. Aerobic granules are an even more advanced attached growth process, which eliminates the need for abiotic carrying media. So far, aerobic granular sludge is only formed in sequential batch reactors but not in a continuous flow system. Therefore, continuous flow aerobic granulation from traditional activated sludge was investigated and, for the first time, successfully achieved in continuous flow plug-flow bioreactors fed with real municipal wastewater. Besides, the role and critical value of an essential operational parameter, feast/famine ratio, for continuous flow aerobic granulation were determined. / Doctor of Philosophy / Water scarcity and increasing water demand caused by urban population growth and climate change is a reality throughout the world. Thus, process intensification of the current water and wastewater technologies is gaining increasing attention globally. Comparing to traditional water purification technologies, attached growth biological processes offers advantages such as high biomass retention, easy sludge-water separation, multiple multispecies synergies in proximity, resilience to shock loading, small footprint requirement, and reactor operational flexibility. Traditionally, attached growth refers to biofilms that require abiotic carrying media for bacteria to attach and grow on. While biofilms have been broadly applied in wastewater treatment, its potential for potable reuse or stormwater treatment has not been well studied. For potable reuse, the treatment trains of pre-ozonation followed by biologically active filtration (ozone-BAF) is an advanced biofilm technology that can generate high-quality potable water at reduced energy and chemical demands by removing pollutant through different pathways. However, the mechanism behind it is still unclear. To understand the mechanisms of various pollutant removal, parallel performance comparisons of ozone-BAF treatment trains operated with different operational conditions were performed in this dissertation. Another common issue of BAF is the headloss buildup during its operation, which has become a significant energy and maintenance burden at many utilities. Thus, a mathematical model was developed to predict the headloss buildup during BAF operation. For stormwater treatment, the feasibility of using biofilms for stormwater biological nitrogen removal (BNR) is still largely unknown, as very limited research effort has been dedicated to this aspect. Thus, a mathematical model was developed to evaluate the potential of using BNR technique for stormwater. Aerobic granules are an even more advanced attached growth process. However, aerobic granular sludge is so far only formed in sequential batch reactors which are incompatible with the continuous flow nature of most wastewater treatment plants. Therefore, aerobic granulation from traditional activated sludge was investigated and, for the first time, successfully achieved in continuous flow plug-flow bioreactors fed with real municipal wastewater. Besides, the role of an essential operational parameter, feast/famine ratio, for continuous flow aerobic granulation was determined.
|
93 |
Development of Transitional Settling Regimen Parameters to Characterize and Optimize Solids-liquid Separation PerformanceMancell-Egala, Abdul Salim 20 September 2016 (has links)
Novel settling characteristic metrics were developed based on the fundamental mechanisms of coagulation, flocculation, and settling. The settling metrics determined parameters that are essential in monitoring and optimizing the activated sludge process without the need for expensive or specialized equipment. Current settling characteristic measurements that don't require specialized instruments such as sludge volume index (SVI) or initial settling velocity (ISV), have no fundamental basis in solid-liquid separation and only indicate whether settling is good or bad without providing information as to limitations present in a sludge matrix. Furthermore, the emergence of aerobic granulation as a potential pathway to mitigate solid-separation issues further stresses the need for new settling characteristic metrics to enable integration of the new technology with the current infrastructure.
The granule or intrinsic aggregate fraction in different types was of sludge was quantified by simulating different surface overflow rates (SOR). The technique named Intrinsic Settling Classes (ISC) was able to separate granules and floc by simulating high SOR values due to the lack of a flocculation time needed for granules. The method had to be performed in a discrete settling environment to characterize a range of flocculation behavior and was able to classify the granular portion of five different types of sludge. ISC was proven to accurately (±2%) determine the granule fraction and discrete particle distribution. The major significance of the test is its ability to show if a system is producing particles that will eventually grow to become granules. This methodology proved to be very valuable in obtaining information as to the granular fraction of sludge and the granular production of a system.
Flocculent settling (stokesian) was found to be predominant within ideally operating clarifiers, and the shift to 'slower' hindered settling (non-stokesian) causes both failure and poor effluent quality. Therefore, a new metric for settling characteristics was developed and classified as Limit of Stokesian Settling (LOSS). The technique consisted of determining the total suspended solids (TSS) concentration at which mixed liquor settling characteristics transition from stokesian to non–stokesian settling. An image analytical technique was developed with the aid of MATLAB to identify this transition. The MATLAB tool analyzed RGB images from video, and identified the presence of an interface by a dramatic shift in the Red indices. LOSS data for Secondary activated-sludge systems were analyzed for a period of 60 days at the Blue Plains Advanced Wastewater Treatment Plant. LOSS numbers collected experimentally were validated with the Takacs et al. (1991) settling model. When compared to flux curves with small changes in the sludge concentration matrix, LOSS was found to be faster at characterizing the hindered settling velocity and was less erratic.
Simple batch experiments based on the critical settling velocity (CSV) selection were used as the basis for the development of two novel parameters: threshold of flocculation/flocculation limitation (TOF/a), and floc strength. TOF quantified the minimum solids concentration needed to form large flocs and was directly linked to collision efficiency. In hybrid systems, an exponential fitting on a CSV matrix was proposed to quantify the collision efficiency of flocs (a). Shear studies were conducted to quantify floc strength. The methods were applied to a wide spectrum of sludge types to show the broad applicability and sensitivity of the novel methods.
Three different activated sludge systems from the Blue Plains AWWTP were monitored for a 1 year period to explore the relationship between effluent suspended solids (ESS) and activated sludge settling and flocculation behavior. Novel metrics based on the transitional solids concentration (TOF, and LOSS) were also collected weekly. A pilot clarifier and settling column were run and filmed to determine floc morphological properties. SVI was found to lose sensitivity (r < 0.20) when characterizing ISV above a hindered settling rate of 3 m h-1. ISV and LOSS had a strong correlation (r = 0.71), but ISV was subject to change, depending on the solids concentration. Two sludge matrix limitations influencing ESS were characterized by transition concentrations; pinpoint floc formation, and loose floc formation. Pinpoint flocs had TOF values above 400 mg TSS L-1; loose floc formation sludge had TOF and LOSS values below 400 mg TSS L-1 and 900 mg TSS L-1, respectively. TOF was found to correlate with the particle size distribution while LOSS correlated to the settling velocity distribution. The use of both TOF and LOSS is a quick and effective way to characterize limitations affecting ESS. / Ph. D. / New parameters to determine how particles separate from water were developed. The new parameters didn’t require expensive or specialized instruments. Current parameters that don’t rely on specialized instruments give little information on how particles separate from water. The new parameters provide information on particle size, particle settling speed, and particle stickiness. The significance of this research is the ability for anyone in the field to gain a better understanding of the settling process they are monitoring using these parameters.
The first parameter named Intrinsic Settling Classes allows one to determine the particle size distribution within a sludge mixture based on how fast the particles settle. The parameter requires dilution of the sample to inhibit the particles from sticking together. Bigger particles will settle faster, due to more mass assuming density does not change significantly.
The second parameter named Limit of Stokesian Settling determines a particle’s settling speed. The parameter involved finding the maximum particles that could occupy a particular space before the particle-particle interaction start to hinder settling. Particles with a faster settling distribution can have more particles occupying a certain space before hindering one another.
The third parameter named Threshold of Flocculation identified a particle’s stickiness. Stickier particles attach together in a shorter time resulting in large clumps of particles that settle faster. This parameter involved determining the minimum amount of particles needed to form large clumps of particles at a predetermined time. Stickier particles require less particles and time to form large clumps of particles.
|
94 |
Effects of process parameters on granules properties produced in a high shear granulatorRahmanian, Nejat, Naji, A., Ghadiri, M. January 2011 (has links)
No / Results of a study on the influence of process parameters such as impeller speed, granulation time and binder viscosity on granule strength and properties are reported. A high shear granulator (Cyclomix manufactured by Hosokawa Micron B.V., The Netherlands) has been used to produce granules. Calcium carbonate (Durcal) was used as feed powder and aqueous polyethylene glycol (PEG) as the binder. The dried granules have been analysed for their strength, density and size distribution. The results show that increasing the granulation time has a great affect on granules strength, until an optimum time has been reached. The underlying cause is an increase in granule density. Granules are consolidated more at higher impeller speeds. Moreover, the granule size distribution seems not to be affected significantly by an increase in impeller speed. Granules produced with high binder viscosity have a considerably lower strength, wide strength distribution due to poor dispersion of binder on the powder bed. Binder addition methods have showed no considerable effect on granule strength or on granule size distribution.
|
95 |
Seeded granulationRahmanian, Nejat, Ghadiri, M., Jia, X. January 2011 (has links)
No / A novel method for manufacturing granules with a large particle at their core, referred to as seeded granules, is presented. As an example, calcium carbonate powders (Durcal) of different grades are used as primary particles and polyethylene glycol (PEG) as liquid binder in high shear granulators of different scales (Cyclomix, manufactured by Hosokawa Micron B.V., The Netherlands). The conditions giving rise to seeded granulations are specified in the form of an operational regime map. It is found that the seeded structure is strongly dependent on the impeller speed and the primary particles size distribution. It is shown that a Stokes number of around 0.1 represents the optimal dynamic conditions in the given example for producing seeded granules, regardless of the scale of the granulator.
|
96 |
Strength and structure of granules produced in continuous granulatorsRahmanian, Nejat, Ghadiri, M. January 2013 (has links)
No / The effect of the operating conditions of three continuous high shear granulators on the internal structure and strength of granules has been investigated and the possibility of seeded granulation has been explored. In a recently concluded programme of research on the scale-up of a high shear granulator, Cyclomix (manufactured by Hosokawa Micron B.V., The Netherlands), a novel method of granulation called seeded granulation was introduced, where each granule contained, at its core, a large particle from the upper tail end of the feed particle size distribution. Seeded granulation is particularly useful for process control of continuous granulators as there is the potential to control granulation by the flow rate of the seed particles. Hence, the performance of three different types of continuous granulators in terms of granule strength and structure has been evaluated here; these are Extrudomix, Modulomix (manufactured by Hosokawa Micron, UK and The Netherlands, respectively) and the Nica M6 Turbine continuous granulator (manufactured by GEA, UK). Calcium carbonate (Durcal 65) powder was granulated using an aqueous solution of polyethylene glycol (PEG) as binder in the same ratio as used previously in our batch granulation, to allow comparison between the continuous and batch processes. The crushing strength was characterised by quasi-static side crushing between two platens using a mechanical testing machine. The internal structure and morphology were evaluated by scanning electron microscopy and the extent of seeding quantified. Granules produced in all the three continuous granulators were significantly weaker than those of the batch granulator tested previously. Among the continuous granulators only the Modulomix granulator produced some seeded granules. It is considered that longer residence time is necessary to produce seeded granules.
|
97 |
Modélisation, commande et observation du séchage par lit fluidisé de granules pharmaceutiquesGagnon, Francis 13 December 2023 (has links)
La fabrication de comprimés pharmaceutiques par granulation humide a typiquement recours aux lits fluidisés pour le séchage des particules. Encouragée par les agences réglementaires, l'industrie a entamé une migration vers la production continue et automatisée, mais les procédés discontinus (batch) opérés sans rétroaction, excepté un contrôle qualité en fin de cycle, demeurent largement majoritaires dans le secteur. Dans le cas des séchoirs à lit fluidisé, cette approche occasionne plusieurs complications comme le sous-séchage, le surséchage et la surchauffe des granules thermosensibles, qui peuvent conduire au rejet du lot. Toutefois, la commande avancée et la production en continu peuvent réduire les problèmes d'opération. Ce projet de recherche concerne donc l'automatisation du séchage par lit fluidisé ou, plus spécifiquement, sa modélisation, sa commande et son observation. La conception et la comparaison de diverses stratégies d'estimation et de contrôle nécessitent d'abord un modèle mathématique représentatif du procédé. Pour y parvenir, une identification « boite grise » estime les paramètres empiriques d'une description phénoménologique à deux phases du lit fluidisé à partir de données expérimentales et un second lot de données valide les simulations qui en résultent. Cet ouvrage évalue ensuite la commande prédictive linéaire, non linéaire et économique sur le simulateur calibré. L'étude explore aussi les filtres de Kalman standard et non parfumé, ainsi que l'estimateur à fenêtre glissante, comme capteur virtuel de teneur en eau des particules, le principal indicateur de qualité au séchage. La première partie de cette thèse se concentre sur les séchoirs verticaux discontinus, et la deuxième, sur un nouveau prototype de réacteur horizontal entièrement continu. Les résultats de cette recherche confirment les avantages indéniables de ces technologies, soit un contrôle serré de la qualité du produit, et une diminution des coûts et de l'empreinte environnementale des opérations. / Manufacturing pharmaceutical tablets through wet granulation typically relies on fluidized bed drying for the particles. Advocated by regulatory agencies, the industry initiated a paradigm shift towards fully continuous and automated production, but batch processes operated without feedback, except a quality control at the end of the cycle, still prevail in the sector. For the case of fluidized bed dryers, this approach results in several issues like under drying, over drying, overheating of thermosensitive granules, that can lead to the rejection of the batch. However, advanced control and continuous processing can reduce the operational hurdles. This research project investigates the automation of fluidized bed drying or, more specifically, its modeling, control and observation. The design and comparison of various estimation and feedback strategies first require a representative mathematical model of the process. For this, a grey-box identification estimates the empirical parameters of a two-phase fluidized bed description from experimental data, and a second dataset validates the resulting simulations. This work then investigates linear, nonlinear, and economic model predictive control on the calibrated simulator. The study also explores the standard and unscented Kalman filter, and the moving-horizon estimator, as soft sensors for the particle moisture content, a critical quality attribute at drying. The first part of this thesis focuses on vertical batch dryers, and the second one, on a new prototype of a fully continuous horizontal reactor. The results of this research confirm the undeniable advantages of those technologies, namely a tight control of the product quality, and reductions in the costs and the environmental footprint of the operations.
|
98 |
Approche systémique pour la composition d’œuvres acousmatiques, mixtes, vidéomusicales et pluridisciplinairesDufort, Louis 03 1900 (has links)
No description available.
|
99 |
Beitrag zur Beschreibung des Betriebsverhaltens und der Modellierung von Kompaktier-GranulierkreisläufenSchönfeld, Patrick 05 June 2023 (has links)
Im Rahmen der vorliegenden Arbeit wird die Kompaktier-Granulierung von Kalisalzen zur Herstellung von Düngemittelgranulat experimentell untersucht und ein Modellansatz zur Beschreibung von derartigen Kreisläufen abgeleitet. Bei der Kompaktier-Granulierung wird fein-disperses Kalisalz mit Hilfe von Walzenpressen zu sogenannten Schülpen verpresst. Diese werden durch nachfolgende Zerkleinerung und Klassierung zu Düngemittelgranulat (enge Partikelgrößenklasse, wie beispielsweise 2 – 4 mm) verarbeitet. Basierend auf halb-industriellen Kreisläufen werden im vorliegenden Beitrag wesentliche Prozesswechselwirkungen zwischen Kompaktierung, Zerkleinerung und Klassierung ausgearbeitet. Detailuntersuchungen zeigen, dass sich insbesondere die Schülpenfestigkeiten wie auch die schüttgutmechanischen Eigenschaften des Pressenaufgabegutes im Kreislaufbetrieb ändern. Darauf aufbauend wird ein Modellansatz abgeleitet der die Abschätzung des Kreislaufbetriebs erlaubt.
|
100 |
CALAS, une caméra pour l'étude des grandes échelles de la surface solaireRondi, Sylvain 14 December 2006 (has links) (PDF)
L'objet du projet CALAS est l'étude de la supergranulation solaire, structure à grande échelle de la photosphère. L'origine de la supergranulation est encore controversée et nécessite des observations à très haute résolution spatiale sur un grand champ de vue. Le projet CALAS répond à ces exigences en proposant de concevoir une caméra rapide combinant grand champ et haute résolution, installée à la Lunette Jean Rösch, réfracteur de 50 cm de diamètre situé au Pic du Midi. Cette caméra utilise des capteurs CMOS (Complementary Metal Oxide Semi-conductor) dont les avantages sont notamment la rapidité de lecture, le coût réduit et de grands formats disponibles.<br />Nous avons conçu une chaîne d'acquisition complète, comprenant la caméra et son électronique de commande, une électronique de lecture couplée à un logiciel de prise de vues, et un système de stockage des données.<br />Le projet a également consisté à concevoir un banc optique sur deux voies permettant l'observation de la surface solaire en mode imagerie mais aussi en mode Doppler et magnétographie, par l'utilisation d'un filtre magnéto-optique. Le travail a également nécessité d'étudier l'intégration de CALAS au sein de la Lunette Jean Rösch, en participant à la jouvence de cet instrument.<br />Enfin, au cours de ce projet, outre de nombreuses missions d'observation à la Lunette Jean Rösch, j'ai également été amené à participer à une campagne internationale d'observations coordonnées consacrée à l'étude des mouvements de la photosphère dans l'environnement de filaments. A l'issue de cette thèse, les premières observations à grand champ et haute résolution de la photosphère solaire ont été réalisées à la LJR, et leur excellente qualité se révèle déjà tout à fait prometteuse pour la suite de l'exploitation scientifique.
|
Page generated in 0.1221 seconds