• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utveckling och design av gripdon för komposithantering

Johansson, Martin, Sundqvist, Johan January 2013 (has links)
Saab AB levererar lösningar, produkter och tjänster inom militärt försvar och civil säkerhet. Affärsområdet Aeronautics producerar förutom det militära stridsflygsystemet Gripen även komponenter till civila flygplan, dels sina egna men även andra flygplansproducenter som Airbus och Boeing. Projektets mål är att utveckla ett multifunktionellt robotgripdon för att undersöka automationsmöjligheter kring uppläggning av kolfiberskikt på ett plant underlag, en uppläggning som idag sker för hand. Processen som önskas automatiseras innefattar tillskärning av skikt, förflyttning från skärbord och placering på uppläggningsmall samt borttagning av skiktets skyddspapper. En systematisk konceptutvecklingsmodell har använts som grund för produktutvecklingsprocessen. Modellen har bestått av problemgranskning, undersöka ”state of the art”, upprättande av konstruktionskriterielista, nedbrytning av huvudproblemet i delproblem och framtagning av lösningar på delproblemen. Lösningarna har sedan kombinerats ihop till koncept. De genererade koncepten har utvärderats och en funktionsprototyp av det vinnande konceptet har konstruerats och testats på en robot. Prototypen är uppbyggd av aluminiumprofiler och kolfiberskikten hanteras med hjälp av vakuumsugkoppar vilkas placering anpassats efter skiktens form. Det beslutades att tillskärningen av skikten inte borde integreras i gripdonet utan lämpligast utförs av en programmerbar skärmaskin. Borttagningen av skyddspappret sker sedan i tre steg. Sedan placeras skiktet på mallen och kompakteras genom att en roller jämnar ut eventuella ojämnheter och får skiktet att fästa bättre mot underlaget. Därefter lyfter en sugkopp upp skyddspappret i det hörn som behandlats och en klo griper tag i det upplyfta hörnet varpå pappret avlägsnas. Slutsatsen är att automation av uppläggningen med hjälp av en robot är möjlig. Som fortsättning på detta projekt föreslås att en testcell byggs där automatisk uppläggning av hela processen kan testas. / Saab AB delivers solutions, products and services in military defence and civil security. In addition to the military aircraft system Gripen, the business area of Aeronautics also produces components for civil aircraft. Customers include Airbus and Boeing. The aim of the project is to design a multifunctional robot end-effector in order to investigate whether the degree of automation in the layup of a composite component can be increased. The layup is today a predominantly manual process. In the targeted production step, the pre-impregnated carbon fiber are cut into plies at a cutting table and accurately placed on a layup template. In this step, the backing paper attached to one side of the ply also has to be removed. A systematic model has been used as a foundation of the development process. The model has consisted of problem definition, a “state of the art” study, defining a design specification, and a functionality analysis. Results from the functionality analysis have then been combined into concepts and evaluated. Finally a prototype based on the winning concept has been built and tested on an actual robot. The prototype’s structure is based on aluminum profiles. The carbon fiber plies are handled with vacuum cups whose placing has been adjusted to fit the geometries of all plies. The step where plies are cut was excluded from the multifunctional end-effector since an automated cutting machine, which is already in use, was considered a more viable option at this stage. Removal of the backing paper is done in three steps. Then the ply is placed on a lay-up template and compacted by a roller to remove any unevenness and to attach the ply better to the surface. Finally, a vacuum cup lifts the previously treated corner of the backing paper and a mechanical claw secures the grip whereupon the paper is removed. A conclusion from this project is that automation of the lay-up with a robot is possible. As a continuation of this project it is suggested that an automated robot cell is constructed to test the automated layup process.
2

Produktutveckling av gripdon / Product Development of Gripper

Xhafa, Azdren, Kalifa, Rezgar January 2016 (has links)
Examensarbetet presenterar produktutveckling av gripdon åt uppdragsgivaren Meritor HVS AB. För att få en bra förståelse av hur ett gripdon fungerar så har författarna beskrivit hur robotar hanterar gripdon. Uppdragstagaren har fått som uppdrag att utveckla ett gripdon då det befintliga gripdonet har vissa brister. Man ställs dagligen inför nya förbättringar, tekniken utvecklas fort och man strävar därför både som företagare och konstruktör mot ständiga förbättringar. En grov nulägesanalys genomfördes i inledningsfasen av arbetet för att få en helhetsförståelse av processen som gripdonen utför för att utifrån det sedan kunna jobba vidare för att utveckla ett gripdon som klarar av alla varianter av råämne som företaget arbetar med.  Då en intern benchmarking gjordes i företaget lades stor vikt på att utveckla ett nytt gripdon som kunde hantera alla varianter av kronhjulsämne som företaget ska hantera. Fördelarna blir då att man minskar ställtider på stationen samt att om nya råämne tillkommer så kommer gripdonet att kunna hantera även detta med utan att problem uppstår.  För att få fram hållbara koncept så genererade författarna först idéer med hjälp av en tankekarta för att få en bred vetskap om problemet och kunna inrikta sig på att få fram det bästa möjliga konceptet att arbeta med. För att bevisa att de framtagna koncepten kan hantera alla varianter av råämne så har författarna genomfört beräkningar som visar teoretiskt att konceptförslagen är hållbara. koncepterna som presenterats i projektet har gjorts av CAD- programmet Creo Parametric.  Resultatet av examensarbetet visar att konceptet med två parallella hydraulikcylindrar uppfyller kraven som författarna har ställts inför, och det har även visat en utvecklad produktframtagning som går att implementera i företaget. / The thesis presents the product of grippers for the client Meritor HVS AB. To get a good understanding of how a gripper works, the authors described how robots handling grippers. The contractor has been given the mandate to develop a gripper when the existing gripper has some shortcomings. It is daily facing new improvements, technology develops fast and the aim is therefore both business and designer for continuous improvement. A situation analysis conducted in the initial phase of our work was made to get an overall understanding of the process to be able to continue working to develop a gripper that can handle all varieties of raw material as the company works with. When an internal benchmarking was done in the company placed a strong emphasis on developing a new gripper that could handle all variants of the crown wheel substance that the company must manage. The benefits will then reducing setup time at the station and that of new raw material will then gripper to handle too with without problems. In order to produce a sustainable concept that generated the authors first ideas using a mind map to get a broad knowledge of the problem and to focus on getting the best possible concept to work with. To prove that the developed concepts can handle all varieties of raw material, the authors performed calculations showing that the theoretical concept proposals is sustainable. The concepts presented in the project has been done by the CAD program Creo Parametric. The results of the thesis show that the concept of two parallel hydraulic cylinders meets the requirements we had, and it has also shown a developed product realization that can be implemented in the company.
3

Robotgripdon för kartongsortering / Robotic Gripper For Sorting Carton

de Vasconcelos Oliveira, Aline Maria January 2019 (has links)
Gripdon är vanliga i många branscher. De kan exempelvis lyfta och transportera föremål såsom lådor och bilar. Gripdon kan hittas i olika storlekar, tillräckligt stora för att transportera en bil eller tillräckligt små för att sortera även piller. Normalt är gripdon anpassade till en specifik uppgift. Gripdonets form är beroende av föremålet som det ska hantera. Normalt är föremålet enhetligt i form och vikt. Utmaningen här är att projekts gripdon ska kunna hantera föremål av olika storlekar och vikter. Gripdonet som utvecklades för detta projekt kommer att transportera föremål som väger någonstans från 3 kg till 28 kg. Det erforderliga omfånget av dimensioner är som följer: höjd 200–600 mm, djup 300–1 000 mm och längd 300–1 000 mm. Förutom de olika storlekarna krävdes även att gripdonet ska förflytta föremål med tillfredställande hastighet. Initialt skulle griparen vara fäst vid manipulatorn ABB IRB 4600. Denna modell kan transportera upp till 40 kg, därför borde det utvecklade gripdonet ha en viktgräns på 12 kg. Många olika lösningar studerades för att hantera utmaningen. Den valda lösningen baserades på att ha två linjära enheter drivna av servomotorer. De linjära enheterna är synkroniserade och rör sig i motsatta riktningar. Det finns linjära enheter som möjliggör synkroniserad motsatt rörelse men de tillgängliga modellerna skulle avsevärt sakta ned och skulle inte vara väsentligt olika i vikt eller pris jämfört med den konstruerade enheten. Griparens konstruktion är baserad på det maximala kontaktområdet med lådan för att öka friktionen mellan gripdon och kartongen. Griparens form är utformad för att undvika att deformera metallen och att gripdonet inte behövs repareras under lång tid. Konstruktionens kanter är konstruerade med plåtfästen för att försäkra att gripdonet inte böjer sig. Griparens uppskattade vikt är betydligt högre än de ursprungliga förväntningarna. Därför skulle IRB 4600, 40 kg manipulatorn behöva ersättas av en modell som kan bära den uppskattade vikten (cirka 250 kg=). / Gripers are common in many industries; they can lift and transport a variety of objects such as boxes and cars, for example. Gripers can be found in a full spectrum of sizes; large enough to transport a car or small enough to sort the smallest of pills. Grippers are typically customized for a specific task; the shape of the griper is dependent on the object it will carry. Normally, the object is uniform in its shape and weight. This project required the griper to handle multiple objects of various sizes and weights, presenting a particular challenge. The griper that was developed for this project will transport objects weighing anywhere from 3 to 28 kg. The required range of dimensions are as follows; height from 200 to 600 mm, depth of 300 to 1000 mm, and length from 300 to 1000 mm. In addition to the variety of sizes, the griper was also required to move objects with speed. Initially, the griper would be attached to the manipulator ABB IRB 4600. This model can transport up to 40 kg, therefore the developed griper should have a weight limit of 12 kg. Many different solutions were studied in order to solve the challenge of multiple size and weight variations. The chosen solution was based on having two linear units driven by servo motors. The linear units are synchronized and move in opposite directions. There are linear units that allow for synchronized, opposed movement but the models available would significantly slow the movement and would not be materially different in weight or price compared to the designed unit. The design of the griper is based on allowing the maximum contact area with the box to increase friction between the gripper and cardboard. The shape of the griper is designed to avoid deforming the metal and ensuring the griper will not need to have it's parts repaired for a long time. The edges of the structure are constructed with bent sheet metal brackets, to assure the griper will not bend. The estimated weight of the griper is significantly heavier than the original expectations. Consequently, the IRB 4600,40 kg manipulator would need to be replaced with a model that can carry the estimated weight of approximately 250 kg.
4

Gripper for ISO 4/Class A environment / Intelligent gripdon för renrumsmiljö ISO 4/Klass A

Munoz Brewitz, Vicente, Thorén, Olof January 2017 (has links)
Antibiotics, oncology drugs and other products, mainly for intravenous use, are produced in facilities with very high cleanroom demands. To achieve pharmaceutical class A and ISO 4, the equipment must meet the highest demands of cleanability, sanitation and sterilization. The purpose of this master thesis is to develop a concept of an autonomous gripper to operate together with a robot in a class A environments that would replace humans. Requirements such as wireless communication, internal energy storage as well as gripping force of at least 1000 N per finger are defined. Additional, all materials in contact with the cleanroom must withstand hydrogen peroxide that is used for sterilisation without releasing particles or gases. A full-scale prototype has been manufactured to evaluate the properties of the concept. Several different concepts of grippers have been generated in this paper. A concept with an angular gripper and a bayonet clutch were selected after the concepts were discussed with the costumer and evaluated in an evaluation matrix. The gripper is driven by a stepping motor and has two gears, one planetary gear and one worm gear which together achieves a total ratio of 980:1. The gripper is wireless controlled using a Raspberry Pi which is programmed is CODESYS. Methods such as CAD and FEM has been used in the design of the gripper. The measured mean gripping force of the gripper is 1206 N and the estimated battery life of the gripper in work is 43 minutes. The prototype has the outer dimensions 400∙170∙170 mm and the mass 10.9 kg. This thesis, combined with a number of suggestions for improvements can give the gripper potential for cleanroom classification ISO 4. / Antibiotika, cancerläkemedel och andra läkemedelsklassade produkter i huvudsak för intravenöst bruk tillverkas i anläggningar med mycket höga renrumskrav. För att uppnå renrumsklassificering ISO 4 och GMP EU A ställs krav på rengörbarhet, sanitet och sterilisering av utrustningen. Syftet med detta examensarbete är att ta fram ett koncept till ett autonomt gripdon som tillsammans med en robot ska kunna ersätta människor i renrumsklass ISO 4/klass A. Krav finns på bland annat trådlös kommunikation, intern energilagring samt en gripstyrka på minst 1000 N per finger. Dessutom behöver alla material i kontakt med renrummet kunna motstå väteperoxid som används vid sterilisering utan att släppa ifrån sig partiklar eller gaser. En prototyp i full skala har tillverkats för att utvärdera konceptets egenskaper. Flera koncept på gripdon har genererats vartefter ett koncept med en vinkelgripare och bajonettkoppling valdes efter att de olika koncepten diskuterades med kund och utvärderats i en utvärderingsmatris. Gripdonet drivs av en stegmotor och har två växlar, en planetväxel och en snäckväxel som tillsammans har en total utväxling på 980:1. Gripdonen styrs trådlöst av en Raspberry Pi som är programmerad i CODESYS. Metoder som CAD och FEM har använts för att detaljutveckla gripdonet. Den uppmätta medelgripkraften för gripdonet är 1206 N och den beräknade batteritiden för gripdonet i arbete är 43 minuter. Prototypen har yttermåtten 400∙170∙170 och väger 10.9 kg. Detta arbete i kombination med en rad förbättringsförslag kan ge gripdonet potential att efter vidareutveckling uppnå renrumsklass ISO 4.
5

Gripper Tool Designed for a Surgical Collaborative Robot / Gripdon designad för en kirurgisk kollaborativ robot

Andersson, Emma January 2019 (has links)
In surgery, suturing is the use of needle and thread to join cut and/or damaged anatomical structures together. This repair strategy is highly versatile and is universal for all types of surgery as the goal is to restore, repair or improve function and/or appearance. The needles are almost always curved in shape, and it is handled and maneuvered by surgeons with a special tool called: needle driver. The versatility of this setup has proven its worth over time as needle drivers are one of the indispensable instruments in all types of surgery. We are entering a future where robots can be programmed to execute tasks with much higher level of precision and speed compared to humans. Medical robotics in surgery has gained ground over the past decades due to promising clinical results. A straightforward step in this direction would be to create a solution that enables the robot to grip needle driver. The purpose of this study was to develop a gripper tool that enables a collaborative robot to perform suturing with one of the most common types of needle drivers used in surgery. The Double Diamond design framework was employed. The selected content in the predefined four phases were: 1) Discover: Observation, MoSCoW Prioritization, Brainstorming, Choosing a Sample, Fast Visualisation, 2) Define: Assessment criteria, 3) Develop: Physical prototyping 4) Deliver: Final testing and Evaluation. In the first phase, Discover, clinical and technical demands were formulated. In the second phase, Define, numerous design ideas were generated and drafted on paper whereof the one with highest assessment score was chosen for physical prototyping. In phase three, Develop, the selected design idea was modelled in cardboard, clay and silicon, and 3D printed. Multiple design iterations were guided by feedback from clinical and technical experts and resulted in a final prototype design that was accepted by the experts. In phase four, Deliver, the final prototype was subjected to final testing and evaluation. Observation of five live and one video recording of surgical procedures on real patients were made. The insights gained were confirmed with the lead and co-surgeons of each procedure and were summarized in 24 clinically important observations relevant for the gripper tool design. Careful analysis of the previously designed gripper tool, live observation of the robot’s motion pattern and range, and interview with robotic engineer were summarized in ten technically important observations. The observations were then used to formulate the clinical and technical demands that the gripper tool design aims to fulfill, followed by prioritizing the demands and design features according by MoSCoW method and brainstorming on how to improve previous gripper tool design. To limit the scope of the design challenge, one of the five types of needle drivers used in pediatric heart surgery in Lund was selected in the method Choosing a Sample. To further characterize the clinical and technical demands, a test bench was set up to Define and measure force vectors applied on the needle driver when held by a surgeon during suturing. The radial forces vectors in six directions perpendicular to the tip of the needle driver ranged from 1.6 N to 3.8 N. The axial force along the length of the needle driver was 7.6 N towards the tip and 8.4 N towards the back end. The clockwise and counterclockwise torque along the length axis of the needle driver was 0.2 Nm and 0.18 Nm, respectively. The set of defined demands were sufficient to sketch numerous ideas of gripper tool designs according to the Fast Visualization method. These designs were then used in the Define phase to communicate the design ideas with surgeons, robotic and product development engineers. The most promising idea was advanced to the Develop phase where physical prototypes were produced in cardboard, clay and silicon and 3D printed. Inadequacies were found during design feedback with interviews and testing together with clinical and technical experts, and design actions were taken to arrive at the final prototype. The final prototype was brought into the Deliver phase for final testing and evaluation. The gripper tool could handle lager force loads than the human surgeon in all the stability tests. However, deflection of the needle driver occurred with the gripper tool unlike when the surgeon was subject to stability testing. One pediatric heart surgeon and one robotic engineer was asked to generate a composite score of fulfillment rate from 1–5, where 1 is bad, 3 satisfactory, and 5 excellent after final testing of the gripper tool was carried out. The final prototype of the gripper tool fulfills all clinical and technical demands at the level of 4, and 3–5, respectively. In conclusion, the design methodology used in this study was useful in the development of a gripper tool design that respects both clinical and technical demands. This suggest that the methodology may be used in similar setting of design challenges in the field between medical and technical innovation. The gripper tool fulfilled the demands, although further refinement in the choice of material, further testing and investigation of regulatory aspects are required before it can be implemented in the operating room. / Vid operation är suturering användningen av nål och tråd för att sammanfoga snittad och/eller skadade anatomiska strukturer. Denna reparationsstrategi är mycket mångsidig och universell för alla typer av kirurgi eftersom målet är att återställa reparera eller förbättra funktion och/eller anatomisk defekt. Nålarna är nästan alltid krökta i sin form och de hanteras och manövreras av kirurgerna med ett speciellt verktyg som kallas: nålförare. Mångsidigheten i denna uppställning har visat sig över tid eftersom nålförare är ett av de oumbärliga instrumenten vid alla typer av operationer. Vi går in i en framtid där robotar kan programmeras för att utföra uppgifter med mycket högre precision och hastighet jämfört med människor. Medicinska robotar inom kirurgi har varit på frammarsch senaste årtionden på grund av goda kliniska resultat. Ett steg i denna riktning skulle vara att skapa en lösning som gör det möjligt för en robot att greppa nålföraren. Syftet med denna studie var att utveckla ett gripdon som möjliggör för en kollaborativ robot att utföra suturering med hjälp av en av de vanligaste typerna av nålförare som används vid operation. Design metodiken Double Diamond användes för att beskriva design processensen. Det valda metoderna i de fyra för definierade faser var: 1) Discover: Observation, MoSCoW Prioritization, Brainstorming, Choosing a Sample, Fast Vissualization, 2) Define: Assessment criteria, 3) Develop: Physical Prototyping, 4) Deliver: Final testing and Evaluation. I första fasen, Discover, formulerades kliniska och tekniska krav. I den andra fasen, Define, definierades flera designidéer som skissades på papper, varav den med den högsta poängen valdes i Assessment criteria. I fas tre, Develop, modellerades den valda designidén i kartong, lera och silikon samt 3D-printades. Flera designiterationer gjordes baserat på feedback från kliniska och tekniska experter vilket resulterade i en slutlig prototypdesign som godkändes av experterna. I fas fyra, Deliver, testades och utvärderades den slutliga prototypen. Observation av fem realtids och en videoinspelning av kirurgiska ingrepp på riktiga patienter gjordes. Insikterna som gjordes bekräftades med kirurgerna som genomförde operationen och sammanfattades i 24 kliniskt viktiga observationer som var relevanta för gripdon designen. Noggrann realtids observation av robotens rörelsemönster samt analys av det tidigare utformade gripdonen och intervju med en robotingenjör sammanfattades i tio tekniskt viktiga observationer. Observationerna användes för att formulera kliniska och tekniska krav som gripdons designen strävar efter att uppfylla, följt av prioritering av kraven och designegenskaper enligt MoSCoW-metoden och brainstorming kring hur tidigare gripdons design kan förbättras. För att begränsa designutmaningens omfattning valdes en av de fem typer av nålförare som används vid barnhjärtkirurgi i Lund genom metoden Chossing a sample. För att ytterligare karakterisera de kliniska och tekniska kraven upprättades en testbänk för att definiera och mäta kraftvektorer som appliceras på nålföraren när den hålls av en kirurg under suturering. De radiella krafterna i sex riktningar vinkelrätt mot nålförarens spets varierade från 1,6 N till 3,8 N. Den axiella kraften längs nålförarens längd var 7,6 N mot spetsen och 8,4 N mot bakänden. Medurs och moturs vridmoment längs nålförarens längdaxel var 0,2 Nm respektive 0,18 Nm. Dom definierade kraven låg till grund för skisser av flertal gripdondesign idéer enligt Fast Visualization. Dessa skisser användes sedan i Define fasen för att kommunicera designidéer med kirurger samt robot- och produktutvecklingsingenjörer. Den mest lovande idén togs till Develop fasen där fysiska prototyper togs fram i kartong, lera och silikon samt genom 3D-printning. Förbättringspunkter hittades under testning och återkoppling med intervjuer tillsammans med kliniska och tekniska experter. Designåtgärder baserat på återkopplingen gjordes för att komma fram till den slutliga prototypen. Slutlig testning och utvärdering av den slutliga prototypen genomfördes i Deliver fasen. Gripdons designen kunde hantera större belastningar än den mänskliga kirurgen i alla stabilitetstester. Böjning av nålföraren uppstod dock i testerna med gripverktyget till skillnad från testerna med kirurgen var föremål för stabilitetsprovning. En barnhjärtkirurg och en robotingenjör poängsatte uppfyllnadsgrad av de kliniska respektive tekniska kraven efter att slutlig testning av gripdonet utförts. Uppfyllnadsgraden poängsattes från 1–5 där 1 var dålig, 3 tillfredsställande och 5 utmärkt. Gripdonets slutliga prototyp uppfyller alla kliniska och tekniska krav på nivå 4 respektive 3–5. Designmetodiken som användes i denna studie var användbar för utvecklingen av gripdon som uppfyller både de kliniska och tekniska kraven. Detta tyder på att denna metod kan användas i liknande designutmaningar inom området mellan medicinsk och teknisk innovation. Gripdonet uppfyllde kraven även om ytterligare förfining i materialvalet, ytterligare testning och undersökning av regulatoriska aspekter krävs innan den kan användas under riktiga operationer i operationssalen.
6

Closed-Loop Control of a 3D Printed Soft Actuator with Soft Position Sensors / Återkopplad Kontroll av ett 3D-skrivet Mjukt Ställdon med Mjuka Positionssensorer

Jansson, Jakob, Sjöberg, Mikael January 2021 (has links)
This thesis performs closed-loop control of a 3D printed soft bending actuator with feedback from a 3D printed strain sensor. This process utilizes the Finite Element Method (FEM) to design a bellow type pneumatic bending actuator that can handle pressures up to 4 bar. The developed actuator is produced with a Fused Deposition Modeling (FDM) 3D printer method with the elastic filament NinjaFlex. Soft sensors are 3D printed with the conductive filament Eel and their strain-resistive performance in hysteresis, linearity, and repeatability are investigated by testing 3D printed sensors with different shapes. The optimal sensor design is then selected and applied onto the soft actuator and the resistance signal from the sensor is used as the shape feedback signal for the soft actuator. Two different controllers are applied for the shape control of the soft actuator using the feedback from the sensor and the controller performance is compared experimentally. A gripper composed of three closed-loop controlled soft actuators is developed to perform complex grasping tasks. / Denna avhandling konstruerar ett 3D-skrivet mjukt ställdon som återkopplas med en 3D-skriven böjsensor. Arbetet använder Finita Elementmetoden (FEM) för att skapa ett böjande bälgställdon som klarar av 4 bar av lufttryck. Det framtagna ställdonet är tillverkad av det elastiska filamentet NinjaFlex med 3D-skrivarmetoden Smält Deponeringsmodellering (FDM). Dem mjuka sensorerna är 3D-skrivna med det elektriskt ledande filamentet Eel. Sensorernas ansträgning-resistiva prestanda med avseende på hysteres, linjäritet, och repeterbarhet är undersökta genom att utföra experiment med olika former. Den optimala sensorformen är sedan applicerad på det mjuka ställdonet och dess resistiva signal från sensorn används för återkoppling av det mjuka ställdonets böjning. Med den applicerade sensorn utvärderas två olika kontrollmetoder för att kontrollera böjningen av det mjuka ställdonet, kontrollmetodernas prestanda jämförs sedan experimentellt. Ett gripdon som består av tre återkopplade, mjukaställdon är sedan konstruerad för att utföra komplexa grepp.
7

Design, konstruktion och validering avrobothantering för omflyttning mellan fixturer / Design, construction and validation of a robot for objecttransportation between fixtures

Thisner, Mattias January 2022 (has links)
LightLab är ett företag som befinner sig i en expansionsfas. Automatisering innebär att göra enprocess mer eller mindre självfungerande, utan mänsklig inverkan. Detta används för att tillexempel effektivisera, öka kvalitén och/eller avlasta människans arbete i en process. I dettaavseende vill LightLab titta på att automatisera en förflyttning av ett glas (glaschipp) mellan tvåfixturer.I arbetet läggs en teoretisk grund där olika robotmodeller undersöks för att ta fram den somlämpar sig bäst efter LightLabs behov. Det avgörs i en nulägesanalys där kraven specificeras. Enkollaborativ version av länkarmsroboten tas fram som det bästa generella förslaget tillutförandet. Därtill kommer en analys av och förslag på verktyg till roboten för att kunna greppatag om glaset samt förslag på visionsystem för kvalitetssäkring av chippet. Den generellalösningen testas sedan i fysiska experiment samt i simuleringsmjukvaran RobotStudio.Efter att simuleringen är gjord kommer en marknadsundersökning för att hitta kollaborativalänkarmsrobotar som uppfyller kravspecifikationen. Slutligen läggs ett lösningsförslag på tremodeller fram som ett resultat av förstudien. GoFa (ABB), iisy ( KUKA) eller UR3e (UniversalRobots). ABB och KUKA är även intressanta utifrån deras övriga modeller av industrirobotaroch god kontakt med dem samt erfarenhet av deras robotsystem kan ge en god grund införframtiden.Det tillkommer fortsatt arbete med att designa och implementera gripdon av något slag där så välsugkoppar som mekaniskt gripdon är möjliga verktyg till roboten. Ett sugkoppsverktyg somgriper tag i chippet underifrån ger minst påverkan på chippet.Det viosionsystem som finns på LightLab, Gocator inline 2420, kan användas förkvalitetssäkring av glaschippen. Ett 2D-visionsystem är ett gångbart alternativ.I framtiden då produktionsledet blir mer fast kommer det behövas andra modeller av robotar somutför specifika uppgifter. KUKA och ABB är därför favoriter bland de tre då en god kontakt ocherfarenhet med deras system kan ge en mindre tröskel in till framtida utvecklingssteg.

Page generated in 0.0552 seconds