• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 20
  • 16
  • 15
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigating the Effects of Inhaled Diesel Exhaust Particles on Gut Microbiome, Intestinal Integrity, Systemic Inflammation, and Biomarkers of Cardiovascular Disease in Wildtype Mice

Phillippi, Danielle T. 12 1900 (has links)
We investigated the hypothesis that exposure to inhaled diesel exhaust PM can alter the gut microbiome and intestinal integrity, thereby promoting systemic inflammatory response and early CVD risk, which are exacerbated by HF diet. Furthermore, we investigated whether the observed exposure and diet-mediated outcomes could be mitigated through probiotic treatment. We performed an exposure study on C57Bl/6 male mice, placed on either a low fat (LF) diet or a high-fat (HF) diet, and exposed via oropharyngeal aspiration to 35 μg diesel exhaust particles (DEP) suspended in 35 μl of sterile saline or sterile saline controls (CON) twice a week for four weeks. A subset of mice on HF diet were dosed with 0.3 g/day (PRO, ~7.5x108 CFU/day) of probiotic Ecologic® Barrier 849 (Winclove Probiotics) in drinking water during the course of the study. For our first aim, we investigated the alterations in the gut microbiome, measured circulating cytokines and lipopolysaccharide (LPS), and measured CVD biomarkers in the heart. Our results revealed that exposure to inhaled DEP results in gut dysbiosis characterized by expansion of the phyla Verrucomicrobia and Proteobacteria and reduction in Actinobacteria, which was exacerbated by HF diet. Probiotics mitigated the DEP-mediated expansion of Proteobacteria and re-established Actinobacteria in the intestine of HF animals. Furthermore, we determined that exposure to inhaled DEP increases systemic LPS and inflammatory markers IL-1α, IL-3, G-CSF, and TNF-α. Furthermore, we found that inhaled DEP exposure results in increased CVD biomarkers sICAM-1, sP-selectin, and thrombomodulin in the heart. Probiotic treatment was effective in attenuating LPS, inflammatory responses, and CVD biomarkers in HF animals, validating the involvement of the microbiome in mediating inhaled DEP-mediated responses. Considering the effects we observed in the microbiota and systemically of the HF and probiotic treatment animals, we investigated the effects of inhaled DEP on intestinal integrity and inflammation in HF ± PRO animals. Our results showed that inhaled DEP in conjunction with HF diet promotes increased goblet cell and mucin 2 expression, tight junction (TJ) proteins (claudin-3, occludin, and zonula occludens (ZO)-1) expression, matrix metalloproteinase (MMP)-9, toll-like receptor (TLR)-4, and decreased TNF-α and IL-10. Moreover, we found that probiotics promoted intestinal immune response following inhaled DEP exposure characterized by an increase in TNF-α and IL-10 and showed variable expression of TJs in the intestine. In conclusion, we found that inhaled DEP exposure results in changes in gut microbial profiles, altered intestinal integrity, systemic inflammation, and increased CVD biomarkers, which are exacerbated by HF diet. The use of probiotics in this study proved to be pivotal in understanding the microbiome's influences on the regulation of intestinal integrity, intestinal inflammation, systemic inflammation, and cardiovascular system following inhaled DEP exposure with HF diet.
62

Úloha střevního mikrobiomu v imunitních onemocněních centrálního nervového systému / The role of the gut microbiome in immune-mediated CNS disorders

Zedníková, Barbora January 2016 (has links)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biological and Medical Sciences Candidate: Bc. Barbora Zedníková Supervisor: Doc. MUDr. Josef Herink, DrSc. Title of diploma thesis: The role of the gut microbiome in immune-mediated CNS disorders Human body hosts a large number of microorganisms - i.e. Archea, Eukarya, Bacteria and viruses. These microorganisms form microbiome, the total number of the microorganisms is ten times higher than the number of all human cells. Largest part of the microbiome is located in the intestine. The current development of molecular genetics revealed the close relationship between intestinal microbiome and health. Recent studies the most recent studies have pointed to a connection with the pathogenesis of various diseases. This dissertation is focused on the connection between intestinal microbiome and autoimmune diseases of the central nervous system. Research shows that the key factor are the ongoing changes in the composition of microbiome. These changes lead to increased immune stimulation and thereby to inflammatory proliferation.
63

Baixa diversidade e sucessão microbiana anormal estão associadas à enterocolite necrosante em recém-nascidos prematuros

Dobbler, Priscila Caroline Thiago 07 April 2017 (has links)
Submitted by Ana Damasceno (ana.damasceno@unipampa.edu.br) on 2017-06-07T18:12:48Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Baixa diversidade e sucessão microbiana anormal estão associadas à enterocolite necrosante em recém-nascidos prematuros.pdf: 1587508 bytes, checksum: c407e4cf94f25b2272a7d25213f72873 (MD5) / Made available in DSpace on 2017-06-07T18:12:48Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Baixa diversidade e sucessão microbiana anormal estão associadas à enterocolite necrosante em recém-nascidos prematuros.pdf: 1587508 bytes, checksum: c407e4cf94f25b2272a7d25213f72873 (MD5) Previous issue date: 2017-04-07 / As múltiplas causas de Enterocolite Necrosante (NEC) e seus indicativos clínicos utilizados para o diagnóstico ainda se mantêm elusivos. Biomarcadores alternativos para o diagnóstico precoce de NEC em recém-nascidos prematuros e um melhor entendimento dos fatores de risco para o desenvolvimento de NEC são desafios emergentes. Em uma tentativa de contribuir para a solução deste problema, neste trabalho nós rastreamos as mudanças no microbioma dos recém-nascidos (diversidade microbiana, abundância e estrutura) com NEC, iniciando com a primeira evacuação (mecônio) e continuando até a liberação, e comparamos essas mudanças com os prematuros sem o diagnóstico de NEC. Um estudo metataxonomico foi conduzido usando 88 amostras fecais, a partir da primeira evacuação até a 5ª semana de vida, obtidas de 25 recém-nascidos prematuros (14 controles e 11 casos de NEC) selecionados de um grupo de 52 prematuros. Nossos dados revelaram que casos de NEC apresentaram baixa diversidade e uma transição anormal da comunidade microbiana até o diagnóstico de NEC. Um microrganismo pertencendo a família Enterobacteriaceae foi consistentemente mais abundante em prematuros com NEC do que nos controles, mesmo nas amostras de mecônio, e foi considerado um constituinte chave da comunidade microbiana correlacionada com a doença. Finalmente, nos também detectamos uma distorção na associação micróbio-micróbio nas amostras de mecônio dos casos de NEC. Portanto, nossos dados sugerem que a detecção precoce de elevada dominância de Enterobacteriaceae, baixa diversidade e associações micróbio-micróbio nos primeiros dias de vida poderiam ser utilizados como indicativo de risco de desenvolvimento de Enterocolite Necrosante nas UTIs neonatais brasileiras. / The multiple causes of Necrotizing Enterocolitis (NEC) as well as the clinical predictors used for diagnosis have remained elusive to date. Alternative biomarkers for early diagnosis of NEC in premature infants and a better understanding of risk factors for NEC development are emergent challenges. In attempt to contribute to solve this problem, in this work we tracked the changes in the newborn’s microbiome (microbial diversity, abundance and structure) with Necrotizing Enterocolitis beginning with the first stool (meconium) continuing until discharge and compare those changes with preterns without NEC diagnosis. A metataxonomy study was conducted using 88 fecal samples from the first stool (meconium) until the 5th week of life obtained from 25 preterm babies (14 controls and 11 NEC cases) selected from a cohort of 52 premature infants. Our data revealed low microbial diversity in NEC cases and an abnormal transition of the microbial community until NEC diagnosis. A microbial phylotype belonging to the Enterobacteriaceae family were consistently more abundant in NEC than in the controls even in meconium samples and was considered a key constituent of the microbial community that correlated with the disease. Finally, we also detected a disruption of microbial-microbial associations in the meconium samples of NEC cases. Thus, our data suggests that early detection of high dominance of Enterobacteriaceae, low diversity and altered microbial-microbial associations at the first days of life could be used as an indicative of risk of preterm development of Necrotizing Enterocolitis in Brazilian NICU’s.
64

The Relationship Between Microbiota, Diet, and Energy Production in the Alpaca

Carroll, Courtney 01 August 2017 (has links)
The alpaca is a small South American camelid (SAC) that is an important production animal in Peru, especially among the highly impoverished communities of the high Andes, and raised for its fiber and meat. Alpacas are highly reliant on the microbes within their digestive tracts to digest the plant material they consume; volatile fatty acids (VFAs) are released as a byproduct of this microbial fermentation and used as a major source of energy by the alpaca. To explore optimal parameters for alpaca microbiome analysis, performed 16S rRNA gene surveys on alpaca C1 and fecal samples that had been extracted using one of three different DNA extraction methods (PowerFecal® DNA Isolation Kit (MO BIO); ZR Fecal DNA MiniPrep™ (Zymo); and a non-commercial extraction method called salting out) and amplified using one of two different polymerase enzyme mixes (AccuPrime™ Pfx SuperMix and 5 PRIME HotMasterMix). We found that choice of polymerase enzyme had a profound effect on the recovered microbiome, with the majority of 5 PRIME-amplified fecal samples failing to amplify. Extraction method had an effect on the recovered microbiome of fecal samples (but not C1 samples), with samples extracted using the MO BIO kit and the salting out method recovering different communities. The Zymo extraction kit returned microbial communities comparable to each of the other extraction methods. These results suggested that the AccuPrime enzyme and either the MO BIO or Zymo kits were optimal for alpaca gut microbiome analysis. We also performed two 16S rRNA gene surveys, the first from alpacas fed either a grass hay (GH) or alfalfa hay (AH) diet, and the second a C1 survey of alpacas fed two-week periods of mixed grass hay plus one of four supplements. We discovered body site and diet effects on the microbiota of alpacas fed either the GH or AH diet, with samples grouping by general body site (C1, small intestine, and distal intestine) and diet. However, we found no significant effect on the C1 microbiome of alpacas administered grain supplements. To study how energy extraction related to the microbiome, we correlated OTUs from GH/AH-fed alpaca with C1 VFA abundances. We discovered no significant correlations, and a 16S survey of low body condition (LBC) and good body condition (GBC) alpacas showed no difference in C1 microbial communities. We concluded that the microbiota of the alpaca digestive tract follow trends seen in microbiome studies of ruminants, but found no evidence of a relationship between body condition, energy extraction, and the C1 microbiome in alpacas.
65

Detecting Changes in the Gut Microbiome following Human Biotherapy via Pyrosequencing of the 16S rRNA Gene

Pinder, Shaun 25 April 2013 (has links)
Human biotherapy (HBT) or fecal transplants have been shown to be an effective treatment for patients with recurrent Clostridium difficile infection (CDI). This study examines the microbial populations present in CDI patients pre- and post-HBT by extracting bacterial DNA from stool samples and performing pyrosequencing of the 16S rRNA gene. We then compared these microbial populations to those of the donors. We examined 19 pairs of patient samples, of which 14 were clinically cured of CDI, and 5 patients were failures. The successful treatment of CDI was associated with an increase in diversity and richness of the patient's fecal microbiome. The majority of those cured showed an increase in the proportion of Firmicutes and decrease in the proportion of Proteobacteria, although varying antibiotic exposure and innate variability between patients was observed. / MSc thesis / NSERC, CIHR, St. Joseph's Healthcare Hamilton
66

Molecular methods for evaluating the human microbiome

Kennedy, Katherine Margaret January 2014 (has links)
In human microbiome analysis, sequencing of bacterial 16S rRNA genes has revealed a role for the gut microbiota in maintaining health and contributing to various pathologies. Novel community analysis techniques must be evaluated in terms of bias, sensitivity, and reproducibility and compared to existing techniques to be effectively implemented. Next- generation sequencing technologies offer many advantages over traditional fingerprinting methods, but this extensive evaluation required for the most efficacious use of data has not been performed previously. Illumina libraries were generated from the V3 region of the 16S rRNA gene of samples taken from 12 unique sites within the gastrointestinal tract for each of 4 individuals. Fingerprint data were generated from these samples and prominent bands were sequenced. Sequenced bands were matched with OTUs within their respective libraries. The results demonstrate that denaturing gradient gel electrophoresis (DGGE) represents relatively abundant bacterial taxa (>0.1%) beta-diversity of all samples was compared using Principal Coordinates Analysis (PCoA) of UniFrac distances and Multi-Response Permutation Procedure (MRPP) was applied to measure sample cluster strength and significance; indicator species analysis of fingerprint bands and Illumina OTUs were also compared. The results demonstrate overall similarities between community profiling methods but also indicate that sequence data were not subject to the same limitations observed with the DGGE method (i.e., only abundant taxa bands are resolved, unable to distinguish disparate samples). In addition, the effect of stochastic fluctuations in ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? differ for DGGE and next-generation sequencing. I compared pooled and individual reactions for samples of high and low template concentration for both Illumina and DGGE using the combined V3-V4 region of the 16S rRNA gene, and demonstrated that template concentration has a greater impact on reproducibility than pooling. This research shows congruity between two disparate molecular methods, identifies sources of bias, and establishes new guidelines for minimizing bias in microbial community analyses.
67

Toxicity Studies Of Per- and Polyfluoroalkyl Substances (PFAS)

Shittu, Adenike Rofiyat 02 September 2021 (has links)
No description available.
68

Unravelling the termite digestion process complexity - a multi-omics approach applied to termites with different feeding regimes

Marynowska, Martyna 24 April 2020 (has links) (PDF)
With its unique consortium of microorganisms from all domains of life, termite gut is considered one of the most efficient lignocellulose degrading systems in nature. Recently, host diet and taxonomy as well as gut microenvironmental conditions have emerged as main factors shaping microbial communities in termite guts. The aim of this thesis was to investigate this highly efficient lignocellulolytic system at holobiont level, with a particular focus on gut microbiome function and composition in relation to the host diet. As a starting point, we optimised a complete framework for an accurate termite gut prokaryote-oriented metatranscriptomics, which was at the basis of all subsequent sequencing assay designs and analyses performed in the course of the work. Afterwards, we characterised the compositions and functions of biomass-degrading bacterial communities in guts of plant fibre- and soil-feeding higher termites, proving the existence of functional equivalence across microbial populations from different termite hosts. We also showed that each termite is a reservoir of unique microorganisms and their accompanying genes. We further extended above approach to metagenomics and bacterial genomes reconstruction and we applied it to explore the process of biomass digestion in the different sections of the highly compartmented gut of soil feeding Labiotermes labralis. We showed that primarily cellulolytic activity of the termite host was restricted to foregut and midgut, while bacterial contribution was most pronounced in P1 and P3 hindgut compartments and included activities targeting broad range of lignocellulose components. Finally, we investigated the adaptation of a laboratory-maintained grass-feeding higher termite colony of Cortaritermes spp. to Miscanthus diet at host and symbiont levels. A natural system of a termite gut was shown to progressively change in composition to yield a consortium of microbes specialised in degradation of a specific biomass. Overall, the integrative omics approach proposed here provide a framework for a better understanding of a complex lignocellulose degradation by a higher termite gut system and pave a road towards its future bioprospecting. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
69

Investigating Anaerobic Choline Degradation Pathways from Citrobacteramalonaticus CJ25 and Methanococcoides methylutens Q3c

Kashyap, Jyoti 16 June 2022 (has links)
No description available.
70

The effect of imperfect resource conversion and recurring perturbations on byproduct cross- feeding chains in digital communities

Frejborg, Filippa January 2021 (has links)
The gut microbiome plays a vital role in human health. Disturbances of this microbial system is associated with diseases such as obesity and inflammatory bowel disease. In populations of microbial species, many organisms partake in byproduct cross-feeding interactions, where byproducts from one organism are consumed by other microbes. Using the digital evolution software Avida, I studied the effect of recurring perturbations and imperfect resource conversion on the evolution of byproduct cross-feeding chains in digital communities. To investigate the effect of perturbation and conversion rate on digital organisms, I evolved digital communities for 200,000 updates in an unperturbed environment that could hold 50 different resource types, each produced as a byproduct of consuming another resource. At 200,000 updates, 50 or 60 % of all organisms were removed at various intervals during periods of different lengths, with a conversion rate less than 100 % between resources in the byproduct chain. I found that 0.9 conversion rate caused communities to evolve longer cross-feeding chains. A conversion rate of 0.5 resulted in communities with much shorter chains, more similar in length to byproduct chains in the human gut. Perturbation events seem to affect chain length only under certain conditions when energy is lost between resources, for example when 60 % of all organisms were removed every 50th update on average. It appears that conversion loss makes digital communities more robust against the effects of perturbations, and that it might protect these communities from going extinct.

Page generated in 0.0831 seconds