• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • 6
  • Tagged with
  • 34
  • 23
  • 20
  • 18
  • 15
  • 15
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Effet du stress prolifératif sur la fonction des cellules souches hématopoïétiques : rôles des gènes Scl, E2A et Heb

Rojas-Sutterlin, Shanti 02 1900 (has links)
Le système hématopoïétique est un tissu en constant renouvellement et les cellules souches hématopoïétiques (CSHs) sont indispensables pour soutenir la production des cellules matures du sang. Deux fonctions définissent les CSHs; la propriété d’auto-renouvellement, soit la capacité de préserver l’identité cellulaire suivant une division, et la multipotence, le potentiel de différenciation permettant de générer toutes les lignées hématopoïétiques. Chez l’adulte, la majorité des CSHs sont quiescentes et l’altération de cet état corrèle avec une diminution du potentiel de reconstitution des CSHs, suggérant que la quiescence protège les fonctions des CSHs. La quiescence est un état réversible et dynamique et les réseaux génétiques le contrôlant restent peu connus. Un nombre croissant d’évidences suggère que si à l’état d’homéostasie il y a une certaine redondance entre les gènes impliqués dans ces réseaux de contrôle, leurs rôles spécifiques sont révélés en situation de stress. La famille des bHLHs (basic helix-loop-helix) inclue différentes classes des protéines dont ceux qui sont tissu-spécifiques comme SCL, et les protéines E, comme E12/E47 et HEB. Certains bHLHs sont proposés êtres important pour la fonction des cellules souches, mais cela ne fait pas l’unanimité, car selon le contexte cellulaire, il y a redondance entre ces facteurs. La question reste donc entière, y a-t-il un rôle redondant entre les bHLHs d’une même classe pour la fonction à long-terme des CSHs? Les travaux présentés dans cette thèse visaient dans un premier temps à explorer le lien encore mal compris entre la quiescence et la fonction des CSHs en mesurant leurs facultés suite à un stress prolifératif intense et dans un deuxième temps, investiguer l’importance et la spécificité de trois gènes pour la fonction des CSHs adultes, soit Scl/Tal1, E2a/Tcf3 et Heb/Tcf12. Pour répondre à ces questions, une approche cellulaire (stress prolifératif) a été combinée avec une approche génétique (invalidation génique). Plus précisément, la résistance des CSHs au stress prolifératif a été étudiée en utilisant deux tests fonctionnels quantitatifs optimisés, soit un traitement basé sur le 5-fluorouracil, une drogue de chimiothérapie, et la transplantation sérielle en nombre limite. Dans la mesure où la fonction d’un réseau génique ne peut être révélée que par une perturbation intrinsèque, trois modèles de souris, i.e. Scl+/-, E2a+/- et Heb+/- ont été utilisés. Ceci a permis de révéler que l’adaptation des CSHs au stress prolifératif et le retour à l’équilibre est strictement contrôlé par les niveaux de Scl, lesquels règlent le métabolisme cellulaire des CSHs en maintenant l’expression de gènes ribosomaux à un niveau basal. D’autre part, bien que les composantes du réseau puissent paraître redondants à l’équilibre, mes travaux montrent qu’en situation de stress prolifératif, les niveaux de Heb restreignent la prolifération excessive des CSHs en induisant la sénescence et que cette fonction ne peut pas être compensée par E2a. En conclusion, les résultats présentés dans cette thèse montrent que les CSHs peuvent tolérer un stress prolifératif intense ainsi que des dommages à l’ADN non-réparés, tout en maintenant leur capacité de reconstituer l’hématopoïèse à long-terme. Cela implique cependant que leur métabolisme revienne au niveau de base, soit celui trouvé à l’état d’homéostasie. Par contre, avec l’augmentation du nombre de division cellulaire les CSHs atteignent éventuellement une limite d’expansion et entrent en sénescence. / The hematopoietic system is constantly replenished by hematopoietic stem cells (HSCs) that are essential to sustain mature blood cells production. Two key functions characterize HSCs; their capabilities to self-renew, i.e. maintenance of cellular identity following cell division, and their multipotencies, i.e. their potentials to generate all hematopoietic lineages. In adults, most HSCs are quiescent and alterations to this state correlate with decreased reconstitution potential, thus suggesting that quiescence protects HSC functions. Quiescence is a reversible and dynamic state, and genetic networks controlling these characteristics are poorly described. Recent evidence suggests that during steady-state hematopoiesis, genes controlling HSC functions are highly redundant, whereas stress conditions may reveal their specific roles. Transcription factors of the basic helix-loop-helix (bHLHs) family include tissue-specific subclasses (e.g SCL) and more ubiquitous E proteins (e.g. E12/E47 and HEB). Several bHLH members have been described as important for HSC functions, however this question is still highly debated in the field due to functional redundancies. How different bHLHs from a same subclass can uniquely affect long term HSC functions is still an open question. The work presented in this thesis aimed to address the question how three bHLH transcription factors specifically Scl/Tal1, E2a/Tcf3 and Heb/Tcf12 control HSC functions after an important proliferative stress to eventually re-establish steady state conditions typified by quiescence in adult HSCs. . To this end, we used three converging approaches, at the cellular level, by imposing a proliferative stress on HSCs, a genetic approach, by deleting genes of interest and genome-wide transcriptomics. More precisely, HSC resistance to proliferative stress has been evaluated under two extreme conditions; i.e. by consecutive treatments with the chemotherapeutic drug 5-fluorouracil (5-FU), mimicking a clinical situation in cancer chemotherapy, and by serial transplantation assays with limited cell numbers. Moreover, to test if a genetic network regulates HSCs functions, we also used three mouse models, i.e. Scl+/-, E2a+/- et Heb+/-. Using these tools, we showed that HSC adaptation to proliferative stress and return to steady state is strictly regulated by Scl expression levels that restricts ribosomal gene expression. Moreover, despite some degree of redundancy within this network, Heb expression levels restrain the excessive proliferation of HSC upon stress conditions by inducing senescence, a function that cannot be compensated for by E2a. To conclude, our results show that HSCs can tolerate both proliferative stress and unrepaired DNA damages without affecting their primary function to replenish the hematopoietic system. This is especially true if their metabolism can come back to basal levels. However, with increased numbers of cell divisions, HSC will sooner or later reach their expansion limit and enter senescence.
32

Caractérisation des fonctions immunomodulatrices de la Cardiotrophin-Like Cytokine

Sarah, Pasquin 03 1900 (has links)
No description available.
33

Nouvelles approches dans l’immunothérapie de la leucémie aigüe lymphoblastique utilisant les récepteurs chimériques d’antigène

Colamartino, Aurélien 05 1900 (has links)
L’immunothérapie a permis des avancées majeures dans la thérapie du cancer. Le traitement par des cellules T modifiées pour exprimer un récepteur chimérique d’antigène (CAR) a changé complètement la vision de la thérapie de la leucémie. L’efficacité de ce traitement sur des cancers résistants, a ouvert la voie à la thérapie cellulaire et génique dans ce contexte. Malgré les premiers résultats très positifs, il s’avère que l’épuisement cellulaire et la perte des cellules T thérapeutiques est un problème majeur pour maintenir l’efficacité de la thérapie CAR et prévenir les rechutes. Les travaux présentés dans cette thèse visent à permettre l’utilisation d’autres types cellulaires pour la thérapie CAR. L’hypothèse de travail est que les cellules NK ou les cellules souches hématopoïétiques (HSC) permettrait de dépasser les limites de la thérapie CAR utilisant les cellules T. Pour permettre l’utilisation des cellules NK, un des problèmes technique est la transduction par les vecteurs viraux. Les travaux présentés ici démontrent que l’utilisation de l’enveloppe BaEV permet une transduction efficace des NK avec un vecteur lentiviral. Par cette méthode nous avons pu générer de grandes quantités de cellules NK transduites avec un CAR, prouvant la possibilité d’utiliser les NK dans la thérapie CAR. L’utilisation des HSC dans la thérapie CAR, permettrait de produire des cellules CAR T en permanence pour renouveler les cellules T épuisées. Cependant, la surexpression d’un récepteur CAR sur toutes les cellules dérivant des HSC pourrait être un problème. Pour permettre l’utilisation des HSC, nous avons développé des promoteurs spécifiques courts restreignant l’expression du transgène à une population précise. Nous avons prouvé la spécificité d’un promoteur T et démontré la possibilité de l’utiliser dans le contexte de la thérapie CAR utilisant les HSC. Ces travaux sont une preuve de concept de l’utilisation d’autres cellules que les cellules T dans la thérapie CAR. / Immunotherapy has allowed major advances in cancer therapy. The treatment using modified T cells with a chimeric antigen receptor (CAR) completely changed the vision of leukemia therapy. The efficiency against resistant cancer paved the way to cellular and gene therapy in this context. Despite very positive results at first, the disappearance and exhaustion of therapeutic cells seems to be a major problem to maintain the efficiency of the CAR treatment and prevent relapses. The work of this thesis is to allow the use cell types other than T cells for CAR therapy. The hypothesis is that NK cells or hematopoietic stem cells (HSC) could overcome the limitation of CAR therapy using T cells. To allow the use of CAR NK cells, a major technical issue is the transduction by viral vectors. The work presented here shows the use of BaEV envelope to pseudotype vectors allows an efficient transduction of NK cells. Using this method, we were able to produce large amounts of CAR NK cells, showing the possibility to use NK cells in CAR therapy. The use of HSC in CAR therapy, could allow the permanent replenishment of the pool of CAR T cells once exhausted. Despite that advantage, the overexpression of a CAR receptor on all hematopoietic cells coming from those HSC could be an issue. To allow the use of HSC, we developed short specific promoters restraining the expression of the transgene to a precise population. We prove the specificity of a T cell promoter and demonstrated the possibility to use it in CAR therapy using HSC. This work is a proof of concept of the use of other population than T cells in CAR therapy.
34

Study of the role of the p16INK4a gene in tumor progression and tissue regeneration/function following exposure to ionizing radiation

Palacio, Lina 12 1900 (has links)
La sénescence est un important mécanisme cellulaire qui prévient la tumorigenèse et se caractérise par un arrêt permanent du cycle cellulaire orchestré principalement par les inhibiteurs des cycline-kinases dépendantes (i.e p16INK4a). La sénescence est une caractéristique importante du vieillissement, mais un déséquilibre dans son induction peut être délétère pour la régénération tissulaire et paradoxalement pour la progression tumorale. L'irradiation (IR) est couramment utilisée comme approche thérapeutique dans le cancer. Chez les enfants survivants du cancer, l’exposition à l’irradiation et à la chimiothérapie entrainent le développement d’importants effets secondaires, lesquels sont associés à une forme de vieillissement prématuré. La formation de cellules sénescentes, en inhibant la prolifération tissulaire et en sécrétant des cytokines proinflammatoires, pourrait être en être responsable. Notre groupe a précédemment démontré que le gène p16INK4a est augmenté de manière tardive (environ 8 semaines) suite à une exposition à l’irradiation. Il n'a pas encore été étudié si cette expression retardée survient en réponse aux dommages causés par l'irradiation sur l’homéostasie tissulaire ou à titre de mécanismes de suppression tumorale. Un objectif de cette thèse visait donc à déterminer s’il était possible de moduler/inhiber l’expression de p16INK4a dans le but d’accroitre la régénération tissulaire sans nécessairement accroitre les risques d’incidence du cancer. En effet, ceci pourrait être possible dans la mesure ou la sénescence induite par p16INK4a est également irréversible in vivo. Nos résultats ont démontré que l’inhibition de l’expression de p16INKa (suite à l’administration de tamoxifen chez les souris p16L/LCre), induit à la fois une augmentation de la régénération tissulaire mais malheureusement également une augmentation de l’incidence du cancer. Nous voulions également connaitre l’impact de l’accumulation de ces cellules sénescentes sur les tissus, plus spécifiquement sur la fonction des cellules immunitaires de la rate. Nous avons démontré que des altérations (dépendantes de p16INK4a) au sein du microenvironnement splénique pouvaient altérer les fonctions intrinsèques des macrophages, des cellules dendritiques et des lymphocytes T. En outre, l'élimination systémique des cellules p16INK4a positives (modèle de sourie p16-3MR) a conduit à une restauration partielle de la fonction de ces cellules immunitaires. La combinaison de ces données nous permet de mieux comprendre le rôle et la fonction du gène p16INK4a dans le processus de sénescence induite par l’irradiation. Nos résultats suggèrent qu’il est envisageable d’utiliser des agents pharmacologiques tels que des composés sénolytiques, capables d’induire l’apoptose chez les cellules sénescentes spécifiquement, afin de potentiellement diminuer les effets du vieillissement prématuré induit par la sénescence cellulaire chez les survivants du cancer. / Senescence is an important cellular mechanism that prevents tumorigenesis and is characterized by a permanent cell cycle arrest orchestrated by cyclin-dependent kinases inhibitors (i.e p16INK4a). Senescence is an important hallmark of aging and unbalanced levels of senescence is considered deleterious for tissue regeneration, and paradoxically for tumor progression. Irradiation (IR) is commonly used therapeutic approach in cancer treatment. Together with surgery and chemotherapy, it has helped to increase the life expectancy of patients and, in some cases, leads to complete remission. However, long-after therapy, children who survive cancer encounter alterations in the integrity of tissues/organs associated with premature aging. The accumulation of senescent cells may be responsible for this accelerated aging by limiting tissue proliferation and secreting pro-inflammatory cytokines. Our group has previously demonstrated that the p16INK4a gene is increased in a delayed manner (approximately 8 weeks) following exposure to IR. It has not yet been investigated whether this delayed expression occurs in response to IR-induce damage of tissue homeostasis or as tumor suppression mechanisms. One objective of this thesis was to determine whether it was possible to modulate / inhibit the expression of p16INK4a in order to increase tissue regeneration without necessarily increasing the risk of cancer incidence. Indeed, this may be possible since p16INK4a-induced senescence is also irreversible in vivo. Our results demonstrated that the inhibition of p16INK4a expression in conditional-p16INK4a null mice , induces both an increase in tissue regeneration but unfortunately also an increase in the incidence of cancer. We also wanted to know the impact of the accumulation of these senescent cells on the tissues, more specifically on the function of the immune cells in the spleen. We have demonstrated that alterations (p16INK4a-dependent) within the splenic microenvironment can alter the intrinsic functions of macrophages, dendritic cells and T cells. In addition, the systemic elimination of p16INK4a positive cells (mouse model p16-3MR) has led to a partial restoration of the function of these immune cells. The combination of these data allows us to better understand the role and function of the p16INK4a gene in the irradiation-induced senescence process. Our results suggest that it is conceivable to use pharmacological agents such as senolytic compounds, capable of inducing apoptosis in senescent cells specifically, in order to potentially reduce the effects of premature aging induced by cellular senescence in cancer survivors.

Page generated in 0.0619 seconds