1 |
Regularidade de mínimos locais de funcionais com comportamento quadráticoBrum, Valéria de Fátima Maciel Cardoso January 2004 (has links)
Neste trabalho estudamos a regularidade de fun»c~oes que minimizam funci- onais com comportamento quadr¶atico. Provamos que estes m¶³nimos locais s~ao fun»c~oes diferenci¶aveis e suas derivadas s~ao fun»c~oes de HÄolder. Al¶em disso, optimizamos o expoente de HÄolder para funcionais que satisfazem cer- tas condi»c~oes de crescimento.
|
2 |
Regularidade de mínimos locais de funcionais com comportamento quadráticoBrum, Valéria de Fátima Maciel Cardoso January 2004 (has links)
Neste trabalho estudamos a regularidade de fun»c~oes que minimizam funci- onais com comportamento quadr¶atico. Provamos que estes m¶³nimos locais s~ao fun»c~oes diferenci¶aveis e suas derivadas s~ao fun»c~oes de HÄolder. Al¶em disso, optimizamos o expoente de HÄolder para funcionais que satisfazem cer- tas condi»c~oes de crescimento.
|
3 |
Regularidade de mínimos locais de funcionais com comportamento quadráticoBrum, Valéria de Fátima Maciel Cardoso January 2004 (has links)
Neste trabalho estudamos a regularidade de fun»c~oes que minimizam funci- onais com comportamento quadr¶atico. Provamos que estes m¶³nimos locais s~ao fun»c~oes diferenci¶aveis e suas derivadas s~ao fun»c~oes de HÄolder. Al¶em disso, optimizamos o expoente de HÄolder para funcionais que satisfazem cer- tas condi»c~oes de crescimento.
|
4 |
Comportement asymptotique des solutions du problème de Cauchy-Dirichlet généralisé pour des équations de Hamilton-Jacobi visqueuses / Large time behavior of solutions of a generalized Cauchy-Dirichlet problem for viscous Hamilton-Jacobi equationsTabet Tchamba, Thierry Wilfried 17 June 2010 (has links)
Cette thèse, constituée de trois grandes parties, a pour objet l’étude générale ducomportement, en temps grands, de l’unique solution du problème de Cauchy-Dirichlet pour deséquations de Hamilton-Jacobi visqueuses de type sur et sous quadratiques. Après un bref rappeldes notions de base de la théorie sur les solutions de viscosité qui constitue le cadre de ce travail, lapremière partie établit des résultats sur l’existence globale en temps et l’unicité de la solution deviscosité dudit problème de Cauchy-Dirichlet. La deuxième partie s’intéresse au comportement decette solution pour des Hamiltoniens sur quadratiques. Sous des hypothèses très générales, nousprouvons que le comportement de la solution dépend du signe de l’unique constante ergodiquec du problème ergodique associé à des conditions aux limites de type contrainte d’état. Lorsquec∗ < 0; nous obtenons (i) une convergence vers l’unique solution du problème stationaire associétandis que lorsque c∗ ≥ 0; nous obtenons (ii) un comportement de type Hamilton-Jacobi (ou detype ergodique) se produit. Dans la troisième partie, consacrée à l’étude pour des Hamiltonienssous-quadratiques, nous montrons qu’il se produit un comportement de type (i) lorsque l’uniqueconstante ergodique c∗; du problème ergodique associé à des conditions aux limites de typeexplosives, est strictement négative et lorsque c∗ > 0 et 3/2< m ≤ 2; un comportement de type(ii) se produit, où m représente l’exposant du terme en gradient. Mais lorsque c∗ = 0 ou c∗ > 0et 1 < m ≤ 3/2; nous prouvons que pour certains domaines, la fonction u(x; t) + c∗t n’est pasminorée où u est la solution des équations de Hamilton-Jacobi visqueuses étudiées, produisantainsi un résultat de non-convergence. / The main goal of this thesis is the general study of the large time behavior of theunique solution of the Cauchy-Dirichlet problem for viscous Hamilton-Jacobi equations of subandsuperquadratic types. This work splits into three parts. After a brief review of basic conceptsof the theory on the viscosity solutions which is the framework of this work, the first part mainlyprovides results on the global in time existence and the uniqueness of the viscosity solution of theabove mentioned Cauchy-Dirichlet problem. The second part studies the large time behavior ofthat solution for superquadratic Hamiltonians. Under rather general assumtions, we prove thatthe behavior of the solution depends on the the sign of the unique ergodic constant c∗ of theergodic problem associated with boundary condition of state constraint-type. When c∗ < 0; weobtain (i) a convergence to the unique solution of the associated stationary problem whereaswhen c∗ ≥ 0; we obtain (ii) a behavior of Hamilton-Jacobi–type (or ergodic-type) happen.In thethird part, devoted to the study for subquadratic Hamiltonians, we prove that a behavior of(i)-type happens when the unique ergodic constant c∗; of the ergodic problem associated withblow-up boundary condition, is non-positve and when c∗ > 0 and 3/2 < m ≤ 2; we obtain abehavior of (ii)-type. But when c∗ = 0 ou c∗ > 0 et 1 < m ≤ 3/2; we prove that for some domains,the function u(x; t)+c∗t is unbounded from below where u is the solution of the studied viscousHamilton-Jacobi, thus providing us with a result of non-convergence.
|
5 |
Existência de moduli para equivalência Hölder de funções analíticas / Moduli existence for Hölder equivalence of analytical functionsSilva, Joserlan Perote da January 2016 (has links)
SILVA, Joserlan Perote da. Existência de moduli para equivalência Hölder de funções analíticas. 2016. 51 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2016-05-12T17:30:37Z
No. of bitstreams: 1
2016_tese_jpsilva.pdf: 588345 bytes, checksum: 0d431d35b6066546720c644c4271be15 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-05-13T11:08:29Z (GMT) No. of bitstreams: 1
2016_tese_jpsilva.pdf: 588345 bytes, checksum: 0d431d35b6066546720c644c4271be15 (MD5) / Made available in DSpace on 2016-05-13T11:08:29Z (GMT). No. of bitstreams: 1
2016_tese_jpsilva.pdf: 588345 bytes, checksum: 0d431d35b6066546720c644c4271be15 (MD5)
Previous issue date: 2016 / In this work, we show that Hölder equivalence of analytic functions germs (C2, 0) → (C, 0)admits continuous moduli. More precisely, we constructed an invariant of the Hölder equivalence of such germs that varies continuously in a family ft : (C2, 0) → (C, 0). For a single germ ft the invariant of ft is given in terms of the leading coefficients of the asymptotic expansion of ft along the branches of generic polar curve of ft . / Neste trabalho, mostramos que equivalência Hölder de germes de funções analíticas (C2, 0) → (C, 0) admite moduli contínuo. Mais precisamente, construimos um invariante da equivalência Hölder de tais germes que varia continuamente numa família ft : (C2, 0) → (C, 0). Para um único germe ft o invariante de ft é dado em termos dos coeficientes principais das expansões assintóticas de ft ao longo dos ramos da curva polar genérica de ft.
|
6 |
Calcul du φ-module filtré associé à certains revêtements de la droite projective / Computation of the φ-module associated with some covering of the projective linePierrot, Amandine 21 December 2017 (has links)
Dans cette thèse, on considère des revêtements séparables à deux ouverts de la droite projective sur un corps fini k de caractéristique p>0 et on donne un calcul explicite de la matrice du Frobenius divisé sur le premier espace de cohomologie de Rham de X_k, fibre spéciale du revêtement X étudié. On fournit également un procédé algorithmique permettant d'obtenir la décomposition de Jordan-Hölder du φ-module filtré associé à cette matrice. / We consider X some separable covering with two open set of the projective line on a finite field k of caracteristic p>0 and we give an explicit computation of the matrix of the divided Frobenius on the first de Rham cohomology space of X_k the special fiber of X. We also explain an algorithmic process to get the Jordan-Hölder decomposition of the φ-module associated to this matrix.
|
7 |
O problema de Cauchy para sistemas quase-lineares hiperbólicos é bem posto em espaços de HölderSilva, Rômel da Rosa da 10 August 2012 (has links)
Made available in DSpace on 2016-06-02T20:27:40Z (GMT). No. of bitstreams: 1
4444.pdf: 689745 bytes, checksum: 511f734e8913b3b1285fcda6fb0c67e3 (MD5)
Previous issue date: 2012-08-10 / Financiadora de Estudos e Projetos / We consider the Cauchy problem for the quasi-linear systems
that is, the system is hyperbolic at u = 0. We show that certain Besov spaces are preserved by flow of the solution, near the null solution. / Nós consideramos o problema de Cauchy para sistemas quase-lineares, ou seja o sistema é hiperbólico em u = 0.
Demonstramos que certos espaços de Besov são preservados pelo fluxo da solução, perto da solução nula.
|
8 |
Inférence statistique pour des processus multifractionnaires cachés dans un cadre de modèles à volatilité stochastique / Statistical inference for hidden multifractionnal processes in a setting of stochastic volatility modelsPeng, Qidi 21 November 2011 (has links)
L’exemple paradigmatique d’un processus stochastique multifractionnaire est le mouvement brownien multifractionnaire (mbm). Ce processus gaussien de nature fractale admet des trajectoires continues nulle part dérivables et étend de façon naturelle le célèbre mouvement brownien fractionnaire (mbf). Le mbf a été introduit depuis longtemps par Kolmogorov et il a ensuite été « popularisé » par Mandelbrot ; dans plusieurs travaux remarquables, ce dernier auteur a notamment insisté sur la grande importance de ce modèle dans divers domaines applicatifs. Le mbm, quant à lui, a été introduit, depuis plus de quinze ans, par Benassi, Jaffard, Lévy Véhel, Peltier et Roux. Grossièrement parlant, il est obtenu en remplaçant le paramètre constant de Hurst du mbf, par une fonction H(t) qui dépend de façon régulière du temps t. Ainsi, contrairement au mbf, les accroissements du mbm sont non stationnaires et la rugosité locale de ses trajectoires (mesurée habituellement par l’exposant de Hölder ponctuel) peut évoluer significativement au cours du temps ; en fait, à chaque instant t, l’exposant de Hölder ponctuel du mbm vaut H(t). Notons quecette dernière propriété, rend ce processus plus flexible que le mbf ; grâce à elle, le mbm est maintenant devenu un modèle utile en traitement du signal et de l’image ainsi que dans d’autres domaines tels que la finance. Depuis plus d’une décennie, plusieurs auteurs se sont intéressés à des problèmes d’inférence statistique liés au mbm et à d’autres processus/champs multifractionnaires ; leurs motivations comportent à la fois des aspects applicatifs et théoriques. Parmi les plus importants, figure le problème de l’estimation de H(t), l’exposant de Hölder ponctuel en un instant arbitraire t. Dans ce type de problématique, la méthode des variations quadratiques généralisées, initialement introduite par Istas et Lang dans un cadre de processus à accroissements stationnaires, joue souvent un rôle crucial. Cette méthode permet de construire des estimateurs asymptotiquement normaux à partir de moyennes quadratiques d’accroissements généralisés d’un processus observé sur une grille. A notre connaissance, dans la littérature statistique qui concerne le mbm, jusqu’à présent, il a été supposé que, l’observation sur une grille des valeurs exactes de ce processus est disponible ; cependant une telle hypothèse ne semble pas toujours réaliste. L’objectif principal de la thèse est d’étudierdes problèmes d’inférence statistique liés au mbm, lorsque seulement une version corrompue de ce dernier est observable sur une grille régulière.Cette version corrompue est donnée par une classe de modèles à volatilité stochastique dont la définition s’inspire de certains travaux antérieurs de Gloter et Hoffmann ; signalons enfin que la formule d’Itô permet de ramener ce cadre statistique au cadre classique : « signal+bruit ». / The paradigmatic example of a multifractional stochastic process is multifractional Brownian motion (mBm). This fractal Gaussian process with continuous nowhere differentiable trajectories is a natural extension of the well-known fractional Brownian motion (fBm). FBm was introduced a longtime ago by Kolmogorov and later it has been made « popular» by Mandelbrot; in several outstanding works, the latter author has emphasized the fact that this model is of a great importance in various applied areas. Regarding mBm, it was introduced, more than fifteen years ago, by Benassi, Jaffard, Lévy Véhel, Peltier and Roux. Roughly speaking, it is obtained by replacing the constant Hurst parameter of fBm by a smooth function H(t) which depends on the time variable t. Therefore, in contrast with fBm, theincrements of mBm are non stationary and the local roughness of its trajectories (usually measured through the pointwise Hölder exponent) is allowed to significantly evolve over time; in fact, at each time t, the pointwise Hölder exponent of mBm is equal to H(t). It is worth noticing that the latter property makes this process more flexible than fBm; thanks to it, mBm has now become a useful model in the area of signal and image processing, aswell as in other areas such as finance. Since at least one decade, several authors have been interested in statistical inference problems connected with mBm and other multifractional processes/fields; their motivations have both applied and theoretical aspects. Among those problems, an important one is the estimation of H(t), the pointwise Hölder exponent at an arbitrary time t. In the solutions of such issues, the generalized quadratic variation method, which was first introduced by Istas and Lang in a setting of stationary increments processes, usually plays a crucial role. This method allows to construct asymptotically normal estimators starting from quadratic means of generalized increments of a process observed on a grid. So far, to our knowledge, in the statistical literature concerning mBm, it has been assumed that, the observation of the true values of this process on a grid, is available; yet, such an assumption does not always seem to be realistic. The main goal of the thesis is to study statistical inference problems related to mBm, when only a corrupted version of it, can be observed on a regular grid. This corrupted version is given by a class of stochastic volatility models whose definition is inspired by some Gloter and Hoffmann’s earlier works; last, notice that thanks to Itô formula this statistical setting can be viewed as the classical setting: « signal+noise ».
|
9 |
Some Properties of Certain Generalizations of the Sum of an Infinite SeriesHill, William F. 08 1900 (has links)
This thesis attempts to establish properties of Hölder and Cesàro summable series analogous to those of ordinary convergent series and also to establish properties that are possibly different from those of convergent series.
|
10 |
The exponent of Hölder calmness for polynomial systemsHeerda, Jan 27 April 2012 (has links)
Diese Arbeit befasst sich mit Untersuchung der Hölder Calmness, eines Stabilitätskonzeptes das man als Verallgemeinerung des Begriffs der Calmness erhält. Ausgehend von Charakterisierungen dieser Eigenschaft für Niveaumengen von Funktionen, werden, unter der Voraussetzung der Hölder Calmness, Prozeduren zur Bestimmung von Elementen dieser Mengen analysiert. Ebenso werden hinreichende Bedingungen für Hölder Calmness studiert. Da Hölder Calmness (nichtleerer) Lösungsmengen endlicher Ungleichungssysteme mittels (lokaler) Fehlerabschätzungen beschrieben werden kann, werden auch Erweiterungen der lokalen zu globalen Ergebnissen diskutiert. Als Anwendung betrachten wir speziell den Fall von Niveaumengen von Polynomen bzw. allgemeine Lösungsmengen polynomialer Gleichungen und Ungleichungen. Eine konkrete Frage, die wir beantworten wollen, ist die nach dem Zusammenhang zwischen dem größten Grad der beteiligten Polynome sowie dem Typ, d.h. dem auftretenden Exponenten, der Hölder Calmness des entsprechenden Systems. / This thesis is concerned with an analysis of Hölder calmness, a stability property derived from the concept of calmness. On the basis of its characterization for (sub)level sets, we will cogitate about procedures to determine points in such sets under a Hölder calmness assumption. Also sufficient conditions for Hölder calmness of (sub)level sets and of inequality systems will be given and examined. Further, since Hölder calmness of (nonempty) solution sets of finite inequality systems may be described in terms of (local) error bounds, we will as well amplify the local propositions to global ones. As an application we investigate the case of (sub)level sets of polynomials and of general solution sets of polynomial equations and inequalities. A concrete question we want to answer here is, in which way the maximal degree of the involved polynomials is connected to the exponent of Hölder calmness or of the error bound for the system in question.
|
Page generated in 0.0465 seconds