• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 24
  • 14
  • 9
  • 8
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 141
  • 46
  • 24
  • 17
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

(Ware)withal

Camera-Smith, Maria C. 17 June 2021 (has links)
No description available.
112

Use of the Clegg Impact Soil Tester to Access Rutting Susceptiblity of Cement-Treated Base Material Under Early Trafficking

Reese, Garth B. 02 May 2007 (has links) (PDF)
In order to avoid the occurrence of early-age damage, cement-treated base (CTB) materials must be allowed to cure for a period of time before the pavement can be opened to traffic. Trafficking of a CTB before sufficient strength gain has occurred can lead to marring or rutting of the treated layer. The specific objectives of this research were to examine the correlation between Clegg impact values (CIVs) determined using a heavy Clegg impact soil tester and rut depths measured in newly constructed CTB and subsequently establish a threshold CIV at which rutting should not occur.The experimental work included field testing at several locations along United States Highway 91 near Smithfield, Utah, and laboratory testing at the Brigham Young University (BYU) Highway Materials Laboratory. In both the field and laboratory test programs, ruts were created in CTB layers using a specially manufactured heavy wheeled rutting device (HWRD). In the field, ruts caused by repeated passes of a standard pickup and a water truck were also evaluated. The collected data were analyzed using regression to identify a threshold CIV above which the CTB should not be susceptible to unacceptable rutting. From the collected data, one may conclude that successive wheel passes each cause less incremental rutting than previous passes and that CTB similar to the material tested in this research should experience only negligible rutting at CIVs greater than about 35. The maximum rut depth measured in either field or laboratory rutting tests was less than 0.35 in. in this research, probably due to the high quality limestone base material utilized to construct the CTB. In identifying a recommended threshold CIV at which CTB layers may be opened to early trafficking, researchers proposed a maximum tolerable rut depth of 0.10 in. for this project, which corresponds to a CIV of approximately 25. Because a CIV of 25 is associated with an acceptably minimal rut depth even after 100 passes of the HWRD, is achievable within a reasonable amount of time under normal curing conditions, and is consistent with earlier research, this threshold is recommended as the minimum average value that must be attained by a given CTB construction section before it can be opened to early trafficking. Use of the proposed threshold CIV should then ensure satisfactory performance of the CTB under even heavy construction traffic to the extent that the material properties do not differ greatly from those of the CTB evaluated in this research.
113

Field Observation of Installation and Performance of Repair Materials

Susinskas, Larisa Diana 22 August 2016 (has links)
No description available.
114

Determining Material and Geometric Properties of Flat Slab Bridges Without Plans

Paudel, Binod 17 August 2016 (has links)
No description available.
115

SPECIFICATION RECOMMENDATION FOR USE OF HIGH PERFORMANCE REPAIR MATERIAL

Woods, Jennifer January 2016 (has links)
No description available.
116

Disabilities of Fiction: Reading Madness in Twentieth-Century American Women's Literature

Peterson, Erica Lyn 05 1900 (has links)
In this dissertation, disability theories frame readings of madness in select works by Shirley Jackson, Sylvia Plath, and Toni Cade Bambara. The dissertation explores the relationship between madness and fiction, with the author demonstrating the productive and generative aspects of madness. Close readings of the literary works emphasize the impact of madness on structural and formal elements including narrative perspective, sustained metaphors, and narrative time. In chapter one, I use the disability theory concepts of narrative prosthesis and aesthetic nervousness to read Jackson's The Haunting of Hill House. In chapter 2, I analyze Jackson's We Have Always Lived in the Castle to explore the concept of unreliable narration, observing similarities between the social model of disability and reader-centric theories of unreliable narration. In chapter 3, I explore unhealthy disability and medical treatment in the sustained metaphors of light and darkness in Plath's hospital stories, "Tongues of Stone," "Johnny Panic and the Bible of Dreams," and "The Daughters of Blossom Street." In chapter 4, I use disability history to read narratives of medical institutionalization in Plath's novel The Bell Jar. In chapter 5, I use Bambara's concept of "other kinds of intelligences" to develop a Black feminist methodology for reading mad intelligences in Bambara's novel The Salt Eaters. In the dissertation's conclusion, I note prejudice against madpersons in recent legal policies promoting involuntary psychiatric institutionalization, using Bambara's short story "The Hammer Man" to demonstrate the violence of such policies.
117

Detecting Masculinity: The Positive Masculine Qualities of Fictional Detectives.

Griswold, Amy Herring 08 1900 (has links)
Detective fiction highlights those qualities of masculinity that are most valuable to a contemporary culture. In mysteries a cultural context is more thoroughly revealed than in any other genre of literature. Through the crimes, an audience can understand not only the fears of a particular society but also the level of calumny that society assigns to a crime. As each generation has needed a particular set of qualities in its defense, so the detective has provided them. Through the detective's response to particular crimes, the reader can learn the delineation of forgivable and unforgivable acts. These detectives illustrate positive masculinity, proving that fiction has more uses than mere entertainment. In this paper, I trace four detectives, each from a different era. Sherlock Holmes lives to solve problems. His primary function is to solve a riddle. Lord Peter Wimsey takes on the moral question of why anyone should detect at all. His stories involve the difficulty of justifying putting oneself in the morally superior position of judge. The Mike Hammer stories treat the difficulty of dealing with criminals who use the law to protect themselves. They have perverted the protections of society, and Hammer must find a way to bring them to justice outside of the law. The Kate Martinelli stories focus more on the victims of crime than on the criminals. Martinelli discovers the motivations that draw a criminal toward a specific victim and explains what it is about certain victims that makes villains want to harm them. All of these detectives display the traditional traits of the Western male. They are hunters; they protect society as a whole. Yet each detective fulfills a certain cultural role that speaks to the specific problems of his or her era, proving that masculinity is a more fluid role than many have previously credited.
118

Contrôle des vibrations de charge utile sur lanceur spatial

Brizard, Denis 05 December 2011 (has links)
Les lanceurs spatiaux sont soumis à un certain nombre d’excitations complexes durant les différentes phases de vie du produit. Ces excitations sont transmises à la charge utile par voie solidienne ou aérienne. Pour assurer la protection de la charge utile, l’architecture du lanceur étant figée au début du projet, l’amélioration des comportements dynamiques passe par l’introduction de systèmes secondaires. La partie essentielle des travaux de thèse est donc consacrée à l’implantation optimale de systèmes capables de diminuer les réponses vibratoires en utilisant des modèles adaptés. C’est pourquoi une méthode de double synthèse modale est mise en place, permettant ainsi de calculer la réponse vibratoire de la structure à l’aide de bases réduites et offrant des performances améliorées par rapport aux méthodes classiques. L’ajout d’un dispositif amortissant local nécessite la prise en compte d’une ou plusieurs modifications structurales dans le modèle, une méthode dédiée est alors développée. Le choix du dissipateur se porte sur un dissipateur frottant. Un prototype est conçu et réalisé. Il est dans un premier temps caractérisé seul et le modèle de comportement identifié est un modèle constitué d’un ressort en série avec un patin ; la loi de frottement adaptée est une loi de Coulomb simple. En parallèle, une maquette représentative du dernier étage d’un lanceur est dimensionnée et réalisée. Le frotteur est alors monté en pied de propulseur de la maquette et permet une diminution significative des vibrations de la charge utile au passage du mode de propulseur. / Space launchers undergo a certain amount of complex excitations during their lifecycle. These excitations are transmitted to the payload in a structure-born or air-born way. To improve the dynamic behaviour and thus ensure the protection of the payload, secondary systems must be added to the launcher – indeed, the architecture of the launcher is fixed at the beginning of the project. The essential part of this thesis work is dedicated to the optimal fitting of a system capable of reducing the vibration response of the payload, using appropriate models. Therefore a double modal synthesis method is implemented, allowing to calculate the vibrational response of the structure with reduced bases and offering improved performances over conventional methods. The addition of a local damping device requires the consideration of one or more structural modifications in the model, a dedicated method is thus developped along with a specific continuation algorithm. A friction damper is retained, a prototype is designed and built. It is first characterized alone ; the identified behaviour is that of a spring in series with a dry friction element, a simple Coulomb friction law enables to reproduce the experimental curves. A scale model of the launcher’s last stage is designed and built. The friction device is then mounted inside the scale model and leads to a significant reduction of the payload vibration levels.
119

Densification of selected agricultural crop residues as feedstock for the biofuel industry

Adapa, Phani Kumar 07 September 2011
The two main sources of biomass for energy generation are purpose-grown energy crops and waste materials. Energy crops, such as Miscanthus and short rotation woody crops (coppice), are cultivated mainly for energy purposes and are associated with the food vs. fuels debate, which is concerned with whether land should be used for fuel rather than food production. The use of residues from agriculture, such as barley, canola, oat and wheat straw, for energy generation circumvents the food vs. fuel dilemma and adds value to existing crops. In fact, these residues represent an abundant, inexpensive and readily available source of renewable lignocellulosic biomass. In order to reduce industrys operational cost as well as to meet the requirement of raw material for biofuel production, biomass must be processed and handled in an efficient manner. Due to its high moisture content, irregular shape and size, and low bulk density, biomass is very difficult to handle, transport, store, and utilize in its original form. Densification of biomass into durable compacts is an effective solution to these problems and it can reduce material waste. Upon densification, many agricultural biomass materials, especially those from straw and stover, result in a poorly formed pellets or compacts that are more often dusty, difficult to handle and costly to manufacture. This is caused by lack of complete understanding on the natural binding characteristics of the components that make up biomass. An integrated approach to postharvest processing (chopping, grinding and steam explosion), and feasibility study on lab-scale and pilot scale densification of non-treated and steam exploded barley, canola, oat and wheat straw was successfully established to develop baseline data and correlations, that assisted in performing overall specific energy analysis. A new procedure was developed to rapidly characterize the lignocellulosic composition of agricultural biomass using the Fourier Transform Infrared (FTIR) spectroscopy. In addition, baseline knowledge was created to determine the physical and frictional properties of non-treated and steam exploded agricultural biomass grinds. Particle size reduction of agricultural biomass was performed to increase the total surface area, pore size of the material and the number of contact points for inter-particle bonding in the compaction process. Predictive regression equations having higher R2 values were developed that could be used by biorefineries to perform economic feasibility of establishing a processing plant. Specific energy required by a hammer mill to grind non-treated and steam exploded barley, canola, oat and wheat straw showed a negative power correlation with hammer mill screen sizes. Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. A novel procedure to quantitatively predict lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw was developed using Fourier Transformed Infrared (FTIR) spectroscopy. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively. Application of steam explosion pre-treatment on agricultural straw significantly altered the physical and frictional properties, which has direct significance on designing new and modifying existing bins, hoppers and feeders for handling and storage of straw for biofuel industry. As a result, regression equations were developed to enhance process efficiency by eliminating the need for experimental procedure while designing and manufacturing of new handling equipment. Compaction of low bulk density agricultural biomass is a critical and desirable operation for sustainable and economic availability of feedstock for the biofuel industry. A comprehensive study of the compression characteristics (density of pellet and total specific energy required for compression) of ground non-treated and steam exploded barley, canola, oat and wheat straw obtained from three hammer mill screen sizes of 6.4, 3.2 and 1.6 mm at 10% moisture content (wb) was conducted. Four preset pressures of 31.6, 63.2, 94.7 and 138.9 MPa, were applied using an Instron testing machine to compress samples in a cylindrical die. It was determined that the applied pressure (60.4%) was the most significant factor affecting pellet density followed by the application of steam explosion pre-treatment (39.4%). Similarly, the type of biomass (47.1%) is the most significant factor affecting durability followed by the application of pre-treatment (38.2%) and grind size (14.6%). Also, the applied pressure (58.3%) was the most significant factor affecting specific energy required to manufacture pellets followed by the biomass (15.3%), pre-treatment (13.3%) and grind size (13.2%), which had lower but similar effect affect on specific energy. In addition, correlations for pellet density and specific energy with applied pressure and hammer mill screen sizes having highest R2 values were developed. Higher grind sizes and lower applied pressures resulted in higher relaxations (lower pellet densities) during storage of pellets. Three compression models, namely: Jones model, Cooper-Eaton model, and Kawakita-Ludde model were considered to determine the pressure-volume and pressure-density relationship of non-treated and steam exploded straws. Kawakita-Ludde model provided the best fit to the experimental data having R2 values of 0.99 for non-treated straw and 1.00 for steam exploded biomass samples. The steam exploded straw had higher porosity than non-treated straw. In addition, the steam exploded straw was easier to compress since it had lower yield strength or failure stress values compared to non-treated straw. Pilot scale pelleting experiments were performed on non-treated, steam exploded and customized (adding steam exploded straw grinds in increments of 25% to non-treated straw) barley, canola, oat and wheat straw grinds obtained from 6.4, 3.2, 1.6 and 0.8 mm hammer mill screen sizes at 10% moisture content (wb). The pilot scale pellet mill produced pellets from ground non-treated straw at hammer mill screen sizes of 0.8 and 1.6 mm and customized samples having 25% steam exploded straw at 0.8 mm. It was observed that the pellet bulk density and particle density are positively correlated. The density and durability of agricultural straw pellets significantly increased with a decrease in hammer mill screen size from 1.6 mm to 0.8 mm. Interestingly, customization of agricultural straw by adding 25% of steam exploded straw by weight resulted in higher durability (> 80%) pellets but did not improve durability compared to non-treated straw pellets. In addition, durability of pellets was negatively correlated to pellet mill throughput and was positively correlated to specific energy consumption. Total specific energy required to form pellets increased with a decrease in hammer mill screen size from 1.6 to 0.8 mm and also the total specific energy significantly increased with customization of straw at 0.8 mm screen size. It has been determined that the net specific energy available for production of biofuel is a significant portion of original agricultural biomass energy (89-94%) for all agricultural biomass.
120

Densification of selected agricultural crop residues as feedstock for the biofuel industry

Adapa, Phani Kumar 07 September 2011 (has links)
The two main sources of biomass for energy generation are purpose-grown energy crops and waste materials. Energy crops, such as Miscanthus and short rotation woody crops (coppice), are cultivated mainly for energy purposes and are associated with the food vs. fuels debate, which is concerned with whether land should be used for fuel rather than food production. The use of residues from agriculture, such as barley, canola, oat and wheat straw, for energy generation circumvents the food vs. fuel dilemma and adds value to existing crops. In fact, these residues represent an abundant, inexpensive and readily available source of renewable lignocellulosic biomass. In order to reduce industrys operational cost as well as to meet the requirement of raw material for biofuel production, biomass must be processed and handled in an efficient manner. Due to its high moisture content, irregular shape and size, and low bulk density, biomass is very difficult to handle, transport, store, and utilize in its original form. Densification of biomass into durable compacts is an effective solution to these problems and it can reduce material waste. Upon densification, many agricultural biomass materials, especially those from straw and stover, result in a poorly formed pellets or compacts that are more often dusty, difficult to handle and costly to manufacture. This is caused by lack of complete understanding on the natural binding characteristics of the components that make up biomass. An integrated approach to postharvest processing (chopping, grinding and steam explosion), and feasibility study on lab-scale and pilot scale densification of non-treated and steam exploded barley, canola, oat and wheat straw was successfully established to develop baseline data and correlations, that assisted in performing overall specific energy analysis. A new procedure was developed to rapidly characterize the lignocellulosic composition of agricultural biomass using the Fourier Transform Infrared (FTIR) spectroscopy. In addition, baseline knowledge was created to determine the physical and frictional properties of non-treated and steam exploded agricultural biomass grinds. Particle size reduction of agricultural biomass was performed to increase the total surface area, pore size of the material and the number of contact points for inter-particle bonding in the compaction process. Predictive regression equations having higher R2 values were developed that could be used by biorefineries to perform economic feasibility of establishing a processing plant. Specific energy required by a hammer mill to grind non-treated and steam exploded barley, canola, oat and wheat straw showed a negative power correlation with hammer mill screen sizes. Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. A novel procedure to quantitatively predict lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw was developed using Fourier Transformed Infrared (FTIR) spectroscopy. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively. Application of steam explosion pre-treatment on agricultural straw significantly altered the physical and frictional properties, which has direct significance on designing new and modifying existing bins, hoppers and feeders for handling and storage of straw for biofuel industry. As a result, regression equations were developed to enhance process efficiency by eliminating the need for experimental procedure while designing and manufacturing of new handling equipment. Compaction of low bulk density agricultural biomass is a critical and desirable operation for sustainable and economic availability of feedstock for the biofuel industry. A comprehensive study of the compression characteristics (density of pellet and total specific energy required for compression) of ground non-treated and steam exploded barley, canola, oat and wheat straw obtained from three hammer mill screen sizes of 6.4, 3.2 and 1.6 mm at 10% moisture content (wb) was conducted. Four preset pressures of 31.6, 63.2, 94.7 and 138.9 MPa, were applied using an Instron testing machine to compress samples in a cylindrical die. It was determined that the applied pressure (60.4%) was the most significant factor affecting pellet density followed by the application of steam explosion pre-treatment (39.4%). Similarly, the type of biomass (47.1%) is the most significant factor affecting durability followed by the application of pre-treatment (38.2%) and grind size (14.6%). Also, the applied pressure (58.3%) was the most significant factor affecting specific energy required to manufacture pellets followed by the biomass (15.3%), pre-treatment (13.3%) and grind size (13.2%), which had lower but similar effect affect on specific energy. In addition, correlations for pellet density and specific energy with applied pressure and hammer mill screen sizes having highest R2 values were developed. Higher grind sizes and lower applied pressures resulted in higher relaxations (lower pellet densities) during storage of pellets. Three compression models, namely: Jones model, Cooper-Eaton model, and Kawakita-Ludde model were considered to determine the pressure-volume and pressure-density relationship of non-treated and steam exploded straws. Kawakita-Ludde model provided the best fit to the experimental data having R2 values of 0.99 for non-treated straw and 1.00 for steam exploded biomass samples. The steam exploded straw had higher porosity than non-treated straw. In addition, the steam exploded straw was easier to compress since it had lower yield strength or failure stress values compared to non-treated straw. Pilot scale pelleting experiments were performed on non-treated, steam exploded and customized (adding steam exploded straw grinds in increments of 25% to non-treated straw) barley, canola, oat and wheat straw grinds obtained from 6.4, 3.2, 1.6 and 0.8 mm hammer mill screen sizes at 10% moisture content (wb). The pilot scale pellet mill produced pellets from ground non-treated straw at hammer mill screen sizes of 0.8 and 1.6 mm and customized samples having 25% steam exploded straw at 0.8 mm. It was observed that the pellet bulk density and particle density are positively correlated. The density and durability of agricultural straw pellets significantly increased with a decrease in hammer mill screen size from 1.6 mm to 0.8 mm. Interestingly, customization of agricultural straw by adding 25% of steam exploded straw by weight resulted in higher durability (> 80%) pellets but did not improve durability compared to non-treated straw pellets. In addition, durability of pellets was negatively correlated to pellet mill throughput and was positively correlated to specific energy consumption. Total specific energy required to form pellets increased with a decrease in hammer mill screen size from 1.6 to 0.8 mm and also the total specific energy significantly increased with customization of straw at 0.8 mm screen size. It has been determined that the net specific energy available for production of biofuel is a significant portion of original agricultural biomass energy (89-94%) for all agricultural biomass.

Page generated in 0.0316 seconds