• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 150
  • 64
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 600
  • 137
  • 102
  • 93
  • 76
  • 70
  • 56
  • 55
  • 50
  • 47
  • 46
  • 40
  • 37
  • 36
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Influence of Application Placement, Resistance Genotype, and PPO-Inhibiting Herbicide on the PPO-Resistance Phenotype in Waterhemp

Jesse A Haarmann (6623615) 19 April 2023 (has links)
<p>PPO inhibitors are a valuable group of herbicides that provide soil-residual and foliar control of glyphosate resistant <em>Amaranthus</em> species. The ΔG210 mutation in the <em>PPX2</em> gene confers PPO-inhibitor resistance and has been present in the Midwest for more than a decade. Until recently, PPO-inhibitor resistance in waterhemp was attributable to just the ΔG210 mutation in the <em>PPX2</em> gene, but recently, several new PPO-resistant biotypes have been discovered in waterhemp and Palmer amaranth. A possible explanation is a change in PPO-inhibitor use patterns and commonly used active ingredients.</p> <p>A direct comparison of the ΔG210 mutation and a new mutation, R128G, was conducted in the greenhouse. Results indicate that the R128G mutation in waterhemp is not substantially better than the ΔG210 mutation with respect to conferring resistance to PPO inhibitors applied preemergence. Furthermore, there is no evidence that the utility of PPO inhibitors applied preemergence will diminish any further as a result of the R128G mutation increasing in frequency. A set of field trials was conducted to investigate how a new PPO inhibitor, trifludimoxazin, will select for resistant biotypes in the field. Overall, a greater number of resistant plants survived the foliar herbicide applications than emerged through soil applications. Trifludimoxazin did not increase the frequency of PPO-resistant individuals when applied to soil, but when applied to foliage, increased the frequency of PPO-resistant individuals by 2.5 to 2.6-fold, similar to other PPO inhibitors applied to foliage. In other experiments, investigations of waterhemp populations with unique resistance phenotypes were conducted. In populations that were more resistant than others, yet had the same ΔG210 mutation, there was no evidence of herbicide metabolism contributing to the greater resistance phenotype. In resistant populations that had no target site mutations, target site expression experiments and lipid peroxidation experiments were inconclusive. However, there was some evidence of increased target-site expression or increased antioxidant capacity as being causal mechanisms, although no mechanisms have been fully ruled out.</p>
512

Forage Adaptability Trials for Forage and Seed Production in Bolivia; Effect of 5 Herbicides on 7 Native Utah Forbs

Voss, Joshua C. 05 December 2006 (has links) (PDF)
The harsh environmental and poor economic conditions of the Bolivian Altiplano require intervention to assist many of those that live there to become economically self-sufficient. We attempted to find introduced dry season reserve forage grasses that could produce enough biomass to be useful as feed for livestock, and that could also produce enough seed to distribute to farmers. While some of the grasses produced reasonable amounts of biomass, none produced seed in quantities that would be even close to being economically viable. The most likely cause of this is that the timing of resources that the grasses need to flower is very different between Bolivia and the areas from which the grasses originally came. We concluded that either the conditions under which the grasses are grown would need to be changed (i.e., earlier irrigation), or pre-adapted native species should be used. Native forbs are a critical component of any natural ecosystem, and thus should be included in wildland restoration projects. However, because the seed is currently collected by hand from the wild, it is very expensive, and this limits the ability of land managers to utilize it. A possible solution to this dilemma is for growers to commercially produce the seed and thus drive down the cost. In such a situation, it would be necessary to use herbicides to control competing weeds. We analyzed the effects of 5 herbicides on 7 species of native Utah forbs at 3 growth stages to learn which herbicides could safely be used on the test plants. We found that the plants' reaction the herbicides is largely species- and growth-stage specific.
513

The genetics and molecular mechanisms of tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) in upland cotton (Gossypium hirsutum L.)

Perez, Loida Moreno 30 April 2021 (has links)
Upland cotton, Gossypium hirsutum L., is a natural source of fiber and a major row crop in the US with an estimated $7 billion raw product value in 2019. However, it is extremely sensitive to the broadleaf herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). With the evolution of herbicide-resistant weeds compounded by off-target spray damage on conventional cotton varieties outside the transgenic Enlist technology (Dow Agrosciences) of herbicide-tolerant cotton varieties (Dow Agrosciences), there is a need to identify and develop novel sources of herbicide tolerance gene for upland cotton genetic improvement. Cotton chromosome substitution (CS) lines carry introgressions from other cultivated and wild allotetraploid Gossypium species that could be sources of novel and exotic alleles for herbicide tolerance. A total of 50 CS lines of G. barbadense L. (CS-B), G. tomentosum Nuttal ex Seeman (CS-T), and G. mustelinum Meers ex Watt (CS-M), in the genetic background of G. hirsutum L. Texas Marker-1 (TM-1) were screened for resistance to a field-recommended rate (1.12 kg ae ha-1) of 2,4-D in the greenhouse. Seven CS lines, CS-T04-15, CS-B12, CS-B15sh, CS-T04, CS-B22sh, CS-T07, and CS-B04-15 with the lowest injury were evaluated for tolerance at four and seven weeks after seedling emergence under field conditions. Progeny tests conducted in the greenhouse validated 2,4-D tolerance of CS-B15sh, showing 41% lower injury than TM-1. Novel variants of CS-T04-15 and CS-T07 were identified with complete tolerance to the herbicide but are segregating. Uptake and translocation of 14C-labeled 2,4-D indicated that reduced translocation of 2,4-D may be the 2,4-D tolerance mechanism in CS-T04-15 and CS-T07, while gene(s) associated with metabolism and reduced auxin transport appeared associated with the 2,4-D tolerance in CS-B15sh. Transcriptome analysis revealed differential expression of genes in 2,4-D-treated CS-B15sh and TM-1 with several components of the 2,4-D/auxin response pathway, including ubiquitin E3 ligase, PB1|AUX/IAA, ARF transcription factors, and F box proteins of the SCFTIR1/AFB complex being up-regulated. Functional annotation of differentially expressed genes revealed down-regulation of auxin transport, suggesting a potential linkage with tolerance mechanism involving altered movement of 2,4-D in CS-B15sh. The selected highly tolerant cotton CS lines will need to be confirmed further using molecular assays.
514

Effects Of Prescribed Burning And Herbicide (Imazapyr) On The Abundance And Diversity Of Selected Invertebrate Communities In Thinned Pine Plantations Of Mississippi

Iglay, Raymond Bruce 15 December 2007 (has links)
Prescribed fire and herbicides are 2 silviculture tools used by forest managers to control hardwood competition in pine (Pinus spp.) forests. I tested effects of prescribed burning and herbicides on selected invertebrate communities, including carabid beetles, and compared 2 invertebrate sampling approaches in thinned, intensively managed pine stands in Kemper County, Mississippi. I used 6 replicate stands containing 4, 10-ha treatment plots each that were randomly assigned treatments of burn only, herbicide only, burn/herbicide, and control. I suction-sampled invertebrate communities and pitfall trapped carabid beetles to examine treatment responses. Direct effects of burning and overall vegetation response influenced communities most but responses were limited. Sampling inefficiencies may have obscured treatment effects and managers and researchers are advised to consider all available methods when integrating invertebrate research. Information on forest management effects is still lacking but future research incorporating invertebrate sampling will support a better understanding of management impacts on ecosystems.
515

Trouble in the air: Farmers’ perceptions of risk, self-efficacy, and response efficacy regarding herbicide drift

Folck, Alcinda L. January 2017 (has links)
No description available.
516

Ecology and Control of Rhododendron (Rhododendron ponticum L.) in Turkish Eastern Beech (Fagus orientalis Lipsky) Forests

Esen, Derya 27 September 2000 (has links)
Purple-flowered rhododendron (Rhododendron ponticum L.) and yellow-flowered rhododendron (R. flavum Don.) are two dominant shrub species of the eastern beech (Fagus orientalis L.) understories in the eastern and western Black Sea Region (BSR), respectively. These invasive woody species significantly reduce beech growth and can preclude tree regeneration. The ecological consequence is an aging beech overstory with little or no regeneration to replace the mature trees. Great rhododendron (R. maximum L.) has been increasing in the forests of the Southern Appalachians of the United States, reducing tree regeneration and growth. The BSR and Southern Appalachians bear noteworthy similarities in climate, topography, and the forest flora. Purple-flowered and great rhododendrons also show important similarities in their ecology and the forest vegetation problems they can cause. Current rhododendron-dominated and threatened BSR forests may provide an advanced ecological picture of the forests of the Southern Appalachians in which great rhododendron now thrives. Therefore, new information gained on the ecology and effective and cost-efficient control of purple-flowered rhododendron may significantly improve forest management practices, not only for the current rhododendron-invaded BSR ecosystem, but also for other parts of the world. This dissertation consists of five separate yet related chapters. The first gives relevant literature reviewed for the dissertation. The second chapter focuses on various environmental and disturbance factors that may have shaped the current purple-flowered rhododendron-dominated beech forests of the BSR of Turkey. Chapter 3 assesses the effects of various manual and herbicidal woody control techniques on purple-flowered and yellow-flowered rhododendron in two field experiments in the BSR. The fourth chapter relates a study of uptake and translocation behavior of triclopyr ester and imazapyr in great rhododendron. This information is used to determine the optimum herbicide-surfactant combinations for the greatest active ingredient uptake and root translocation in great rhododendron. The last chapter is a synthesis of the information gained in all of these different experiments. / Ph. D.
517

Characterization of Acetolactate Synthase-Inhibiting Herbicide-Resistant Smooth Pigweed and Corn Weed Management Programs Utilizing Mesotrione in Combinations with Other Herbicides

Whaley, Cory Miller 04 March 2005 (has links)
Repeated use of acetolactate synthase (ALS)-inhibiting herbicides in recent years has resulted in the selection of 89 weed species resistant to these herbicides. One management strategy that can eliminate or slow the development of resistance is applying mixtures of herbicides with different modes of action. This research involved the characterization of ALS-inhibiting herbicide-resistant smooth pigweed (<i>Amaranthus hybridus</i> L.), as well as investigations on weed management programs in corn (<i>Zea mays</i> L.) utilizing mesotrione, a triketone, in mixtures with other herbicides. ALS-inhibiting herbicide-resistant smooth pigweed biotypes were collected from fields in Virginia, Delaware, Maryland, and Pennsylvania to evaluate response to ALS-inhibiting herbicides and to determine the molecular mechanisms of resistance. Sequencing of the ALS genes from these biotypes revealed two amino acid substitutions known to confer resistance, Ala<sub>122</sub> to Thr and Ser<sub>653</sub> to Asn, and one that has not been previously reported in plants, Asp<sub>376</sub> to Glu. The smooth pigweed biotype with an Asp<sub>376</sub> substitution displayed resistance to four classes of ALS-inhibiting herbicides that included imidazolinone (IMI), sulfonylurea (SU), pyrimidinylthiobenzoate (PTB), and triazolopyrimidine sulfonanilide (TP) chemistries. Transformation of this smooth pigweed ALS gene into <i>Arabidopsis thaliana</i> confirmed that the Asp<sub>376</sub> substitution is responsible for the resistance. Other biotypes that had a substitution at Ala<sub>122</sub> exhibited resistance to an IMI herbicide, little to no resistance to SU herbicides, and increased sensitivity to a PTB and a TP herbicide, whereas, biotypes that had a substitution at Ser<sub>653</sub> exhibited high-level resistance to an IMI herbicide and lower resistance to PTB and SU herbicides. Experiments were also conducted to investigate the effectiveness of mesotrione in preemergence (PRE) and postemergence (POST) corn weed management programs in Virginia. Mesotrione applied PRE in mixtures with <i>S</i>-metolachlor and atrazine controlled common lambsquarters (<i>Chenopodium album</i> L.), smooth pigweed, common ragweed (<i>Ambrosia artemisiifolia</i> L.), and morningglory (<i>Ipomoea</i> spp.) species when a timely rainfall followed application. POST applications of mesotrione controlled common lambsquarters and smooth pigweed, but common ragweed and morningglory species were not always controlled. Common ragweed and morningglory species were controlled by mesotrione in a mixture with atrazine POST. Large crabgrass [<i>Digitaria sanguinalis</i> (L.) Scop.] and giant foxtail (<i>Setaria faberi</i> Herrm.) control was generally better when the ALS-inhibiting herbicides nicosulfuron plus rimsulfuron or rimsulfuron plus thifensulfuron plus atrazine were applied in a mixture with mesotrione. Mixtures of mesotrione with other POST herbicides in a total POST program produced corn yields comparable to standard PRE followed by POST weed management programs. / Ph. D.
518

Influence of Several Herbicides on Visual Injury, Leaf Area Index, and Yield of Glyphosate-Tolerant Soybean <I>(Glycine max)</I>

Johnson, Bryan Fisher 09 May 2001 (has links)
The occasional failure of glyphosate to control all weeds throughout the entire growing season has prompted growers to sometimes use herbicides other than glyphosate on glyphosate-tolerant soybean. Field studies were conducted in 1999 and 2000 to investigate potential crop injury from several herbicides on glyphosate-tolerant soybean, and to determine the relationship between soybean maturity, planting date, and herbicide treatment on soybean injury, leaf area index (LAI), and yield. Three glyphosate-tolerant soybean cultivars representing maturity groups III, IV and V were planted at dates representing the full-season and double-crop soybean production systems used in Virginia. Within each cultivar and planting date, 15 herbicide treatments, in addition to a control receiving only metolachlor preemergence, were applied to cause multiple levels of crop injury. Results of this study indicate that glyphosate-tolerant soybean generally recovered from early-season herbicide injury and LAI reductions; however, reduced yield occurred with some treatments. Yield reductions were more common in double-crop soybean than in full-season soybean. In full-season soybean, most yield reductions occurred only in the early maturing RT-386 cultivar. These yield reductions may be attributed to the reduced developmental periods associated with early maturing cultivars and double-crop soybean that often lead to reduced vegetative growth and limited LAI. Additional reductions of LAI by some herbicide treatments on these soybean may have coincided with yield reductions; however, reduced LAI did not occur with all yield reducing treatments. Therefore, soybean LAI response to herbicide treatments does not always accurately indicate the potential detrimental effects of herbicides on soybean yield. Further, yield reductions associated with herbicide applications occurred, although soybean sometimes produced leaf area exceeding the critical LAI level of 3.5 to 4.0 which is the minimum LAI needed for soybean to achieve maximum yield. / Master of Science
519

Molecular mechanisms of plant-xenobiotic interactions : involvement of stress, development and hormone signaling regulations / Mécanismes moléculaires des interactions plante xénobiotique : implication de la régulation des signalisations liées au stress, au développement et aux voies hormonales

Alberto, Diana 20 December 2017 (has links)
Les herbicides sont des polluants suscitant de grandes inquiétudes en raison de leur ubiquité environnementale résultant de leur usage intensif dans l’agriculture moderne et de leur persistance dans les sols et les eaux. Les herbicides peuvent être dégradés par des microorganismes, des plantes ou d’autres processus naturels, produisant alors une vaste gamme de métabolites dont l’impact sur les écosystèmes reste méconnu. Dans un contexte d’évaluation des risques environnementaux, l’étude de la réponse des plantes à des mélanges complexes de xénobiotiques est importante pour estimer les effets des contaminations, notamment dans le cas de pollution résiduelle. Afin d’étudier l’impact de cette diversité de polluants, les mécanismes de réponse et les cibles impliquées, la plante modèle Arabidopsis thaliana a été confrontée à des doses variables de molécules de la famille des triazines constituant une série chimique cohérente : atrazine, herbicide encore largement utilisé au niveau mondial, déséthylatrazine, métabolite chloré de l’atrazine, et hydroxyatrazine, métabolite de déchloration de l’atrazine. Ce travail montre que l’exposition de courte durée à des doses variables d’atrazine, de déséthylatrazine et d’hydroxyatrazine, au niveau racinaire, affecte de manière spécifique et dose-dépendante la croissance précoce et le développement de la plante. La caractérisation d’effets directs et multiples sur la respiration et la croissance racinaire a permis de révéler des mécanismes d’action non-canoniques, distincts de l’action classiquement décrite des triazines sur le photosystème II. Afin d’identifier ces mécanismes, activés en absence de dommages cellulaires, une analyse transcriptomique au niveau du génome entier a été effectuée. Les trois triazines induisent des changements coordonnés et spécifiques dans l’expression des gènes. L’analyse fonctionnelle des gènes différentiellement exprimés et de leur promoteur révèle que les voies de signalisation liées à la fois aux hormones végétales, à la perception de faibles niveaux d’énergie, aux stress environnementaux ainsi qu’aux interactions biotiques sont impliquées dans la réponse aux faibles doses de triazines. Les triazines affectent, en particulier, l’expression de gènes connus pour être régulés par les cytokinines. De manière intéressante, cette famille d’hormones végétales montre des caractéristiques chimiques similaires à celles des triazines. Des études développementales utilisant différentes modalités d’exposition aux triazines et aux cytokinines ont alors été effectuées sur des génotypes sauvages et sur des mutants de la voie de signalisation des cytokinines. L’identification d’interactions spécifiques entre les triazines et les composants de la signalisation des cytokinines a alors mis en évidence des mécanismes potentiels de compétition et/ou d’antagonisme. La caractérisation de ces perturbations au niveau de la transduction du signal pourra permettre à terme d’évaluer l’efficacité des herbicides sur les cultures ainsi que l’impact des contaminations xénobiotiques sur les communautés végétales naturelles. Enfin, l’identification des interactions entre stress xénobiotique, biotique et abiotique approfondira les connaissances sur les effets croisés de la pollution chimique et des stress liés au changement climatique. / Herbicides are pollutants of high concern due to their environmental ubiquity resulting from extensive use in modern agriculture and persistence in soil and water. Degradation events on active molecules mediated by microorganisms, by plants and by natural processes give rise to a plethora of herbicide metabolites of unknown impact on ecosystems. Study of plant behavior toward such complex mixtures of xenobiotic structures is important to evaluate the effects of contaminations, especially in the context of residual pollution. In order to understand the mechanisms underlying the action of this diversity of compounds, the model plant Arabidopsis thaliana was confronted to variable doses of the widely-used triazine herbicide atrazine, and of two of its metabolites, desethylatrazine and hydroxyatrazine. Short exposure to varying concentrations of atrazine, desethylatrazine and hydroxyatrazine was found to affect early growth and development in various dose-dependent and distinct manners. These differential effects pointed out to the multiple involvement of non-canonical mechanisms, directly affecting respiration and root development. In order to identify these mechanisms, which are activated in the absence of major adverse physiological effects, a genome-wide transcriptomic analysis was carried out. All of the triazines under study induced coordinated and specific changes in gene expression. Functional analysis of differentially expressed genes and of their promoters revealed that signaling pathways related to plant hormones, low energy sensing, environmental stresses and biotic interactions were involved in low-dose triazine responses. In particular, triazines affected the expression of genes known to be regulated by cytokinins. Interestingly, this family of plant hormones shares similar chemical features with triazine compounds. Developmental studies on plants bearing mutations in cytokinin sensing and signaling pathways were then carried out under variable triazine exposures. The identification of specific interactions between triazine compounds and cytokinin-signaling components highlighted potential mechanisms of competition and/or antagonism. The characterization of such signal transduction modifications and perturbations will be useful to assess herbicide efficiency in crop systems and xenobiotic contamination impact on natural plant communities. Finally, the identification of crosstalk processes between xenobiotic, abiotic and biotic stress signaling gives novel insights into the interplay between chemical pollution and climate change stressors.
520

The Effects of Glyphosate-based Herbicides on the Development of Wood Frogs, Lithobates sylvaticus

Lanctôt, Chantal 19 September 2012 (has links)
Amphibians develop in aquatic environments where they are very susceptible to the effects of pesticides and other environmental contaminants. Glyphosate-based herbicides are widely used and have been shown to affect survival and development of tadpoles under laboratory conditions. The goal my thesis is to determine if agriculturally relevant exposure to Roundup WeatherMax®, a herbicide formulation containing the potassium salt of glyphosate and an undisclosed surfactant, influences the survival and development of wood frogs tadpoles (Lithobates sylvaticus) under both laboratory and field conditions. In the field, experimental wetlands were divided in half using an impermeable curtain so that each wetland contained a treatment and control side. Tadpoles were exposed to two pulses of this herbicide at environmentally realistic concentration (ERC, 0.21 mg acid equivalent (a.e.)/L) and predicted environmental concentrations (PEC, 2.89 mg a.e./L), after which survival, growth, development, and expression of genes involved in metamorphosis were measured. Results indicate that exposure to the PEC is extremely toxic to tadpoles under laboratory conditions but not under field conditions. Results from both experimental conditions show sublethal effects on growth and development, and demonstrate that ERC of glyphosate-based herbicides have the potential to alter hormonal responses during metamorphosis. My secondary objectives were to compare the effects of Roundup WeatherMax® to the well-studied Vision® formulation (containing the isopropylamine (IPA) salt of glyphosate and POEA), and to determine which ingredient(s) are responsible for the sublethal effects on development. Survival, growth and gene expression results indicate that Roundup WeatherMax® has greater toxicity than Vision® formulation. Contrary to my prediction, results suggest that, under realistic exposure scenarios, POEA is not the sole ingredient responsible for the observed developmental effects. However, my results demonstrate that chronic exposure to the POEA surfactant at the PEC (1.43 mg/L) is extremely toxic to wood frog tadpoles in laboratory. As part of the Long-term Experimental Wetlands Area (LEWA) project, this research contributes to overall knowledge of the impacts of glyphosate-based herbicides on aquatic communities.

Page generated in 0.1079 seconds