• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 69
  • 13
  • 12
  • 9
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 276
  • 77
  • 68
  • 51
  • 48
  • 39
  • 32
  • 31
  • 26
  • 24
  • 23
  • 21
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Quantifying Impacts of Deer Browsing and Mitigation Efforts on Hardwood Forest Regeneration

Caleb H Redick (8067956) 03 December 2019 (has links)
<p>Due to overpopulation and resource-poor habitat structure, deer threaten the<a> future of oak and other browse-sensitive species in hardwood forests. </a>Appropriate tools must be used to ensure desirable, diverse, and ecologically stable regeneration of future forests and the sustainability of native plant communities. We performed two experiments and a review to examine the effectiveness of available methods for managing browse of hardwood seedlings and to discover how these interact with each other and other silvicultural methods. First, we examined how fencing interacts with controlled-release fertilization, seed source (genetically select and non-select), and site type (afforested and reforested sites) to enhance the regeneration of planted northern red oak (<i>Quercus rubra </i>L.), white oak (<i>Quercus alba</i>), black cherry (<i>Prunus serotina</i>), and black walnut (<i>Juglans nigra</i>) at five sites in Indiana. Fencing proved to be the greatest determinant of seedling growth, survival, and quality. Fertilizer enhanced the early growth of white oak and black cherry, though for black cherry this occurred only inside fences. Select seed sources grew better and showed greater quality; however, the survival of select seedlings was limited by deer browse in absence of fences. Trees at afforested sites had lower survival if left non-fenced. Secondly, we also investigated how fencing and invasive shrub removal affected natural regeneration, species richness, and ground-layer plant cover under closed-canopy forests. Honeysuckle (<i>Lonicera maackii</i>) removal had a variable effect depending on species and site. Positive effects were most common for shade-intolerant species, while negative effects occurred for a few shade-tolerant species at some sites. Deer fencing had a positive effect on cherry and hackberry seedling density, and a negative effect on elm seedling density. Honeysuckle and deer fencing interacted antagonistically in some instances. Fencing without honeysuckle removal resulted in lower elm abundance and herbaceous-layer cover. In the densest invasions, leaving honeysuckle intact resulted in a complete lack of recruitment into the sapling layer. Our experiment suggests that invasive shrub removal and fencing be done together. Finally, we synthesized the existing literature on browse management options for hardwood regeneration to evaluate their relative effectiveness. Fences, tree shelters, repellents, facilitation by neighboring plants, deer population control, timber harvest, and slash all had positive effects on height growth of regenerating seedlings under deer browse pressure. Fences were more effective at reducing browse than repellents, while fertilizers increased browse and had no effects on growth. </p>
262

Novel Fire and Herbivory Regime Impacts on Forest Regeneration and Plant Community Assembly

Tanner, Devri A. 06 December 2023 (has links) (PDF)
Human activities are increasing the occurrence of megafires that have the potential to alter the ecology of forest ecosystems. The objective of this study was to understand the impact of a 610 km2 megafire on patterns of forest regeneration and herbivory of three forest types (aspen/fir, oak/maple, and pinyon/juniper) within the burn scar. Sapling density, meristem removal, and height were measured across a transect network spanning the area of the burn scar over three years from 2019-2021. The network consisted of 17 burned/unburned transect pairs in adjacent burned/unburned forest stands (6 aspen/fir, 5 oak/maple, and 6 pinyon/juniper). Species that regenerated through sprouting generally responded positively to fire while regeneration from seed showed very little post-fire response. Browse pressure was concentrated on deciduous tree species and tended to be greater in burned areas but the effect diminished over time. Meristem removal of sprouting species was below the critical threshold resulting in positive vertical growth across years. Our results indicate that forest regeneration within the megafire scar was generally positive and experienced sustainable levels of ungulate browsing that are likely to result in forest recruitment success. Novel fire regimes are becoming increasingly common and megafires have burned across ecotonal boundaries across multiple forest types. Plant community structure and composition may be critically affected by changing fire regimes. Our objective was to investigate how a megafire that burned across multiple forest types impacted understory plant community assembly and biodiversity. Paired vegetation transects were installed in burned and unburned areas across aspen/fir, oak/maple, and pinyon/juniper forests within the 2018 Pole Creek Megafire burn scar. Percent cover of understory plants was measured in the summer of 2022 and plants were identified to the species level. Richness and diversity indices were then calculated and analyzed using mixed effects models. Fire decreased species richness of the aspen/fir forest understory and increased plant cover in pinyon/juniper forests, while not significantly impacting oak/maple understories. The significant effects of fire were largely driven by changes in forb species. Fire decreased the richness of native plants in aspen/fir forests but increased the richness of non-native plants in oak/maple and pinyon/juniper forests. Non-native plant abundance also increased in post-fire pinyon/juniper forests. Our results suggest that forest understory communities show variable responses to megafires that burn across multiple forest types with important implications for post-fire plant community structure, diversity, and invasibility. Large mammal herbivores (ungulates) are increasing in number and spreading into novel habitats throughout the world. Their impact on forest understory plant communities is strong and varies by herbivore, plant growth form, and season. The objective of this study was to determine the individual and collective herbivory impacts of native versus domestic ungulates on the understory plant community composition of post-fire aspen forests. Four-way fencing treatments were installed in 2012 to separate ungulate species, and Daubenmire frames were used to collect percent cover estimates for each understory plant species. Vegetation data were later used to calculate richness and diversity indices. Total understory plant cover, richness, and diversity were not significantly impacted by the herbivory fencing treatment. However, woody plant species' percent cover was 90% greater in full ungulate exclusion plots than in the fenceless controls. Herbivores likely targeted woody plant species due to their high nutrient levels that last longer into the winter than those of forb or graminoid species. Herbivory treatment did not affect non-native species. Our results indicate that herbivore fencing can protect forest understory plant communities, particularly the woody species. Successful regeneration of woody species can benefit the diversity of the entire understory plant community and preserve forest structure.
263

The mycorrhizal symbiosis alters the plant defence strategy in a model legume plant

Zeng, Ming, Hause, Bettina, van Dam, Nicole M., Uthe, Henriette, Hoffmann, Petra, Krajinski, Franziska, Martínez‐Medina, Ainhoa 26 July 2024 (has links)
Arbuscular mycorrhizal (AM) symbiosis modulates plant‐herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore‐triggered phosphate (Pi)‐ and jasmonate (JA)‐related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi‐uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore‐triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi‐uptake pathway in the plant's response to herbivory, we used the mutant line ha1‐2, impaired in the H+‐ATPase gene HA1, which is essential for Piuptake via the mycorrhizal pathway. We found that mycorrhiza‐triggered enhancement of herbivore performance was compromised in ha1‐2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi‐uptake pathway is involved in the modulation of the plant defence strategy.
264

Vliv biotických interakcí na populační biologii lučních rostlin / The role of biotic interactions in population biology of meadow plants

Janovský, Zdeněk January 2015 (has links)
In present thesis, I treat the topic of impacts of plant-animal interactions, namely herbivory and pollination, on plant life cycle and lifetime fitness. First, I identify the components of the impact of plant-animal interactions: i) interaction frequency; ii) per-interaction effect; iii) sensitivity of the plant's life cycle to the changes in vital rate impacted by the animals. Furthermore, I also classify other causes changing the outcome of a plant-animal interaction into two categories: i) plant's traits; ii) plant's environment. A review of extant literature on the topic revealed that especially the role of plant's environment in changing the outcome of plant-animal interactions is largely understudied and I attempt to reduce this gap in knowledge in the five detailed studies encompassed in this thesis. The detailed studies focus on a model system of Central European wet grasslands and especially on three species typical to it: Succisa pratensis, Achillea millefolium and A. ptarmica. The first two studies examine the effects of environment on frequency of plant- animal interactions. The next two studies are more integrative, one focusing on the impacts of different herbivore groups on the complete life cycle and the other on interaction of herbivory and pollination on plant lifetime fitness....
265

Patterns of invertebrate distribution and abundance on Cordyline australis in human-modified landscapes

Guthrie, Ruth J. January 2008 (has links)
Fragmentation of forest habitat by urban and rural development has had profound effects on the distribution and abundance of many native species; however, little is known about the ecological processes driving patterns in community structure (species richness and composition) of host-specialised herbivores in modified habitats. I examined patterns in community structure of 9 specialist and 19 generalist invertebrate herbivores of cabbage trees (Cordyline australis Laxmanniaceae) across a highly-modified landscape. I found that, although species richness of specialists was highest in forest sites, the majority of host-specialised species were not restricted to forest habitats and were as widespread as many generalists. In terms of site occupancy, only two specialist and four generalist species were rare. I show that patterns of species occupancy and abundance reflect differing susceptibility to habitat modification, with landscape-level variation an important predictor of abundance for nearly all species. When species occurrences and life history traits were considered I did not find strong evidence for the importance of dispersal ability, which suggests that habitat variability had a stronger organising effect on the community. In a replicated common garden experiment, I found distinct regional patterns in the community structure of the specialist invertebrates occurring on different phylogenetic groups of C. australis. In contrast, community structure of generalist herbivores did not differ significantly among host genotypes. I speculate these patterns are due to historical changes in the distribution of cabbage trees in the Southern phylogenetic region that caused specialised herbivores to become locally adapted on populations of low genetic diversity following expansion after the last glacial maximum. However, this consistent selection pressure did not occur in the Northern region where C. australis habitat has been more consistently available over the past tens of thousands of years, reflected in higher host genetic diversity. This study has advanced our understanding of the patterns in community structure of an indigenous, host-specialised fauna in a highly modified and fragmented urban and rural landscapes.
266

Influence of natural enemies on Cirsium arvense — a biogeographic perspective

Cripps, M. G. January 2009 (has links)
Cirsium arvense (L.) Scop. (Californian, Canada, or creeping thistle) is an exotic perennial herb indigenous to Eurasia that successfully established in New Zealand (NZ) approximately 130 years ago. Presently, C. arvense is considered one of the worst invasive weeds in NZ arable and pastoral productions systems. The mechanism most commonly invoked to explain the apparent increased vigour of introduced weeds is release from natural enemies. The enemy release hypothesis (ERH) predicts that plants in an introduced range should experience reduced herbivory, particularly from specialists, and that release from this natural enemy pressure facilitates increased plant performance in the introduced range. In 2007 broad surveys were carried out in NZ and central Europe in order to quantify and compare growth characteristics of C. arvense in its native vs. introduced range. Additionally, permanent field plots were established in NZ and Europe where natural enemies were excluded with the use of insecticide and fungicide applications, and compared with controls (ambient natural enemy pressure). The impact of the specialist leaf-feeding beetle, Cassida rubiginosa Müller, which was recently released in NZ as a biological control agent against thistles, was also assessed. From the field surveys, significantly more endophagous herbivory was present in the native range compared to the introduced range, as predicted by the ERH. Endophagous herbivory in NZ was solely from the capitulum-feeding weevil, Rhinocyllus conicus (Frölich), and was only found in the North Island surveys. No stem mining attack was found anywhere in NZ. The proportion of shoots attacked by the specialised rust pathogen, Puccinia punctiformis (Str.) Röhl., was similar in both the native and introduced ranges. Interestingly, this has casted doubt on the idea that stem-mining vectors, such as Ceratapion onopordi Kirby, are important for transmission of the rust pathogen. Contrary to the ERH, there were no significant difference in plant performance between the native and introduced ranges, or differences could be explained by simple climatic factors. Climate tended to be more favourable for growth of C. arvense in NZ. In the permanent field plots in the native range, population growth of C. arvense was significantly greater where natural enemies were excluded, suggesting that insect herbivores and pathogens might have a regulating influence on the population growth of this plant. Furthermore, the probability of shoots transitioning to the reproductive growth stage was enhanced when insect herbivores were excluded, indicating that natural enemies might influence plant development. The biological control agent C. rubiginosa reduced the growth of C. arvense, although the impact of this herbivore was minimal in comparison to interspecific plant competition. Thus, although there is reduced specialist natural enemy pressure in NZ, the growth of C. arvense is not significantly different from in its native range. Nevertheless, there is some evidence that natural enemies in the native range might have a regulating influence on the population dynamics of the plant, and that the specialist herbivore, C. rubiginosa, can impact the plant in certain conditions.
267

Why are some species invasive? : determining the importance of species traits across three invasion stages and enemy release of southern African native plants in New Zealand

Nghidinwa, Kirsti C. January 2009 (has links)
There are many factors that have been proposed to contribute to plant invasiveness in nonnative ecosystems. Traits of invading species are one of them. It has been proposed that successful species at a certain invasion stage share particular traits, which could be used to predict the behaviour of potentially invasive plants at the respective stage. Three main stages of invasion are distinguished: introduction, naturalization, and invasion. I conducted a stageand trait-based analysis of available data for the invasion of New Zealand by the flora of southern Africa. Using 3076 southern African native vascular plant species introduced into New Zealand, generalised linear mixed model analysis was conducted to assess association of several species traits with the three invasion stages. The results showed that plant traits were significantly associated with introduction but fewer traits were associated with naturalization or invasion, suggesting that introduction can be predicted better using plant traits. It has been also hypothesized that species may become invasive in non-native ecosystems because they are removed from the regulatory effects of coevolved natural enemies (Enemy Release hypothesis). A detailed field study of the succulent plant Cotyledon orbiculata var. orbiculata L. (Crassulaceae) was conducted in the non-native New Zealand and native Namibian habitats to compare the extent of damage by herbivores and pathogens. C. orbiculata is a southern African species that is currently thriving in New Zealand in areas seemingly beyond the climatic conditions in its native range (occurring in higher rainfall areas in New Zealand than are represented in its native range). As hypothesised, C. orbiculata was less damaged by herbivores in New Zealand but, contrary to expectation, more infected by pathogens. Consequently, the plant was overall not any less damaged by natural enemies in the non-native habitat than in its native habitat, although the fitness impacts of the enemy damage in the native and invaded ranges were not assessed. The results suggest that climatic conditions may counteract enemy release, especially in situations where pathogens are more prevalent in areas of higher rainfall and humidity. To forecast plant invasions, it is concluded that species traits offer some potential, particularly at the early stage of invasion. Predicting which introduced plants will become weeds is more difficult. Enemy release may explain some invasions, but climatic factors may offset the predictability of release from natural enemies.
268

Plant-insect interactions in changing environments / Pflanze-Insekt Interaktionen unter dem Einfluß von Umweltveränderungen

Gladbach, David Joachim 06 July 2010 (has links)
No description available.
269

Herb layer characteristics, fly communities and trophic interactions along a gradient of tree and herb diversity in a temperate deciduous forest / Krautschichteigenschaften, Fliegengesellschaften und trophische Interaktionen entlang eines Baum- und Krautartengradienten in einem temperaten Laubwald

Vockenhuber, Elke 16 August 2011 (has links)
No description available.
270

Plant-herbivore interactions across an alpine meadow gradient

Illerbrun, Kurt K Unknown Date
No description available.

Page generated in 0.0546 seconds