• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 35
  • 35
  • 31
  • 13
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 427
  • 67
  • 59
  • 58
  • 56
  • 46
  • 46
  • 37
  • 35
  • 32
  • 31
  • 31
  • 29
  • 28
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Persistent organic pollutants (POPs) associated with a platinum mine in the Limpopo Province, South Africa / Ilse Jordaan

Jordaan, Ilse January 2005 (has links)
South Africa ratified the Stockholm Convention (SC), which became legally binding on 17 May 2004. This Convention targets 12 particularly toxic persistent organic pollutants (POPs) for virtual elimination. The Convention also requires parties to reduce the release of organochlorine pesticides and the intentionally- and unintentionally-produced POPs such as dioxins, furans and polychlorinated biphenyls (PCBs) (referred to as dioxin-like chemicals). Dioxins are a heterogeneous mixture of chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) congeners. These substances were never intentionally produced but are produced as by-products of industrial processes (such as metallurgical processes and bleaching of paper pulp). They can also be formed during natural processes such as volcanic eruptions and forest fires. The largest contributor to releases of PCDD/Fs in the environment is incomplete combustion from waste incinerators leading to the unintentional production of these compounds. Polychlorinated biphenyls (PCBs) are used in transformers and capacitors, but can also be formed unintentionally during industrial and thermal processes. Dioxin-like chemicals (PCDD/Fs and/or PCBs) are classified as persistent because of the following characteristics: lipophilicity and hydrophobicity; resistance to photolytic, chemical and biological degradation and they are able to travel long distances. As South Africa is a semiarid region, POPs will be less prone to travel here because these substances favour colder regions with high soil organic matter. Fish, predatory birds, mammals (including humans) absorb high concentrations of POPs through the process of bio-concentration, leading to bio-accumulation of these substances in the fatty tissue. PCDD/Fs occur as unwanted trace contaminants in air, water, land, in residues and products (such as consumer goods e.g. paper and textiles). The distribution of these chemicals into various matrices is problematic since they cause damage to the environment and human health. These chemicals pose a threat to human health when found in high concentrations that may lead to acute hepatoxicity and dermal toxicity (chloracne). Long-term exposure to low concentrations of these substances might lead to chronic effects such as reproductive problems and carcinogenicity. Since ferrous and non-ferrous metal production is a source of dioxin-like chemicals, a platinum mine in the Limpopo Province, South Africa, was selected for this investigation. The aim of the study was to determine if there are dioxin-like chemicals associated with platinum mining and processing, and if the H4IIE reporter gene bio-assay could be used to semi-quantify and assess the potencies of the complex environmental and process samples by determining their Toxic Equivalency Quotients (TEQ). The implications of the sources to the formation of dioxin-like chemicals regarding the SC were investigated and recommendations were made to improve this study. Samples were collected from tailings dams, woodchips, a dumpsite and slag from the smelter at Union Section. Samples were extracted with the Soxhlet apparatus using hexane as solvent. The percentage total organic carbon (%TOC) was determined for each sample to normalise the data. The method used was the Walkley-Black method. In determining the TEQ of each sample, the H4IIE luc cell line was used. The cells of the H4IIE luc line are genetically modified rat hepatoma cells stably transfected with a luciferase firefly gene. The luciferase gene is activated by the presence of dioxin-like compounds and the concentration of the enzyme is measured as relative light units (RLUs). The amount of RLUs is directly proportional to the dioxin load in the extract. This method is rapid, cost and time-effective in determining the TEQ when compared to chemical analysis. The TEQ2o-valuesin the various samples, as determined with the H4IIE luc cell line, ranged from 0.007 ngTEQ/kg to 54.06 ngTEQ/kg. Thermal processes at the smelter, sorption of hydrophobic organic compounds (HOCs) to soil and tailings, and external sources such as anthropogenic activities contributed to high TEQ2o-values. Climatic conditions, wind, precipitation, and solubility of HOCs into surfactants lead to low TEQ20. The smelter at Union Section had a very high TEQ20of 44.62 ngTEQ/kg compared to Impala Platinum mine (5.15 ngTEQ/kg). This implies that workers at Union Section are possibly exposed to low and high concentrations of dioxin-like chemicals. Long-term exposure to these compounds could lead to bio-accumulation in the fatty tissue of the mine workers, leading to chronic effects such as reproductive problems and cancer. The air emission of the furnace at the smelter was 0.03 gTEQ/annum and the release of the PCDD/Fs into the slag was 0.60 gTEQ/annum. By effectively managing the smelter it is possible to reduce the TEQ. The TEQ of each sample increased due to normalising the data. The normalised TEQ20 ranged from 0.94 ng TEQ/kg to 42497.48 ngTEQ/kg. Dioxin-like chemicals are present on a platinum mine, but at varying quantities and the effects of these compounds might be detrimental to the environment and the workers at the platinum mine. Further analyses of the health impacts associated with the platinum mine are needed. The H4IIE reporter gene bio-assay could be used to effectively determine the TEQ of each sample. Although this investigation has identified the formation and presence of dioxin-like chemicals at certain stages of mining and processing, not all of the processes were investigated. Some of these processes have the potential to add, and even destroy, these chemicals, affecting potential human exposure and amounts released to the environment. This, however, requires further investigation. The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2006.
302

The Effect of Salts on the Conformational Stability of Proteins

Beauchamp, David L 13 April 2012 (has links)
It has long been observed that salts affect proteins in a variety of ways, yet comprehensive explanations for different salt effects are still lacking. In the work presented here, the effect of salts on proteins has been investigated through three different effects: the hydrophobic effect; their conformational stability; the hydrogen bonding network of water in a protein’s hydration shell. UV-vis absorbance and fluorescence spectroscopy were used to monitor changes in two model systems, the phenol-acetate contact pair and the model enzyme ribonuclease t1. It was shown that salts affect the hydrophobicity of the contact pair according to their charge density, induced image charges play an important role in the observed salt-induced increase of ribonuclease t1 stability, and that salts affect ribonuclease t1 activity through modulation of the hydrogen bonds of water in the enzyme’s hydration shell. This work contributes a greater understanding of the effect of salts on proteins.
303

Rational Design of Drug Formulations using Computational Approaches

Huynh, Loan 24 July 2013 (has links)
Theory has been used to complement experiment in the development of both drugs and delivery systems. Theoretical methods are capable of identifying the molecular basis of drug formulation inadequacies and systematic theoretical studies may suggest fruitful avenues for material modification. This thesis highlights the utility of computer-based theoretical calculations for guiding the design of drug formulations and enhancing material-drug compatibility and stability. Specifically, the present work explores the applications of semi-empirical methods and atomistic molecular dynamics (MD) simulations to enhance the performance of nano-emulsions and polymer micelle formulations for the delivery of hydrophobic drugs. This work includes three separate studies preceded by an introductory summary of available theoretical techniques. The first study evaluates the accuracy and reliability of semi-empirical methods and MD simulations as means to select suitable excipients to formulate the anti-cancer drug docetaxel in an emulsion. Here, simulations accurately predict the rank order of drug solubility in various excipients, suggesting that simulation is useful for library enrichment. In the second study, a drug conjugation approach is used to further improve the stability and solubility of docetaxel in a triglyceride-based nano-emulsion. Here, optimal conjugates are identified with computer-based theoretical calculations and conjugates with formulation-compatible moieties are synthesized. As predicted, the conjugates exhibit enhanced solubility and loading efficiency in a nano-emulsion. The goal of the third study is to rationally design a stable unimolecular star copolymer that, as a unimer, does not disassemble upon the dilution that accompanies intravenous injection. Here, MD simulation is used to systematically investigate the solution properties of differently composed star copolymers. Overall, star copolymers with a hydrophobic PCL core ≤ 2 kDa and hydrophilic PEG blocks approaching 14.6 kDa per arm are predicted to form unimolecular micelles that remain unimeric at high concentrations. The studies presented in this thesis demonstrate that theoretical approaches are useful for fast pre-screening of drug formulation materials and for the development of delivery systems and drug derivatives.
304

Rational Design of Drug Formulations using Computational Approaches

Huynh, Loan 24 July 2013 (has links)
Theory has been used to complement experiment in the development of both drugs and delivery systems. Theoretical methods are capable of identifying the molecular basis of drug formulation inadequacies and systematic theoretical studies may suggest fruitful avenues for material modification. This thesis highlights the utility of computer-based theoretical calculations for guiding the design of drug formulations and enhancing material-drug compatibility and stability. Specifically, the present work explores the applications of semi-empirical methods and atomistic molecular dynamics (MD) simulations to enhance the performance of nano-emulsions and polymer micelle formulations for the delivery of hydrophobic drugs. This work includes three separate studies preceded by an introductory summary of available theoretical techniques. The first study evaluates the accuracy and reliability of semi-empirical methods and MD simulations as means to select suitable excipients to formulate the anti-cancer drug docetaxel in an emulsion. Here, simulations accurately predict the rank order of drug solubility in various excipients, suggesting that simulation is useful for library enrichment. In the second study, a drug conjugation approach is used to further improve the stability and solubility of docetaxel in a triglyceride-based nano-emulsion. Here, optimal conjugates are identified with computer-based theoretical calculations and conjugates with formulation-compatible moieties are synthesized. As predicted, the conjugates exhibit enhanced solubility and loading efficiency in a nano-emulsion. The goal of the third study is to rationally design a stable unimolecular star copolymer that, as a unimer, does not disassemble upon the dilution that accompanies intravenous injection. Here, MD simulation is used to systematically investigate the solution properties of differently composed star copolymers. Overall, star copolymers with a hydrophobic PCL core ≤ 2 kDa and hydrophilic PEG blocks approaching 14.6 kDa per arm are predicted to form unimolecular micelles that remain unimeric at high concentrations. The studies presented in this thesis demonstrate that theoretical approaches are useful for fast pre-screening of drug formulation materials and for the development of delivery systems and drug derivatives.
305

Adsorption of Alkaline Copper Quat Components in Wood-mechanisms and Influencing Factors

Lee, Myung Jae 31 August 2011 (has links)
Mechanisms of adsorption of alkaline copper quat (ACQ) components in wood were investigated with emphasis on: copper chemisorption, copper physisorption, and quat adsorption. Various factors were investigated that could affect the adsorption of individual ACQ components in red pine wood. Copper chemisorption in wood was affected by ligand types coordinating with Cu and the stability of the Cu-ligand complexes in solution. For Cu-monoethanolamine (Cu-Mea) system, the prevailing active solvent species at the solution pH, [Cu(Mea)2-H]+ complexes with wood acid sites and loses one Mea molecule through a ligand exchange reaction. The amount of adsorbed Cu was closely related to the cation exchange capacity of wood. An increase in Mea/Cu ratio increased the proportion of the uncharged Cu-Mea complex and resulted in decreased Cu chemisorption in wood. Copper precipitation is also an important Cu fixation mechanisms of Cu-amine treated wood. X-ray diffraction analysis revealed that in vitro precipitated Cu was a mixture of copper carbonates (azurite and malachite) and possibly Cu2O. Higher concentration Cu-amine solutions retarded the Cu precipitation to a lower pH because of higher free amine in the preservative-wood system. The changes in zeta potential of wood in relationship to the quaternary ammonium (alkyldimethylbenzylammonium chloride: ADBAC) adsorption isotherm showed two different adsorption mechanisms for quat in wood: ion exchange reaction at low concentration and additional aggregation form of adsorption by hydrophobic interaction at high concentration. Because of the aggregation effect, when wood was treated with ACQ, high amounts of ADBAC were concentrated near the surface creating a steep gradient with depth. This aggregated ADBAC was easily leached out while the ion exchanged ADBAC had high leaching resistance. Free Mea and Cu of ACQ components appeared to compete with ADBAC for the same bonding sites in wood.
306

The Concentration of Aqueous Solutions By Osmotic Distillation (OD)

Bailey, Adelaide Fiona Grace January 2005 (has links)
This study was to investigate theory and application of Osmotic Distillation (OD). OD is a new novel membrane separation process used for the concentration of aqueous solutions such as fruit juices without the application of heat. The present work was undertaken to investigate flux limitations focusing on feedside, membrane and stripper side characteristics of OD. Once the limiting areas were identified, further studies were undertaken to determine methods of minimizing those limitations without losing the quality and integrity of the liquid feed. A laboratory scale OD system was used to simulate the industrial process which takes place during the production of grape juice concentrate for the fruit juice industry. Results of a UF pretreatment study showed that the use of UF membranes with pore diameters of 0.1 fÝm or less as a pretreatment for the subsequent OD of grape juice resulted in significant increases in OD flux over that observed for juice not subjected to UF. The study of the physical properties of the feed played an important role in the explanation of the OD process. The increase in OD flux was attributed to a reduction in juice viscosity as the result of the removal of protein and other high molecular weight components. Apart from an increase in OD flux, UF pretreatment of the grape juice proved to be beneficial in other areas of the OD process. HPLC measurements showed that the normal concentration of fermentable sugars in standard 68 oBrix concentrate can be achieved at a lower Brix value in feed subjected to UF pretreatment, further reducing the need to handle highly viscous feeds. UF pretreatment also resulted in an increase in juice surface tension consequently reducing the tendency for membrane wet-out to occur. The study of the deoxygenation of the feed solution shows that the removal of dissolved gases by the pre boiling method and the perstraction with chemical reaction (PCR) method both had a positive affect on OD flux. Pre boiling the brine resulted in an indirect reduction in dissolved oxygen in the feed. Pre boiling both the feed and brine, further increased the flux. Throughout the PCR study, it was evident that stripper side mass transfer of O2 was not limited by flowrate but was limited by higher stripper concentration. However, the latter had an insignificant effect when the sulfite-oxygen reaction was catalysed. The use of a catalyst and increase in temperature gave a significant improvement in overall mass transfer coefficient. Ten types of hydrophobic microporous membranes were tested for their influence on OD flux. While the pore diameter is a considerable factor in mass transport of gases through the membrane, it was also noted that the type of membrane material used had an affect on the overall mass transfer. All top three performing membranes had pore diameters of 0.2 x 10-6 m and were made from polytetrafluoroethylene (PTFE). The choice of brine to use as the stripper was based on criteria that were confirmed by the brine studies performed here. The best performing stripper solutions demonstrating the greatest improvement in OD flux over the most commonly used brines, NaCl, CaCl2 and CH3COOK were aqueous solutions of potassium salts of phosphoric acid, pyrophosphoric acid and blends thereof. These salts agreed with all the required characteristics of a suitable brine, demonstrating high solubility rates, supporting the ability to lower water vapour pressure. The study of the corrosion effects of brine salts confirmed the phosphate salts are superior demonstrating some of the lowest corrosion rates and highest pH.
307

Fabrication of Osmotic Distillation Membranes for Feeds Containing Surface-Active Agents

Xu, Juanbao January 2005 (has links)
The present work was undertaken to develop a composite osmotic distillation (OD) membrane consisting of a thin hydrogel coating on a microporous hydrophobic substrate for the concentration of aqueous feeds containing surface-active agents. The range of OD applications using the hydrophobic membrane alone have been severely limited by the propensity for membrane wet-out when contacted by amphiphilic agents such as oils, fats and detergents. Wet-out allows the feed solution to track freely through the membrane pores with a resulting loss of solutes and a decrease in selectivity. The rationale for the approach taken was based on the hypothesis that the high water selectivity of the hydrophilic coating would maintain good water mass transfer to the underlying hydrophobic substrate but exclude other components including surface-active agents. The first stage of this work involved the identification of potential coating materials and the fabrication and structural characterization of films of these materials to determine their suitability. The second stage involved the development of techniques to facilitate adhesion of the hydrophilic coatings to the hydrophobic substrate, and the testing of the resulting composite membranes for OD performance and resistance to wet-out by surface-active agents. Sodium alginate was selected as the major coating component on the basis of its non-toxicity and its potential for stable hydrogel formation. Structural characterization of noncrosslinked films and films crosslinked using a water-soluble carbodiimide (WSC) was carried out using differential scanning calorimetry (DSC), Fourier Transform infrared spectroscopy (FT-IR) and swelling measurements. Maximum crosslinking through esterification of hydroxyl and carboxylic acid groups on adjacent polymer strands using the film immersion method was achieved with a non-solvent (ethanol) concentration of 60 vol % and a WSC concentration of 100 mM at pH 4. These conditions resulted in a hydrogel with an equilibrium water content of 60 wt %. DSC measurements of noncrosslinked and crosslinked alginate films showed an increase in crystallinity and hence rigidity on crosslinking. Therefore, several coatings were prepared as blends of sodium alginate and amorphous highly flexible carrageenan gum in order to meet the flexibility requirements of a membrane subjected to varying operating pressures in an industrial OD plant. Structural characterization with respect to polymer blend ratio was carried out using scanning electron microscopy (SEM), DSC, X-ray diffraction (XRD). The optimisation for crosslinking conditions was undertaken as for sodium alginate alone. Optimum conditions for film preparation were 20 wt % carrageenan content and a crosslinking medium containing 60 vol % non-solvent (ethanol) and 120 mM WSC at pH 4. These conditions produced a hydrogel with an equilibrium water content of 85 wt %. Two different techniques were employed to anchor the coatings on substrate PTFE membranes. For membranes with a nominal diameter of 0.2 µm, the technique involved surface tension adjustment of the coating solution by ethanol addition in order to enhance penetration of the coating solution meniscus into the substrate pores. This was followed by polymer precipitation by the selective removal of water using OD to provide structural interlocking. T-peel strength measurements showed that this technique resulted in a ten-fold increase in adhesion strength when compared with a coating cast without surface tension adjustments. For membranes with a nominal diameter of 0.1µm, an interfacial bonding agent, myristyltrimethylammonium bromide (MTMA), was used. This technique gave a three-fold increase in adhesion strength relative to that of coating cast without the use of MTMA. The composite membranes were tested in extended OD trials using pure water and feeds containing limonene, the major surface-active components of orange oil. The sodium alginate-carrageenan blend membrane, which was the preferred membrane based on flexibility and water sorption considerations, was also tested against full-cream milk and an industrial detergent, sodium dodecylbenzene sulfonate (DBS). The results indicated that the coatings offered little resistance to water transport and were effective in providing protection against membrane wet-out. Durability trials showed that the composite membranes retained their integrity in water for a minimum of 30 days. Overall, this study has expanded the potential applications of OD to include many important industrial concentration steps that are currently being undertaken by conventional processes with unsatisfactory results. These include the concentration of citrus juices, full-cream milk and nuclear power plant liquid waste. These feeds contain limonene, fats and detergents respectively, all of which wet out unprotected hydrophobic membranes.
308

Collage de silicium et d'oxyde de silicium : mécanismes mis en jeu / Direct bonding of silicon and silicon oxides : mechanisms involved

Rauer, Caroline 09 July 2014 (has links)
Le collage direct consiste en la mise en contact de deux surfaces suffisamment lisses et propres pour qu'une adhésion puisse se créer sans ajout de matière à l'interface. Ce procédé réalisable à l'échelle industrielle trouve son intérêt dans l'empilement de structures ou de matériaux pour la microélectronique ou les microtechnologies. Il s'avère alors important de maîtriser ce procédé et cela passe notamment par la compréhension des mécanismes physico-chimique se produisant lors du collage. Le but de ce travail de thèse est donc l'étude des mécanismes mis en jeu dans le collage hydrophobe de silicium et le collage hydrophile d'oxydes de silicium déposés.Dans cette étude, des procédés de collage direct hydrophobe de plaques de silicium (100) reconstruit ont été développés, ainsi que des collages de surfaces hydrophiles d'oxyde de silicium déposés préparées par des activations plasma azote ou oxygène ou par un procédé de polissage mécano-chimique. Le comportement de toutes ces structures a été étudié à plusieurs stades du procédé, en particulier lors des traitements thermiques de consolidation de l'interface de collage. Pour ce faire, différentes techniques de caractérisation ont été mises en oeuvre comme la mesure d'énergie de collage, l'observation de la défectivité par microscopie acoustique, la spectroscopie infrarouge et la réflectivité des rayons X. Cela a ainsi permis de suivre la fermeture de l'interface de collage en température d'un point de vue chimique et mécanique et des mécanismes de collage ont alors pu être proposés pour toutes les structures étudiées. Des recommandations ont également pu être faites pour l'obtention de collages d'oxydes de silicium déposés efficaces et de qualité. / Direct wafer bonding refers to a process by which two mirror-polished wafers are put into contact and held together at room temperature by adhesive force, without any additional material. This technology feasible at an industrial scale generates wide interest for the realization of stacked structures for microelectronics or microtechnologies. In this context, a precise understanding of bonding mechanisms is necessary. Consequently, the aim of this work is to study the bonding mechanisms for hydrophobic silicon reconstructed surfaces and hydrophilic deposited silicon oxides surfacesIn this study, bonding of hydrophobic silicon reconstructed surfaces and bonding of hydrophilic deposited silicon oxides prepared either by plasma activation or chemical-mechanical polishing were analyzed, as a function of post-bonding annealing temperature. For this, several characterization techniques have been used: bonding energy measurement, acoustic microscopy in order to observe defectivity, infrared spectroscopy and X-Ray reflectivity. Thus the bonding interface closure has been analyzed from a chemical and mechanical point of view and bonding mechanisms have been proposed for the studied bonded structures. Finally the study of deposited silicon oxide bonding prepared either by plasma activation or by chemical-mechanical polishing has lead to some recommendations for efficient and high quality deposited silicon oxides bonding.
309

Formulation de nanosystèmes et évaluation de leur potentiel pour la délivrance cutanée de molécules actives / Formulation of nanosystems and evaluation of their potential for delivery of active molecules to the skin

Nguyen, Hoang Truc Phuong 14 December 2015 (has links)
Ces travaux visent à déterminer l‘intérêt de deux types de nanosystèmes (NS) coeur-couronne dans des applications dermatologiques ou cosmétiques. Les nanocapsules lipidiques (LNC) sont obtenues par une méthode déjà décrite dans la littérature. Leur formule est modifiée pour incorporer un actif cosmétique d‘intérêt. Les nanocapsules d‘alginate (ANC) sont développées au moyen de plans d‘expériences. Elles sont composées d‘un coeur huileux et d‘une coque d‘alginate de calcium gélifiée obtenue par gélification ionique de surface d‘une nanoémulsion. Des méthodes basées sur le phénomène de fluorescence nous permettent de mettre en évidence l‘endocytose des ANC par les kératinocytes. Leur contenu est rapidement libéré dans le cytoplasme. Une étude sur différents modèles ex vivo montre que les deux nanosystèmes permettent aux molécules encapsulées d‘atteindre les couches vivantes de l‘épiderme. ANC et LNC sont stables plusieurs mois dispersées dans des formes galéniques semi-solides. Ces deux NS sont donc adaptés à la délivrance de molécules actives dans la peau. / Two types of core-shell nanosystems have been evaluated for dermatological and cosmetic applications. Lipid nanocapsules (LNC) are obtained by a method that has already been described in the literature. Their composition is adapted for incorporation of a specific cosmetic ingredient. Alginate nanocapsules (ANC) are developed with the aid of experimental design. They consist of a triglyceride core with a rigid calcium alginate shell obtained by ionic gelation of the surface of a nanoemulsion. By incorporating fluorophores into these nanosystems, they can be studied by advanced spectral fluorescence imaging methods. We were thus able to show that ANC are first internalized into keratinocytes by endocytosis, and once inside the cells, their contents are rapidly released into the cytoplasm. A study of different ex vivo skin model systems has shown that both nanosystems enable active substances to reach the living epidermis. When incorporated into gels similar to those used as galenic forms for topical administration, LNC and ANC remain stable for months. They can thus be used as vectors for delivering active substances to the skin.
310

Low-Voltage Electrowetting on Dielectrics Integrated and Investigated with Electrical Impedance Spectroscopy (LV-EWOD-EIS)

Li, Yingjia 07 August 2018 (has links)
No description available.

Page generated in 0.0644 seconds