• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Short Term Regulation in Hydropower Plants using Batteries : A case study of hydropower pants in lower Oreälven river

Baskar, Ashish Guhan, Sridhar, Araavind January 2020 (has links)
Hydropower is one of the oldest renewable energy (RE) sources and constitutes a major share in the Swedish electricity mix. Though hydropower is renewable, there exist some issues pertaining to the local aquatic conditions. With more environmental laws being implemented, regulating the use and management of water is jeopardizing the flexibility of hydropower plants. The decided national plan for new environmental conditions in Sweden is expected to start being implemented in 2025 and more restrictions are expected. Analysing a battery energy storage system's capabilities plants may improve flexibility in hydropower plant operation. This thesis is focused on the short-term regulation in lower Oreälven river where the hydropower plants Skattungbyn, Unnån and Hansjö are located. The combined hydropower plant and battery system is simulated being employed in the day-ahead market and a techno-economic optimization of the combined system is performed. The combined system's operation is modelled using Mixed Integer Linear Programming. The future electricity market analysis is modelled using Machine Learning techniques. Three different electricity market scenarios were developed based on different Swedish nuclear energy targets for 2040 to capture the future. The first scenario developed complies with the Swedish energy target of 100 % renewable production in 2040. The second scenario has still two nuclear power plants in operation by 2040 and the third scenario has the same nuclear capacity as of 2020. It is observed from the results that with the current battery costs (~3,6 Million SEK/MWh), the implementation of a battery system for the short term regulation of the combined battery/hydropower system is not profitable and the cost of battery needs to be less than 0,5 Million SEK/MWh to make it profitable. The thesis also discusses the possibility of utilizing batteries’ second life and the techno-economic analysis of their performance. / Vattenkraft är en av de allra äldsta förnybara energikällorna och utgör idag en väsentlig del av Sveriges energimix. Trots att vattenkraft är förnybar, har den lett till vissa utmaningar i den lokala vattenmiljön. Som en följd av att fler miljölagar har implementerats för att reglera nyttjandet av vattendrag och sjöar, minskar flexibiliteten i vattenkraftproduktionen. Den av den svenska regeringen i juni 2020 beslutade nationella planen för miljöanpassning av vattenkraften i Sverige, förväntas börja genomföras med start 2025 och tros då resultera i fler flexibilitetsbegränsningar. Genom att analysera driften av batteriers energilagringssystem kombinerade med vattenkraftverk, bedöms flexibiliteten i sådana kombinerade system kunna ökas. Denna studie fokuserar på den kortsiktiga regleringen av nedre Oreälven med vattenkraftverken Skattungbyn, Unnån och Hansjö. En kombination av vattenkraftverken med batterisystem simuleras mot spot-marknaden och en teknisk-ekonomisk optimering av det kombinerade systemet utförs. Driften av det kombinerade systemet modelleras med linjärprogrammering och den framtida analysen av elmarknaden modelleras med maskininlärningstekniker. Tre olika scenarier för elmarknaden utvecklades baserade på målen för den svenska kärnkraften år 2040. Det första scenariot som utvecklades är i linje med det svenska energimålet om 100 % förnybar produktion till 2040. Det andra scenariot utvecklades med två kärnkraftverk fortfarande i drift 2040 och det tredje scenariot med samma kärnkraftskapacitet som 2020. Från resultaten kan särskilt noteras att med nuvarande batterikostnader (~3,6 miljoner SEK/MWh) kommer införandet av batterier för att kortsiktigt reglera vattenkraftverken inte att vara lönsamt om inte batterikostnaden reduceras till som högst 0,5 miljoner SEK/MWh. Denna studie diskuterar även möjligheterna att använda andrahandsbatterier samt en teknisk-ekonomisk analys för dess prestanda.
32

Omlöp vid småskaliga vattenkraftverk, hållbarhet för både verk och miljö? : Mätning av effektförluster orsakade av omlöpet vid Åby vattenkraftverk i Växjö kommun. / Bio channels for small hydropower plants, sustainability for both the power plant and the environment? : Measurement of effect losses caused by the bio channel at Åby hydropower plant in Växjö municipality.

Rydholm, Björn January 2017 (has links)
I Sverige finns cirka 2000 vattenkraftverk men endast 10 procent har någon form av omlöp eller annan lösning (Risinger, 2012). Nya, strängare regler håller nu på att införas. Sedan 2014 finns en gemensam strategi från Energimyndigheten och Havs- och vattenmyndigheten för åtgärder i svensk vattenkraft (Risinger, 2014). En godkänd fiskväg är ett av kraven.Särskilt den småskaliga vattenkraften (energitillförsel under 10 MWh enligt Risinger (2012)) drabbas. Deras intäkter står många gånger i proportion till energiproduktionen och därmed saknas ofta de ekonomiska förutsättningarna för en fiskväg. Vidare kommer en del av vattnet, och därmed potentiella inkomster, att gå förlorade. Den här undersökningen syftar till att utröna vad ett omlöp får för konsekvenser i form av effektförluster. Det är naturligtvis omöjligt att komma fram till ett universellt svar. Istället mäts förlusterna hos ett specifikt mindre verk som redan har ett omlöp: Åby vattenkraftverk som ägs och drivs av Växjö kommun. Metoden som används är traversering i kombination med hydroskopisk flygel. Sedan tidigare finns beräknade värden från kommunen för flödet i omlöpet. Dessa jämförs med undersökningens uppmätta värden. Undersökningen visar att vid normalt vattenstånd (165,13 MÖH) flödar 167 ± 10 l/s vatten genom omlöpet. Detta är ett 70 l/s större flöde i jämförelse med kommunens beräknade värde. Förklaringar till den skillnaden ges av mätfel då djupet mättes och att inloppet hade byggts om mellan kommunens beräkningar och utförda mätningar. Även den formel som användes då de beräknade värdena togs fram föreslås som en tänkbar felkälla. 167 ± 10 l/s innebär ett bortfall om 4,2 ± 0,3 kW potentiell effekt. / There are around 2000 hydropower plants in Sweden, but only 10 percent of them has a bio channel, fishway or equivalent solution (Risinger 2012). New, more strict rules are now about to be introduced. Since 2014 there is a mutual strategy from the two Swedish authorities ”Energimyndigheten” and ”Havs- och vattenmyndigheten”, which demands multiple actions from Swedish hydropower. (Risinger, 2014). An approved fishway is one of these.The small-scale hydropower plants (plants who produce less than 10 MWh according to Risinger (2012)) are especially affected from this. Their income is proportional to their production and therefore they’ll usually lack the economical ability to build a fishway. Furthermore, a part of the streaming water (which otherwise would equal income) will get lost. This study aims to decide the loss of effect a fishway causes. Of course, it is impossible to derive a universal answer. Instead the losses are measured at a specific smaller plant that already has a fishway: Åby hydropower plant that is owned and operated by Växjö municipality. Method being used is traversing in combination with a turbine flow meter. There are already calculated flows made by the municipality. These values will be compared with the measured values. The study shows that at a normal water level (165,13 m.a.sl) 167 ± 10 l/s of water is streaming through the fishway. This is a 70 l/s bigger flow in comparison with the municipality’s calculations. An explanation to this difference is given by measurement errors when the depth was measured, that the intake had been modified between when the calculations was being made and when the study’s measurements took place. Also, the formula being used for the calculated values is proposed as a possible source of error. 167 ± 10 l/s will result in a loss of 4,2 ± 0,3 kW potential effect.
33

Minimizing Transformer No-Load Losses at Hydropower Plants : A Study of Effects from Transformer Switch-Off During Stand-by Operation

Luedtke, Elin January 2021 (has links)
Hydropower is the most important power balancing resource in the Swedish electrical power system, regulating the power supply to match the load. Consequently, several hydropower plants have periods of stand-by operation where the power production is absent but where several devices within a plant are still active. Such a device is the step-up power transformer, which during stand-by operation still generates no-load energy losses. These losses can accumulate to a considerable amount of energy and costs during the long technical lifetime of the apparatus. One option to minimize these no-load energy losses is by turning the transformer off when its generating unit is in stand-by operation. However, when this transformer operational change has been explained to experts in the field, the most common response has been that a more frequent reenergizing of a transformer leads to higher risks for errors or transformer breakdowns. This study aimed to analytically investigate three effects from this operational change. First, the potential of fatigue failure for the windings due to the increased sequences of inrush current. Secondly, the thermal cycling as a consequence of change in present losses. Lastly, the energy and economic saving potentials for hydropower plants where this operational adjustment is applied. The study used both established as well as analytical tools explicitly created for this study. These were then applied on currently active transformers in different plant categories in Fortum’s hydropower fleet. The study primarily showed three things. Firstly, risk of fatigue failure due to the increased presence of inrush currents did not affect the transformer’s technical lifetime. Secondly, the thermal cycling changes were slightly larger with absent no-load losses during stand-by operation. The average temperature for the transformer decreased, which in general is seen as a positive indicator for a longer insulation lifetime and thus the transformer’s technical lifetime. Finally, the created frameworks showed the potential of saving energy and money for all plant categories, where the potential grew with the installed production capacity and the stand-by operation timeshare. Despite the simplifications made to describe the complex reality of a transformer operating in a hydropower plant, this thesis contributes to lay a foundation for future investigation of an easy adjustment to avoid unnecessary energy losses and costs for transformers in hydropower plants

Page generated in 0.0496 seconds