• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 27
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 83
  • 23
  • 20
  • 15
  • 15
  • 14
  • 14
  • 14
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Avaliação do efeito higrotérmico nas propriedades mecânicas de compósitos de PPS/fibras contínuas /

Faria, Maria Cândida Magalhães de. January 2008 (has links)
Resumo: O contínuo crescimento na utilização de compósitos termoplásticos em componentes estruturais na indústria aeroespacial deve-se, primordialmente, à flexibilidade de projeto, excelência de suas propriedades mecânicas e baixa massa específica, aliadas aos elevados valores de resistência mecânica e rigidez e baixa incidência de corrosão, atendendo aos severos requisitos de desempenho dessas estruturas quando em serviço. No entanto, componentes que requerem exigências estruturais, quando expostos a ambientes agressivos como elevada temperatura e umidade, podem ter suas propriedades mecânicas sensibilizadas por esses fatores ambientais, e devem ser cuidadosamente avaliados antes de serem colocados em serviço. Sendo assim, o objetivo deste trabalho é avaliar a influência do condicionamento higrotérmico (câmara climática e imersão em banho termostatizado) nas propriedades mecânicas (resistências à tração, fadiga e cisalhamento) e viscoelásticas de laminados PPS/Carbono e PPS/Vidro. Os laminados utilizados neste trabalho foram fornecidos pela empresa holandesa TenCate. Os resultados mostram que os laminados condicionados em câmara climática apresentaram absorção de umidade segundo as leis de Fick, entretanto, os laminados de PPS/Vidro submetidos ao condicionamento por imersão em banho termostatizado apresentaram um comportamento anômalo. Associado a estes resultados foi também observado que os laminados condicionados tiveram um decréscimo no valor de suas resistências ao cisalhamento, entretanto, apresentaram um aumento nos valores de temperatura de transição vítrea e resistência à tração. Os resultados obtidos a partir dos ensaios de fadiga praticamente não sofreram alteração com o condicionamento ambiental. A partir dos resultados obtidos neste trabalho, pode ser concluído que a utilização de laminados de PPS/Carbono e PPS/Vidro em aplicações... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The continuous use of thermoplastic composites in structural components of aerospace industry is due to essentially to the project flexibility, good mechanical properties and low specific mass, allied with elevated values of mechanical strength and rigidity and low corrosion incidence, attempted to severe requirements of these structures in service. However, components that require structural demand, when exposed in aggressive atmosphere such as high temperature and moisture, can have mechanical properties sensibility for these factors, and should be carefully studied before to be available in service. This way, the purpose of this work is to evaluate the hygrothermal conditioning influence (by using hygrothermal chamber and thermostatic bath immersion) on the mechanical properties (tensile strength fatigue and interlaminar shear) and on the viscoelastic behavior of PPS/carbon and PPS/glass laminates. The laminates used in this work were supplied by TenCate Dutch Company. The results obtained shows that conditioning laminates in hygrothermal chamber presented moisture absorption according to the Fick‟s law, however, the PPS/glass laminates submitted to thermostatic bath immersion presented a anomalous behavior. Associated to these results, it was also observed that the conditioned laminates had a decrease of shear strength values, however, presented an increase of glass transition temperature and tensile strength values. Results obtained according to fatigue tests practically do not change with the atmosphere conditioning. According to the results obtained in this work can be concluded that the use of thermoplastic laminates in aerospace applications is viable, because these laminates are less susceptible to atmosphere effect problems. / Orientador: Edson Cochieri Botelho / Coorientador: Maria Odila Hilário Cioffi / Banca: Herman Jacobus C. Voorwald / Banca: Mirabel Cerqueira Rezende / Mestre
32

Método de avaliação de desempenho higrotérmico de habitações térreas unifamiliares de interesse social para Porto Alegre - RS

Grigoletti, Giane de Campos January 2007 (has links)
Recentemente foram aprovadas normas para requisitos e critérios de desempenho térmico de habitações de interesse social. Estas normas são importantes para a melhoria do desempenho térmico dessas habitações no Brasil. No entanto, a abordagem adotada é geral no que diz respeito às regiões bioclimáticas brasileiras e a análise é feita para sistemas da edificação (aberturas, paredes, cobertura) isoladamente, o que pode não expressar o comportamento térmico para determinadas condições climáticas. O presente estudo apresenta uma proposta de método de avaliação de desempenho higrotérmico de habitações térreas unifamiliares de interesse social para condições climáticas de Porto Alegre, RS, que visa à avaliação global da edificação através de requisitos e critérios que complementam aqueles propostos pelas normas e que sejam de fácil aplicação pelos envolvidos no processo de produção de habitações de interesse social. Considera-se a possibilidade de condensação sobre superfícies internas da edificação, coeficientes volumétricos globais de perda e ganho de calor através de sua envolvente, inércia térmica, entre outros, obtidos da literatura e da análise de quatro habitações construídas em Porto Alegre, duas submetidas a medições in loco e duas consideradas como referência para habitação de interesse social para as condições econômicas e culturais do público-alvo, segundo agentes ligados ao setor em Porto Alegre. O método foi submetido à opinião de agentes, envolvidos com o financiamento, projeto, execução, fiscalização e avaliação de habitações de interesse social em Porto Alegre, e a especialistas da área de conforto térmico atuando em instituições de ensino e pesquisa nacionais. São indicados três graus de qualidade que podem ser atingidos pelas habitações, de acordo com a disponibilidade de recursos para a construção da habitação. O método pode ser uma ferramenta auxiliar na tomada de decisão no processo de projeto, aprovação e avaliação de habitações de interesse social pelos agentes públicos ligados ao setor. / Recently, low cost housing thermal performance standards were developed and approved in Brazil. These standards establish requirements and criteria that low cost housing must satisfy. However, the approach used generally deals with climatic conditions and the evaluation is based on analysis of individual components. This approach cannot express the real thermal behaviour of housing. This study presents a thermal performance evaluation method for low cost single-family one-floor housing considering the climatic conditions of Porto Alegre, Brazil. The method aims toward a global evaluation of housing through requirements and criteria that complement the standards approved recently and it considers mathematical procedures that can be easily applied by government agents involved in this task. Inner surface condensation, global flow heat coefficients, thermal inertia, among others, obtained from literature, are proposed. Four low cost houses built in Porto Alegre, considered to be references according to social and economic local reality, were evaluated through the method. Government agents involved in the project, design, financing, building, overseeing and evaluation of low cost housing in Porto Alegre and experts from research institutes in Brazil also gave their opinions of the method. Three degrees of performance for housing, in accordance with availability of government resources, are defined. The method can be used as an evaluation of possible solutions, thereby aiding decision makers.
33

Developing an Enhanced Model for Combined Heat and Air Infiltration Energy Simulation

Younes, Chadi 07 November 2012 (has links)
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.
34

Hygrothermal Performance of Drywall Reinforced with Kraft-Paper Honeycomb in the Canadian Context

Shahbazi, Sepideh 14 April 2022 (has links)
Drywall board-based structures, a competent and cost-effective method of providing flexible partitioning assemblies in commercial and residential houses, are now widely used as walls or ceilings. However, the gypsum-based drywall that has been used in construction is not water-resistant and can create problems such as mold growth and structural defects. The aim of this study is 1) to develop a new sandwich panel with better physical and mechanical properties using locally sourced materials 2) to investigate the long-term hygrothermal performance of the new sandwich panel through using a numerical simulation. The sandwich panel is composed of two different thicknesses of kraft-paper honeycomb core bonded to two cementitious panels with silicone-based adhesive. The experimental results show that the sandwich panel with a thicker core has lower thermal conductivity and higher flexural strength compared to the gypsum-based drywall. The heat and moisture performance of two wall structures were performed using the WUFI Pro simulation program. The results of the modeling analysis present that wall assembly with gypsum-based drywall has higher water content than multilayer sandwich panel. In addition, the multilayer sandwich panel shows a 4.6% lower annual heat flow compared to the reference wall.
35

Mechanical Effects of Moisture Content Variations in CLT-Structures

Zoormand, Hamidreza January 2024 (has links)
Cross-laminated timber (CLT) is an emerging sustainable engineered material with unique properties that in many ways make it superior to conventional construction material. CLT was invented in the 1990s and the volume produced have increased worldwide since then. It can be used in the load bearing structure for walls and floor slabs in the different typologies, e.g. residential and office buildings.The hygroscopic nature of wood allows it to exchange moisture with the surrounding environment. This may lead to an alteration of properties of wood-based materials such as CLT and can be accompanied by deformations and stresses. These effects influence the CLT’s structural stability, durability and safety.This study focuses on the consequences of moisture content variations in CLT structures, including mechanical properties like modulus of elasticity and bending stiffness (EI). Temperature and relative humidity were measured over three years in three positions along the thickness direction of a slab element on the first floor of House Charlie, a four-storey timber office building located in Växjö, Sweden.The investigation was carried out by mathematical modelling applying MATLAB® software aiming to find the moisture content as a function of time and thickness from the real-world data of House Charlie. The focus was on determining changes in modulus of elasticity and bending stiffness in response to moisture variation. The results showed that the moisture content within a slab of the building varied periodically following the seasonal variation throughout the years. The moisture content at the bottom of the slab was significantly lower compared to two other positions. According to the linear regression analysis, a linear relationship between the moisture content (MC) and positions across the CLT slab at each time step was defined. High R2 values, above 0.9, show the goodness of the fitted model. Applying the MC as a function of time and thickness into an available relationship of modulus of elasticity (E) could predict stiffness versus varied MC in the next step. The modulus of elasticity decreased with an increase in the moisture content over the studied period with a higher variation range at the bottom of the slab. In the final step, bending stiffness was assessed as a function of the changed moisture content. Bending stiffness increased periodically over time, attributed to overall more dry-out of the slab with time.The reported results of the present study give new insight into the behaviour of CLT structure over longer time periods. The recurring pattern in alterations stems from the reliance of bending stiffness on the modulus of elasticity function, which is in turn influenced by the linear relationship with moisture content exhibiting cyclic characteristics. The minimum and maximum values for EI were 3.5×1012 Nmm2 and 3.71×1012 Nmm2, respectively, a variation of approximately ±2.5% around the average. As the time steps increased, the bending stiffness also increased, given the progressive growth of the modulus of elasticity over time.
36

Identification des propriétés morphologiques et hygrothermiques hétérogènes de nouveaux composites hautes performances soumis à des cycles de vieillissement thermo-hygro-mécaniques / Identification of the heterogeneous morphological and hygrothermal properties within new high performance composites subjected to hygro-thermal-mechanical ageing cycles

Nguyen Thi Thuy, Quynh 28 October 2013 (has links)
Les nouveaux renforts NCF (Non Crimp Fabrics) sont adaptés aux procédés RTM (Resin Transfer Moulding) ou RIM (Resin Infusion Moulding) et permettent d’élaborer des structures aéronautiques complexes et de grande taille. Cependant, la présence de la couture peut conduire à une morphologie spécifique hétérogène du matériau avec un réseau 3D de zones riches en résine. Ces dernières, sous cycles de vieillissement hygrothermiques, sont à l’origine d’un état spécifique de fissuration. Ainsi, le présent travail se concentre sur la caractérisation morphologique et la fissuration d’une famille particulière des NCF - NC2 (Non Crimp New Concept), soumis au vieillissement hygrothermique cyclique. Pour cela, des cycles accélérés de vieillissement sont définis, diverses méthodes de caractérisation sont utilisées et différentes variables représentatives sont introduites. Au sujet de la morphologie du matériau, une hétérogénéité multi-échelles a été visualisée en surface et dans l’épaisseur en effectuant des coupes sous microscope 2D et de la reconstruction volumique sous tomographie 3D à RX. En ce qui concerne la fissuration hygrothermique, son initiation et son développement ainsi que sa morphologie ont été étudiés. L’influence de la morphologie et des paramètres de chargement au cours des cycles a été identifiée. De plus, afin de maîtriser le comportement des zones riches en résine, un couplage thermique/hygrothermique-mécanique à différents états de vieillissement du matériau a été décrit finement par des mesures de champs. Enfin, la tenue mécanique du matériau vieilli a été étudiée. / Stitched multiaxial laminates NCF (Non-Crimp Fabric) are potential candidate materials as new high performance preforms for manufacturing complex and large aeronautical composite structures by RTM (Resin Transfer Moulding) or infusion processes. Stitching within the preform leads to a particular morphology including 3D resin-rich regions and to a specific crack network developed in the bulk of the laminate when this is subjected to hygrothermal ageing cycles. The present work focuses on the characterization of the morphology and the crack development in a particular family of NCF - NC2 (Non Crimp New Concept) subjected to hygrothermal cycling. For this purpose, different accelerated thermal/hygrothermal ageing cycles were defined, various characterisation methods were adopted and representative variables were introduced. Regarding the structural morphology, a multi-scale heterogeneity of the NC2 could be visualized on the surface and through the thickness by optical microscopy as well as by the non-destructive volumetric analysis of X-Ray tomography. Regarding hygrothermal cracking, its initiation, its development and its morphology were studied. The influence of the morphology and the role of loading parameters on crack development were identified. Furthermore, for a better control of resin-rich region behaviour, the thermal/hygrothermal-mechanical coupling at different ageing states was investigated by full-field image correlation. Finally, the mechanical strength of the aged material was determined.
37

Durabilité des époxys ; application au collage structural aéronautique / Ageing of epoxys used for aeronautical bonded assemblies

Delozanne, Justine 18 December 2018 (has links)
Cette thèse porte sur l’étude multi-échelle du vieillissement d’assemblages collés à base de colle époxy employés dans le domaine aéronautique. Dans leurs conditions de service, ces matériaux sont soumis à un vieillissement humide, qui peut s’accompagner d’un vieillissement thermique essentiellement lors des phases de décollage des avions. De telles conditions rendent difficiles la prédiction de la durée de vie basée uniquement sur le suivi des propriétés mécaniques des assemblages (par des tests de cisaillement simple ou de clivage) lors d’essais de vieillissement normalisés qui prévalent, pour le moment, dans l’industrie. Notre objectif était donc une étude du vieillissement à l’échelle moléculaire afin d’en dériver, à terme, des lois cinétiques prédisant la vitesse de dégradation. Une première étape a mis en lumière les différences existantes entre le vieillissement humide (rupture adhésive) et thermique (rupture cohésive). La rupture cohésive observée en vieillissement thermique nous a conduits à étudier les mécanismes responsables de la chute de ténacité des époxys. Nous avons ainsi étudié les mécanismes de dégradation de l’adhésif, de deux de ses systèmes « représentatifs » (DGEBA-DDS et TGMDA-DDS). L’analyse des produits de dégradation dans ces réseaux et leurs composées modèles nous a conduits à élaborer un schéma cinétique intégrant la réactivité des principaux sites d’oxydation (sites au voisinage de certains hétéroatomes) qui peut décrire en partie l’oxydation des systèmes simples DGEBA-DDS et TGMDA-DDS mais devra être converti en modèle de co-oxydation (c’est-à-dire intégrant la participation simultanée de plusieurs sites) à la fois pour décrire plus complétement l’oxydation des systèmes simples mais surtout pour traiter des matériaux industriels de formulation complexe. Dans une dernière partie, nous nous sommes intéressés à la spécificité des assemblages collés lors d’un vieillissement humide. Cette dernière partie montre la nécessité de bien comprendre les phénomènes de diffusion à l’interface, et dans des matériaux oxydés, pour pouvoir prédire la durée de vie des adhésifs époxys employés pour les assemblages collés. / This thesis deals with a multi-scale study of the ageing of bonded assemblies based on epoxy adhesive used in the aeronautical field. In service conditions, these materials are subjected to humid ageing, which can be accompanied by thermal ageing essentially during the take-off phases of aircraft. Such conditions make it difficult to predict lifetime based only on the study of the mechanical properties of the assemblies (by single lap shear stress or wedge tests) in standardized ageing tests, which, for the moment, prevail in the industry. Our objective was therefore a study of ageing at the molecular scale in order to derive forward kinetic laws predicting the kinetics of degradation. A first step highlighted the differences between humid ageing (adhesive failure) and thermal aging (cohesive failure). The cohesive rupture observed in thermal ageing led us to study the mechanisms responsible for the decrease in toughness of the epoxies. We studied the mechanisms of degradation of the adhesive as well as two of its "representative" systems (DGEBA-DDS and TGMDA-DDS). The analysis of degradation products in these networks and their model compounds led us to develop a kinetic scheme introducing the reactivity of the main oxidation sites (site near certain heteroatoms) which can partly describe the oxidation of simple systems. In the future, DGEBA-DDS and TGMDA-DDS will have to be converted into a co-oxidation model (that means integrating the simultaneous participation of several sites) to describe entirely the oxidation of simple systems but especially for handled industrial materials of complex formulation. In a last part, we were interested in the specificity of bonded assemblies during humid aging. This last section displays the need to understand diffusion phenomena at the interface, and in oxidized materials, to predict the lifetime of epoxy adhesives used for bonded assemblies.
38

Etude des transferts hygrothermiques dans un matériau écologique / Study of hygrothermal transfer in an ecological material

Saidi, Meriem 10 December 2018 (has links)
Ce travail concerne une étude expérimentale du comportement hygrothermique de matériaux bio-sourcés sous la forme de briques de terre comprimée (BTC) et de briques de terre stabilisée (BTS). Nous avons déterminé les propriétés thermo-physiques et les isothermes de sorption de ces matériaux et évalué l'influence de l'ajout de stabilisants chimiques (ciment et chaux), sur leurs conductivités thermiques et leurs capacités hygroscopiques. Cette étude est complétée par une modélisation et une simulation numérique des transferts de chaleur et de masse dans une cavité ventilée dont l'une des parois verticales est composée de BTC. Les transferts hygrothermiques dans la paroi, assimilée à un milieux poreux, et dans la cavité ventilée sont décrits respectivement par le modèle de Luikov et les équations classiques de la convection mixte. Ces équations de transferts sont résolues par une méthode implicite aux différences finie, la méthode itérative de Gauss-Seidel et l'algorithme de Thomas. Nous avons analysé l'influence de la température, de l'humidité relative et de la vitesse de l'air ambiant, la densité du flux de chaleur appliqué sur la face externe de la paroi ainsi que la nature du matériau bio-sourcé sur les transferts hygrothermiques dans cette paroi et l'écoulement d'air dans la cavité. Les résultats montrent que la stabilisation chimique augmente la conductivité thermique de la BTC et réduit sa capacité de sorption. L'accroissement de la densité du flux de chaleur appliqué sur la face externe de la paroi de BTC provoque une augmentation des transferts de chaleur par mode latent et sensible entre la face interne de cette paroi et l'air qui s'écoule dans la cavité. / This work concerns an experimental study of the hygrothermal behavior of compressed earth bricks (CEB) and stabilized earth bricks (SEB). We determined its thermo-physical properties and sorption isotherms and evaluated the impact of the chemical stabilizers (cement and lime) addition on their thermal conductivities and hygroscopic capacities. This study is complemented by a modeling and numerical simulations of heat and mass transfers in a ventilated cavity one of its vertical walls is composed of CEB. The heat an mass transfers in this wall, assimilated to a porous medium, and in the ventilated cavity are respectively described by the Luikov model and the mixed convection equations. The transfer equations are solved using an implicit finite difference method, the Gauss–Seidel method and the Thomas algorithm. We have analyzed the effects on the heat and mass transfers within this wall and in the cavity of the temperature and relative humidity air, the inlet air velocity in the cavity and the heat flux density applied on the external face of the vertical wall composed of CEB. These results show that chemical stabilization increase the thermal conductivity of CEB and leads to a reduction in moisture sorption capacity. The increase of the heat flux density applied to the external face of the wall composed of CEB leads to an augmentation of the latent and sensible heat transfers between the inner face of this wall and the air flowing in the cavity.
39

Élaboration et caractérisation physique et hygrothermique d'un agro-matériau à base de pulpe de betterave et d'amidon. / Elaboration and physical and hygrothermal characterization of green materials made of beet pulp and starch.

Karaky, Hamze 27 November 2018 (has links)
Le processus de production du sucre industriel génère de grandes quantités de déchets et sous-produits. Parmi ces sous produits, la pulpe de betterave à sucre présente une voie de valorisation importante puisqu’en France, elle représente environ 1,3 millions de tonnes de matière sèche par an et en particulier en Champagne-Ardenne qui a produit 23% du betterave français en 2010. Cette thèse vise à élaborer un agro-matériau à base de pulpe de betterave et d’amidon pour l’usage dans le bâtiment afin de réduire les consommations énergétiques et d’améliorer le confort hygrothermique des occupants. Pour cela il est nécessaire d’étudier de façon approfondie les propriétés physico-chimiques de la pulpe de betterave et de son interaction avec l’amidon pour différentes formulations. Des techniques d’analyse de surface et d’imagerie microscopique seront utilisées. Les domaines de recherche à explorer concernent les transferts et les propriétés hygrothermiques, les propriétés mécaniques et acoustiques. / The industrial sugar production process and generates large volumes of waste and byproducts. One such byproduct is sugar beet pulp, which in France represents approximately 1,300,000 tons of dry matter per year especially in the region of Champagne-Ardenne which produced 23% of French sugar beet in 2010. The aim of this work is to elaborate a green material made of sugar beet pulp and starch as binder to be used in buildings in order to reduce energy consumption and increase indoor hygrothermal comfort. For this purpose, physico-chemical properties of beet pulp and its interaction with starch will be studied deeply and for different binder formulations. Surface analysis and microscopic imagery processing techniques will be used. Physical properties such as hygrothermal, mechanical and acoustic properties will be evaluated also.
40

Vapour Diffusion Control in Framed Wall Systems Insulated with Spray Polyurethane Foam

Smith, Rachel Cecilia January 2009 (has links)
The Intergovernmental Panel on Climate Change (IPCC) estimates that buildings account for 40% of the global energy use. The IPCC believes substantial improvements to building efficiency can be implemented easily by improving building enclosures through increased levels of insulation, optimizing glazing areas and minimizing infiltration of outside air.<br><br> Building enclosure design encompasses a wide range of parameters but the transport of heat, air and moisture through the enclosure is of primary importance. In predominantly cold Canadian climates, adequate thermal insulation, effective air barriers, and proper moisture control are crucial for energy savings and durability of the structure.<br><br> For decades, standard construction practice in Canada dictated a polyethylene sheet behind the interior drywall layer to serve as a vapour barrier for assemblies with traditional fibre-based cavity insulation. If the polyethylene sheet was sealed carefully enough it had the added benefit of reducing air leakage. Unfortunately, vapour barriers place the emphasis on the wrong moisture transport mechanism; air leakage can have 10 times or greater the wetting potential than vapour diffusion. Regardless, code enforcement personnel continued (and continue in some areas) to require vapour barriers in all climates, all assemblies, and all occupancies. To do so, they overrule the provision in Part 5 of The National Building Code of Canada that states vapour barriers are not required if it can be shown that the uncontrolled vapour diffusion will not affect the operation of the building and systems, or the health and safety of the occupants.<br><br> Foam plastic insulations perform better than fibre-based insulation in terms of the combined resistance to transmission of heat, air and vapour. This research investigated several types of open cell and closed cell spray polyurethane foam insulation in a variety of assembly configurations both in lab tests and hygrothermal simulations. The simulations were extrapolated to seven Canadian climate categories and three levels of interior relative humidity. The goal was to determine which spray polyurethane foam applications required the addition of a dedicated vapour barrier layer beyond what the foam itself could provide.<br><br> The moisture content of the oriented strand board sheathing layer (OSB) in the tested and modelled assemblies was used as the performance evaluation point because during wintertime vapour drives, the wood sheathing is the most likely condensing surface. Prolonged high moisture content (greater than 20%) in wood and wood products in wall assemblies leads to mould growth and decay. By this measure, if the wood sheathing moisture contents stay within the safe range (less than 19%) a vapour barrier is not necessary. The results are presented in Table 7-4.<br><br> The performance of assemblies containing closed cell spray foam was excellent for all climates and humidity levels. Their performance was equivalent to traditional wall assemblies incorporating a polyethylene sheet vapour barrier. The performance of assemblies with open cell spray foam was equivalent to traditional wall assemblies containing no vapour barrier. Open cell spray foam and fibreglass batt both require additional vapour control layers with all but the mildest Canadian climates with the lowest interior humidities. However, in those mild climates with low interior humidities, the only vapour control layer required was a medium permeance latex paint with primer.<br><br>

Page generated in 0.1035 seconds