• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 27
  • 14
  • 13
  • 9
  • Tagged with
  • 133
  • 75
  • 27
  • 25
  • 25
  • 25
  • 25
  • 22
  • 20
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

L’amélioration de la performance et de la structure cardiaque par la moxonidine chez les SHR est accompagnée d’une diminution des cytokines, de la MAPK p38 et de l’Akt

Farah, Georges 12 1900 (has links)
L’hypertrophie du ventricule gauche (HVG) est un processus adaptif et compensatoire qui se développe conséquemment à l’hypertension artérielle pour s’opposer à l’élévation chronique de la pression artérielle. L’HVG est caractérisée par une hypertrophie des cardiomyocytes suite à l’augmentation de la synthèse d’ADN, une prolifération des fibroblastes, une augmentation du dépôt de collagène et une altération de la matrice extracellulaire (MEC). Ces changements génèrent des troubles de relaxation et mènent au dysfonctionnement diastolique, ce qui diminue la performance cardiaque. La suractivité du système nerveux sympathique (SNS) joue un rôle essentiel dans le développement de l’hypertension artérielle et de l’HVG à cause de la libération excessive des catécholamines et de leurs effets sur la sécrétion des cytokines pro-inflammatoires et sur les différentes voies de signalisation hypertrophiques et prolifératives. Le traitement antihypertenseur avec de la moxonidine, un composé sympatholytique d’action centrale, permet une régression de l’HVG suite à une réduction soutenue de la synthèse d'ADN et d’une stimulation transitoire de la fragmentation de l'ADN qui se produit au début du traitement. En raison de l’interaction entre l’HVG, les cytokines inflammatoires, le SNS et leurs effets sur les protéines de signalisation hypertrophiques, l’objectif de cette étude est de détecter dans un modèle animal d’hypertension artérielle et d’HVG, les différentes voies de signalisation associées à la régression de l’HVG et à la performance cardiaque. Des rats spontanément hypertendus (SHR, 12 semaines) ont reçu de la moxonidine à 0, 100 et 400 µg/kg/h, pour une période de 1 et 4 semaines, via des mini-pompes osmotiques implantées d’une façon sous-cutanée. Après 4 semaines de traitement, la performance cardiaque a été mesurée par écho-doppler. Les rats ont ensuite été euthanasiés, le sang a été recueilli pour mesurer les concentrations des cytokines plasmatiques et les cœurs ont été prélevés pour la détermination histologique du dépôt de collagène et de l'expression des protéines de signalisation dans le ventricule gauche. Le traitement de 4 semaines n’a eu aucun effet sur les paramètres systoliques mais a permis d’améliorer les paramètres diastoliques ainsi que la performance cardiaque globale. Par rapport au véhicule, la moxonidine (400 µg/kg/h) a permis d’augmenter transitoirement la concentration plasmatique de l’IL-1β après une semaine et de réduire la masse ventriculaire gauche. De même, on a observé une diminution du dépôt de collagène et des concentrations plasmatiques des cytokines IL-6 et TNF-α, ainsi qu’une diminution de la phosphorylation de p38 et d’Akt dans le ventricule gauche après 1 et 4 semaines de traitement, et cela avec une réduction de la pression artérielle et de la fréquence cardiaque. Fait intéressant, les effets anti-hypertrophiques, anti-fibrotiques et anti-inflammatoires de la moxonidine ont pu être observés avec la dose sous-hypotensive (100 µg/kg/h). Ces résultats suggèrent des effets cardiovasculaires bénéfiques de la moxonidine associés à une amélioration de la performance cardiaque, une régulation de l'inflammation en diminuant les niveaux plasmatiques des cytokines pro-inflammatoires ainsi qu’en inhibant la MAPK p38 et Akt, et nous permettent de suggérer que, outre l'inhibition du SNS, moxonidine peut agir sur des sites périphériques. / Left ventricular hypertrophy (LVH) is an adaptive and compensatory process that develops in hypertension to oppose the chronic elevation of blood pressure. LVH is characterized by hypertrophy of cardiomyocytes following the increase in DNA synthesis, proliferation of fibroblasts, increased collagen deposition and alteration of the extracellular matrix (ECM). These changes generate relaxation and diastolic dysfunction which reduced cardiac performance. The overactivity of the sympathetic nervous system plays an essential role in the development of hypertension and left ventricular hypertrophy pathogenesis due to the excessive release of catecholamines and norepinephrine spillover and their effects on the secretion of pro-inflammatory cytokines and hypertrophic signaling pathways. Antihypertensive treatment with moxonidine, a centrally acting sympatholytic imidazoline compound, results in prevention of left ventricular hypertrophy, resulting from a sustained reduction of DNA synthesis and transient stimulation of DNA fragmentation that occur early after treatment. Due to the interaction between LVH, inflammatory cytokines, the SNS and their effects on hypertrophic signaling proteins, the objective of this study is to detect in an animal model of hypertension and LVH, the different signaling pathways associated with regression of LVH and cardiac performance. Spontaneously hypertensive rats (SHR, 12 weeks old) received moxonidine at 0, 100 and 400 µg/kg/h, for 1 and 4 weeks, via subcutaneously implanted osmotic minipumps. After 4 weeks of treatment, cardiac performance was measured by echo-Doppler. Then the rats were euthanized, blood was collected for measurement of plasma cytokines and hearts for histologic determination of collagen deposition and for measurement of left ventricular expression of downstream signaling proteins. Treatment for 4 weeks had no effect on systolic parameters but improved diastolic parameters and global cardiac performance. Compared to vehicle, moxonidine (400 µg/kg/h) transiently increased plasma IL-1β after 1 week and reduced left ventricular mass. Similarly, there was a decrease in collagen deposition and plasma concentrations of IL-6 and TNF-α, and decreased phosphorylation of p38 and Akt in the left ventricle after 1 and 4 weeks treatment, in association with reduced blood pressure and heart rate. Interestingly, the anti-hypertrophic, anti-fibrotic, and anti-inflammatory effects of moxonidine were observed with a sub-hypotensive dose (100µg/kg/h). These results suggest the beneficial cardiovascular effects of moxonidine associated with improved cardiac performance, regulation of inflammation by decreasing pro-inflammatory plasma levels, inhibition of p38 MAPK and Akt, and allow us to suggest that besides inhibiting the SNS, moxonidine may act on peripheral sites.
112

Cardiac cell fate control by the imidazoline I1 receptor/nischarin : application in cardiac pathology

Aceros Muñoz, Henry Adolfo 08 1900 (has links)
La moxonidine, un médicament antihypertenseur sympatholytique de type imidazolinique, agit au niveau de la médulla du tronc cérébral pour diminuer la pression artérielle, suite à l’activation sélective du récepteur aux imidazolines I1 (récepteur I1, aussi nommé nischarine). Traitement avec de la moxonidine prévient le développement de l’hypertrophie du ventricule gauche chez des rats hypertendus (SHR), associé à une diminution de la synthèse et une élévation transitoire de la fragmentation d’ADN, des effets antiprolifératifs et apoptotiques. Ces effets se présentent probablement chez les fibroblastes, car l’apoptose des cardiomyocytes pourrait détériorer la fonction cardiaque. Ces effets apparaissent aussi avec des doses non hypotensives de moxonidine, suggérant l’existence d’effets cardiaques directes. Le récepteur I1 se trouvé aussi dans les tissus cardiaques; son activation ex vivo par la moxonidine stimule la libération de l’ANP, ce qui montre que les récepteurs I1 cardiaques sont fonctionnels malgré l’absence de stimulation centrale. Sur la base de ces informations, en plus du i) rôle des peptides natriurétiques comme inhibiteurs de l’apoptose cardiaque et ii) des études qui lient le récepteur I1 avec la maintenance de la matrix extracellulaire, on propose que, à part les effets sympatholytiques centrales, les récepteurs I1 cardiaques peuvent contrôler la croissance-mort cellulaire. L’activation du récepteur I1 peut retarder la progression des cardiopathies vers la défaillance cardiaque, en inhibant des signaux mal adaptatifs de prolifération et apoptose. Des études ont été effectuées pour : 1. Explorer les effets in vivo sur la structure et la fonction cardiaque suite au traitement avec moxonidine chez le SHR et le hamster cardiomyopathique. 2. Définir les voies de signalisation impliquées dans les changements secondaires au traitement avec moxonidine, spécifiquement sur les marqueurs inflammatoires et les voies de signalisation régulant la croissance et la survie cellulaire (MAPK et Akt). 3. Explorer les effets in vitro de la surexpression et l’activation du récepteur I1 sur la survie cellulaire dans des cellules HEK293. 4. Rechercher la localisation, régulation et implication dans la croissance-mort cellulaire du récepteur I1 in vitro (cardiomyocytes et fibroblastes), en réponse aux stimuli associés au remodelage cardiaque : norépinephrine, cytokines (IL-1β, TNF-α) et oxydants (H2O2). Nos études démontrent que la moxonidine, en doses hypotensives et non-hypotensives, améliore la structure et la performance cardiaque chez le SHR par des mécanismes impliquant l’inhibition des cytokines et des voies de signalisation p38 MAPK et Akt. Chez le hamster cardiomyopathique, la moxonidine améliore la fonction cardiaque, module la réponse inflammatoire/anti-inflammatoire et atténue la mort cellulaire et la fibrose cardiaque. Les cellules HEK293 surexprimant la nischarine survivent et prolifèrent plus en réponse à la moxonidine; cet effet est associé à l’inhibition des voies ERK, JNK et p38 MAPK. La surexpression de la nischarine protège aussi de la mort cellulaire induite par le TNF-α, l’IL-1β et le H2O2. En outre, le récepteur I1 s’exprime dans les cardiomyocytes et fibroblastes, son activation inhibe la mort des cardiomyocytes et la prolifération des fibroblastes induite par la norépinephrine, par des effets différentiels sur les MAPK et l’Akt. Dans des conditions inflammatoires, la moxonidine/récepteur aux imidazolines I1 protège les cardiomyocytes et facilite l’élimination des myofibroblastes par des effets contraires sur JNK, p38 MAPK et iNOS. Ces études démontrent le potentiel du récepteur I1/nischarine comme cible anti-hypertrophique et anti-fibrose à niveau cardiaque. L’identification des mécanismes cardioprotecteurs de la nischarine peut amener au développement des traitements basés sur la surexpression de la nischarine chez des patients avec hypertrophie ventriculaire. Finalement, même si l’effet antihypertenseur des agonistes du récepteur I1 centraux est salutaire, le développement de nouveaux agonistes cardiosélectifs du récepteur I1 pourrait donner des bénéfices additionnels chez des patients non hypertendus. / Moxonidine, an antihypertensive sympatholytic imidazoline compound, reduces blood pressure by selective activation of non-adrenergic imidazoline I1-receptors (also known as nischarin) in brainstem medulla. Moxonidine prevents left ventricular hypertrophy development in hypertensive rats, associated with reduced cardiac DNA synthesis and early transient increase in DNA fragmentation. It is likely that the anti-proliferative and apoptotic effects occur in fibroblasts, as cardiomyocyte apoptosis may deteriorate cardiac function. The effects also occurred to sub-hypotensive doses, suggesting a blood-pressure-independent mechanism and pointing to a local cardiac action. Imidazoline I1-receptors have been identified in cardiac tissues, and their ex vivo activation by moxonidine stimulates ANP release, demonstrating that cardiac imidazoline I1-receptors are functional without the contribution of the central nervous system. Based on the above studies and on i) the role of natriuretic peptides in inhibition of myocardial cell apoptosis and ii) studies linking imidazoline I1-receptors to the maintenance of the extracellular matrix and PC12 cell survival, we propose that apart from centrally-mediated sympatholytic function, imidazoline I1-receptors in the heart may control cell growth and death. Activation of imidazoline receptors may delay the progression of cardiac pathologies into heart failure by inhibition of maladaptive proliferative signalling and downstream apoptotic pathways. In order to test this hypothesis studies were performed to: 1. Explore the in vivo effects of moxonidine on cardiac structure and function in SHR and cardiomyopathic hamsters. 2. Define the pathways involved in the observed changes following moxonidine treatment, specifically, on inflammatory markers and pathways involved in LVH and cardiac cell survival/death (MAPK and Akt). 3. Explore in vitro the effect of imidazoline I1-receptor activation by moxonidine, on cell survival by over-expressing nischarin in HEK293 cells, to circumvent the lack of specific imidazoline I1-receptor agonists and antagonists. 4. Investigate in vitro, imidazoline I1-receptor localization (cardiomyocytes and fibroblasts), regulation and implication in cell growth/death in response to cardiac remodelling-associated stimuli: norepinephrine, cytokines (IL-1β, TNF-α), and oxidants (H2O2). The studies reveal that hypotensive and sub-hypotensive concentrations of moxonidine improve cardiac structure and performance in SHR by mechanisms that involve inhibition of cytokines, p38MAPK, and Akt signalling pathways. In cardiomyopathic hamsters moxonidine improves cardiac performance, in association with differential inflammatory/anti-inflammatory responses that culminate in attenuated cardiomyocyte death and fibrosis and altered collagen type expression. HEK293 cells, transfected with nischarin cDNA, show increased viability/proliferation in response to moxonidine. The overall survival response is associated with moxonidine’s inhibition of ERK, JNK, and p38MAPK. Nischarin also opposes the reduced cell viability in response to oxidative stimuli (TNF-α, IL-1β and H2O2), with differential responses to moxonidine. Furthermore, the imidazoline I1-receptor is expressed in cardiac fibroblasts and myocytes and its activation inhibits norepinephrine-induced cardiomyocyte death and fibroblast proliferation, through differential effects on MAPKs and Akt. Moxonidine/imidazoline I1-receptor protects cardiomyocytes and facilitates elimination of myofibroblasts in inflammatory conditions, through opposite effects on JNK, p38MAPK and iNOS activity. These studies emphasize the potential importance of imidazoline I1-receptor/nischarin as an anti-hypertrophic and anti-fibrotic target. Identification of the cardio-protective mechanisms of cardiac nischarin could result in specifically-tailored cell/gene-driven nischarin treatments, which could be important for patients with heart disease. Also, while the antihypertensive action of centrally acting compounds is appreciated, new cardiac-selective I1-receptor agonists may confer additional benefit.
113

Evaluation de l'état de santé périnatal des enfants nés après assistance médicale à la procréation : trois études transversales réalisées à partir d'une cohorte monocentrique incluant 3829 issues de grossesse / Evaluation of the perinatal health of children born after assisted reproductive technologies : three cross-sectional studies carried out from a monocentric cohort including 3829 pregnancy outcomes

Beltran Anzola, Any Alejandra 15 November 2018 (has links)
L’Assistance Médicale à la Procréation est considérée comme une solution thérapeutique en cas d’infertilité. Au-delà des questions économiques et éthiques qui sont soulevées au niveau de la société, l’impact sur la santé des enfants nés grâce à ces techniques pose de nombreuses questions. En effet, ces techniques ont été introduites chez l’homme sans aucun essai clinique ni aucune évaluation sur les effets à long terme sur la santé.Dans ce travail, nous présentons trois études réalisées à partir d’une cohorte de plus de 3000 enfants (singletons et jumeaux) constituée depuis 1994 au sein du service de médecine et de biologie de la reproduction de l’Hôpital Saint Joseph à Marseille. Nous avons évalué différents indicateurs de la santé périnatale (la prématurité, le faible poids et la macrosomie à la naissance, l’hypotrophie et l’hypertrophie pondérales par rapport à l’âge gestationnel et les anomalies congénitales), chez des enfants conçus à partir de différentes techniques : fécondation in vitro classique, fécondation in vitro avec micromanipulation, fécondation après transfert d’embryon congelé et fécondation après vitrification et réchauffement ovocytaire.Nos résultats ont suggéré que l’Assistance Médicale à la Procréation, quelle que soit la technique mise en œuvre, était associée à des problèmes de santé chez les enfants nés grâce à ces techniques. Il est nécessaire de continuer à développer des systèmes de surveillance visant à rendre plus performant le suivi de l’état de santé à long terme des enfants concernés, d’autant plus que de nouvelles techniques et procédés continueront à être développés. / Assisted reproductive technologies are considered as a therapeutic solution in infertility cases. Beyond the economic and ethical questions that arise at the societal level, the impact on children’s health born after these techniques raises many questions. Indeed, these techniques have been introduced to the human without any clinical trial or assessment of long-term health effects. The main interest of this thesis is to contribute to the existing debate on the safety of these techniques regarding children’s health and well-being and to open new perspectives for future research on this subject.This research presents three studies based on a cohort of more than 3000 children (singletons and twins) constituted since 1994 in the Medicine and Reproductive Biology Department at the Saint Joseph Hospital in Marseille. The thesis evaluates various indicators of perinatal health (preterm birth, low birth weight and macrosomia, small and large for gestational age, and congenital anomalies) in children conceived from different techniques: classical In Vitro fertilisation, In Vitro fertilisation with micromanipulation, fertilisation after frozen embryo transfer and fertilisation after vitrified/warmed oocyte.The results suggest that assisted reproductive technologies, regardless of the technique used, were associated with health problems in children born through these techniques. There is a need to continue to develop surveillance systems to improve the long-term monitoring of the health status of children, especially as new techniques and procedures will continue to be developed.
114

Untersuchungen zur Myokardkontraktilität, elektrophysiologischen, biochemischen und molekularen Veränderungen bei kardialer Hypertrophie

Wagner, Kay-Dietrich 04 March 2004 (has links)
Die chronisch ischämische Herzkrankheit und der Myokardinfarkt (MI) sind die häufigsten Gründe für schwere Krankheit und vorzeitigen Tod in den entwickelten Ländern. Langfristig kommt es als Folge des Infarktes zur Kollateralgefäßbildung und zur Entwicklung einer kompensatorischen Herzhypertrophie. Eine Vielzahl von adaptativen Veränderungen in diesem Prozess konnte identifiziert werden. Wir konnten zeigen, dass in der akuten Phase nach MI Kontraktions- und Relaxationsgeschwindigkeit des Myokards erhöht waren. Die Expression der Hitzeschockproteine (HSP) 25 und 72 war verstärkt und korrelierte mit der Relaxationsgeschwindigkeit. In der chronischen Phase nach MI entwickelte sich eine signifikante Herzhypertrophie, die mit verminderter Kontraktions- und Relaxationsgeschwindigkeit einherging. Für die verlangsamte Relaxation war die verminderte Aktivität der Ca2+-ATPase des sarkoplasmatischen Retikulums (SERCA) als entscheidender Faktor anzusehen. Bei transgener Überexpression von Renin / Angiotensinogen ist die Relaxationsgeschwindigkeit des Myokards war wie auch nach MI durch geringere SERCA- Protein Expression vermindert. Die Empfindlichkeit der kontraktilen Funktion gegenüber Sauerstoffmangel und Reoxygenierung war nach MI gegenüber dem Kontrollmyokard geringer. Dafür konnten die verstärkte Expression der antioxidativ wirksamen HSPs und die erhöhte Aktivität der Glutathionperoxidase und der Superoxiddismutase, eine Verschiebung des Kreatinkinase (CK)- Isoenzymmusters und eine verminderte SERCA- Aktivität verantwortlich gemacht werden. Die Repolarisation der Aktionspotentiale der Kardiomyozyten war nach MI gegenüber den Kontrolltieren signifikant verlangsamt. Bereits eine 10-fach geringere artifizielle Dehnung des Gewebes führte nach MI im Vergleich zu Kontrolltieren zum Auftreten von Nachdepolarisationen und Extra-Aktionspotentialen. Ausschließlich in MI ließ sich durch die artifizielle Dehnung Vorhofflimmern auslösen, d.h. nach Myokardinfarkt war der mechano- elektrische Feedback Mechanismus empfindlicher. Die dehnungsinduzierten Veränderungen konnten durch Gadolinium unterdrückt werden, was auf eine Beteiligung von dehnungsaktivierten Ionenkanälen an den beobachteten Phänomenen schließen ließ. Auch kardiale Fibroblasten zeigten nach MI signifikante Änderungen ihrer elektrophysiologischen Eigenschaften, was zur Arrhythmieentstehung beitragen kann. Mittels molekularer Analysen konnten wir zeigen, dass der unter Sauerstoffmangel stabilisierte Transkriptionsfaktor Hif-1alpha in der Lage ist, den Promoter des Wilms' Tumor Suppressor Gens 1 (WT1) direkt transkriptionell zu aktivieren. Das führte zu verstärkter Expression von WT1 in den Herzen nach Myokardinfarkt, und zu verstärkter Expression von WT1 in Herz und Niere bei systemischer normobarer Hypoxie. Die WT1 Expression im Herzen nach MI ließ sich in den Koronargefäßen lokalisieren. Koexpression mit Proliferations- und Vaskulogenesemarkern ließ vermuten, dass WT1 nach MI eine wichtige Rolle für die Neovaskulogenese spielt. Die gewonnenen Ergebnisse tragen zum Verständnis der pathophysiologischen Veränderungen bei kardialer Hypertrophie nach Myokardinfarkt bei und eröffnen möglicherweise langfristig neue therapeutische Ansätze. / Chronic ischemic heart disease and myocardial infarction are the most common causes for morbidity and mortality in industrialized countries. A survived myocardial infarction (MI) results in a long run in collateral formation and the development of cardiac hypertrophy. A variety of adaptive responses in this process had been identified. We could show that in the acute phase after Mi in rats, contraction- and relaxation rates of the myocardium are increased. The higher relaxation rate correlates to an increased expression of heat shock proteins. In the chronic phase after MI, with the development of cardiac hypertrophy, contraction and relaxation rates decrease. The decrease in the relaxation rate could be attributed to a reduced activity of the Ca- ATPase of the sarcoplasmic reticulum (SERCA2). Transgenic overexpression of renin / angiotensinogen also resulted in a reduced SERCA2 expression and, consequently, lower relaxation rate. The susceptibility of contractile function to hypoxia - reoxygenation was reduced after MI compared to sham operated control animals. The lower susceptibility to hypoxia - reoxygenation could be attributed to an increased expression of heat shock proteins, higher activities of the antioxidant enzymes glutathionperoxidase and superoxiddismutase, shifts in the isoenzyme distribution of the creatine kinase, and a reduced SERCA2 activity. Repolarization of cardiomyocyte action potentials was found to be delayed after MI. A 10-fold lower artificial stretch of the tissue after MI than after sham operation caused afterdepolarizations and extra action potentials. Higher artificial stretch caused atrial fibrillation only after MI suggesting an intensified mechano-electrical feedback mechanism after MI. Stretch- induced electrical abnormalities could be suppressed by gadolinium suggesting the involvement of stretch-activated ion channels in the electrical abnormalities. Also electrophysiological properties of cardiac fibroblasts were significantly altered after MI, which may contribute to the increased risk for arrhythmia after infarction. Furthermore, we could show that the Hif-1alpha transcription factor, which is stabilized under hypoxic conditions is capable to directly activate the Wilms'' tumor suppressor 1 (WT1) transcriptionally. This leads to an increased expression of WT1 in the heart after MI and in heart and kidneys after systemic hypoxia. After MI, WT1 is expressed mainly in coronary vessels. Co-expression of WT1 with markers of proliferation and vasculogenesis suggests a role of WT1 in neovasculogenesis. These findings contribute to our understanding of pathophysiological alterations in the development of cardiac hypertrophy after MI and may contribute to the development of new therapeutic approaches.
115

Rôles et mécanismes d’action de la protéine Epac dans l’hypertrophie cardiaque / Functions and signaling of Epac protein in cardiac hypertrophy

Laurent, Anne-Coline 17 July 2013 (has links)
Les catécholamines induisent la synthèse d’AMPc par une stimulation des récepteurs β-adrénergiques et contrôlent ainsi la fonction cardiaque en activant une pléiade de voies de signalisation intracellulaires. Les protéines Epac sont des facteurs d’échange pour les petites protéines G et sont directement activés par l’AMPc. Devant l’importance de la voie β-adrénergique dans la physiopathologie cardiaque et dans le but de mieux comprendre la régulation des processus cellulaires dépendants de l’AMPc dans le cœur, il apparaît essentiel de caractériser le rôle des facteurs d’échange Epac dans le myocarde. Dans une première partie, cette étude démontre que les effets de Epac sur l’hypertrophie des cardiomyocytes ventriculaires de rats nouveaux nés requièrent les GTPases H-Ras et Rap2B. Epac active la voie PLC/IP3/Ca2+ qui est nécessaire pour l’activation de H-Ras. Au niveau transcriptionnel, Epac induit l’export nucléaire de HDAC4 permettant l’activation d’un programme génique d’hypertrophie. Dans une deuxième partie, cette étude révèle l’implication de Epac1 dans l’hypertrophie des cardiomyocytes in vivo, chez la souris. La délétion de Epac1 protège du remodelage cardiaque induit par l’activation prolongée des récepteurs β-adrénergiques et améliore la fonction cardiaque. La surexpression de Epac1 spécifiquement dans le myocarde entraîne une hypertrophie des cardiomyocytes. Par ailleurs, la voie β-AR/Epac1 induit l’accumulation de protéines ubiquitinylées et provoque l’activation du processus d’autophagie in vitro et in vivo. L’autophagie protège des effets délétères de la voie β-adrénergique/Epac en participant à l’élimination des agrégats protéiques et en contrant les effets hypertrophiques de Epac1. Ces résultats ouvrent de nouvelles perspectives pour le traitement de l’hypertrophie et de l’insuffisance cardiaque. / Catecholamines regulate cardiac function by stimulating β-adrenergic receptors (β-AR), leading to cAMP production and activation of a multiplicity of signaling pathways. Epac proteins are exchange factors for small G proteins which are directly activated by cAMP. Given the importance of the β-adrenergic pathway in cardiac physiopathology, it becomes essential to characterize functions of Epac protein in myocardium. In a first part, this study shows that H-Ras and Rap2B GTPases are involved in Epac-induced neonatal rat cardiac myocytes hypertrophy. Epac induces activation of the PLC/IP3/Ca2+ pathway which is necessary for H-Ras activation. At the transcriptional level, Epac causes HDAC4 nuclear export leading to activation of a hypertrophic gene program. In a second part, this study reveals implication of Epac1 in cardiac hypertrophy in vivo. Deletion of Epac1 in mice protects from cardiac remodeling induced by chronic isoproterenol infusion and enhances cardiac function. Cardiac specific overexpression of Epac1 in mice induces cardiac myocytes hypertrophy. Interestingly, β-AR/Epac1 pathway triggers ubiquitinated proteins accumulation and activation of autophagy both in vitro and in vivo. By eliminating aggregates and by counteracting hypertrophic effects of Epac, autophagy protects from deleterious effects of the β-AR/Epac pathway. These results open news insights into the treatment of cardiac hypertrophy and heart failure.
116

Functional Analysis of Heat Shock Protein HSPA4

Barakat, Amal Zohir Abo-Zeid 28 October 2010 (has links)
No description available.
117

Einfluss körperlichen Übergewichts auf die Entwicklung einer kardialen Hypertrophie und die kardialen Umbauprozesse nach experimenteller Myokardischämie / Impact of overweight on the development of cardiac hypertrophy and cardiac remodeling resulting from myocardial infarction

Bremen, Eva Sabine 19 October 2011 (has links)
No description available.
118

Modulation of Oxytocin Receptors in Right Ventricular Hypertrophy

Wang, Yang 04 1900 (has links)
L’hypertension pulmonaire (HP) est une maladie dont l’étiologie est inconnue et qui entraîne ultimement une défaillance du ventricule droit (VD) et le décès. L’HP peut être induite chez le rat par la la monocrotaline (MCT), un alcaloïde pyrrolizidique extrait de la plante Crotalaria Spectabilis, causant des lésions à l’endothélium des artères pulmonaires, menant à un épaississement de ces dernières et à une augmentation de la résistance vasculaire. Ceci à pour conséquence de causer une hypertrophie du VD, de l’inflammation, une dysfonction endothéliale NO-dépendante des artères coronariennes et une augmentation des peptides natriurétiques circulants. Objectif: Nous avons testé l’hypothèse selon laquelle l’étiopathologie de l’HP impliquerait le récepteur à ocytocine (OTR) dû à son implication fonctionnelle avec les cytokines inflammatoires et la libération du peptide natriurétique atrial (ANP) et du NO. Méthodes: Des rats mâles Sprague-Dawley pesant 220-250g reçurent une seule injection sous-cutanée de MCT (60 mg/kg). 6 à 7 semaines (46±1 jours) suivant l’injection, les rats furent sacrifiés et l’expression génique et protéique fut déterminée par PCR en temps réel et par western blot, respectivement, dans le VD et le ventricule gauche (VG) Résultats: Les rats traités au MCT démontrèrent une augmentation significative du VD. Une hypertrophie du VD était évidente puisque le ratio du VD sur le VG ainsi que le poids du septum étaient près de 77% plus élevés chez les rats traités au MCT que chez les rats contrôles. Le traitement au MCT augmenta l’expression génique d’ANP (3.7-fois dans le VG et 8-fois dans le VD) ainisi que le NP du cerveau (2.7-fois dans le VG et 10-fois dans le VD). Les transcrits de trois récepteurs de NP augmentèrent significativement (0.3-2 fois) seulement dans le VD. L’expression protéique de la NO synthase (iNOS) fut également augmentée de façon sélective dans le VD. Par contre, les transcripts de NOS endothéliale et de NOS neuronale étaient plus élevés (0.5-2 fold) dans le VG. L’ARNm et l’expression protéique d’OTR furent diminués de 50% dans le VD, tandis qu’une augmentation de l’expression des cytokines IL-1β and IL-6 fut observée. L’ARNm de Nab1, un marqueur d’hypertrophie pathologique, fut augmentée de deux-fois dans le VD. Conclusion: L’augmentation d’expression génique de NP dans le VD des rats traités au MCT est associée à une augmentation des transcripts du récepteur NP, suggérant une action locale de NP dans le VD durant l’HP. L’expression d’OTR est atténuée dans le VD, possiblement par des cytokines inflammatoires puisque le promoteur du gène de l’OTR contient de multiples éléments de réponse aux interleukines. Diminuer l’expression d’OTR dans le VD durant l’hypertension pulmonaire pourrait influencer de manière positive la fonction cardiaque car l’OTR régule la contractilité et le rythme cardiaque. Mots clés: hypertension pulmonaire, hypertrophie du ventricule droit monocrotaline, récepteur à ocytocine, inflammation, peptides natriurétiques. / Pulmonary hypertension (PH) is a disease of unknown etiology that ultimately causes failure of right ventricle (RV) with a lethal outcome. PH can be induced in the rat with monocrotaline (MCT), a pyrrolizidine alkaloid from the plant Crotolaria spectabilis that damages the pulmonary artery endothelium leading to thickening of the pulmonary arteries and increased vascular resistance. This subsequently results in RV hypertrophy, inflammation, nitric oxide (NO)-associated coronary endothelial dysfunction and increment of natriuretic peptides (NP) in the circulation. Objective: We verified hypothesis that the etiopathogenesis of PH involves the oxytocin receptor (OTR) because of its functional association with inflammatory cytokines and release of atrial natriuretic peptide (ANP) and NO. Methods: Male Sprague-Dawley rats weighing 220-250g received a single subcutaneous injection of 60 mg/kg of MCT. Six to 7 weeks (46±1 days) following the injection, rats were sacrificed and gene and protein expression were detected by real-time PCR and western-blot analysis, respectively, in the RV and LV (left ventricle). Results: MCT-treated rats displayed significant increases in RV weight. RV hypertrophy was evident as the ratio of the RV to LV plus septum weight was nearly 77% higher in MCT-treated rats compared to control rats. MCT treatment increased transcripts of ANP (3.7-fold in the LV and 8-fold in RV) and brain NP (2.7-fold in the LV and 10-fold in RV). Transcripts for three NP receptors significantly increased (0.3-2 fold) only in the RV. iNOS (inducible NO synthase) protein expression also increased selectively in the RV. In contrast, the endothelial NOS and neural NOS transcripts heightened (0.5-2 fold) in the LV. Both OTR mRNA and protein were decreased by 50% in the RV, whereas an up-regulation of cytokines IL-1β and IL-6 was observed. Nab1 mRNA, a marker of pathological hypertrophy, increased two-fold in the RV. Conclusion: Increased gene expression of NP in the RV of the MCT-treated rat correlates with upregulation of NP receptor transcripts indicating local NP action in the RV during PH. OTR expression is decreased in the RV possibly by inflammatory cytokines, IL-1 and IL-6 because OTR promoter region contains multiple putative interleukin-response elements. Lowering OTR in RV during pulmonary hypertension can influence cardiac function since OT regulates heart rate and cardiac contractility and is linked with cardioprotective system ANP and NO. Keywords: pulmonary hypertension, right ventricular hypertrophy, monocrotaline, oxytocin receptor, inflammation, natriuretic peptides.
119

Endothelin-1 and H2O2-induced signaling in vascular smooth muscle cells : modulation by CaMKII and Nitric oxide

Bouallegue, Ali 08 1900 (has links)
L’endothéline-1 (ET-1) est un peptide vasoactif extrêmement puissant qui possède une forte activité mitogénique dans les cellules du muscle lisse vasculaire (VSMCs). Il a été démontré que l’ET-1 est impliquée dans plusieurs maladies cardio-vasculaires, comme l’athérosclérose, l'hypertension, la resténose après l'angioplastie, l’insuffisance cardiaque et l'arythmie. L’ET-1 exerce ses effets via plusieurs voies de signalisation qui incluent le Ca2+, les protéines kinases activées par les mitogènes (MAPKs) y compris les kinases régulées par les signaux extracellulaires (ERK1/2) et la voie de la phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB). Plusieurs études ont démontré que les dérivés réactifs de l'oxygène (ROS) peuvent jouer un rôle important dans la signalisation d’ERK1/2 et de PKB induite par plusieurs facteurs de croissance et hormones. Nous avons précédemment montré que l'ET-1 produit des ROS qui agissent comme médiateur de la signalisation cellulaire induite par l’ET-1. Le peroxyde d’hydrogène (H2O2), une molécule qui appartient à la famille des ROS, peut activer les voies de la MAPK et de la PKB dans les VSMCs. Par ailleurs, nos résultats suggèrent également que le Ca2+ et la calmoduline (CaM) sont essentiels pour la phosphorylation d’ERK1/2, de p38 et de PKB induite par le H2O2 dans les VSMCs. La Ca2+/CaM-dependent protein kinases II (CaMKII) est une sérine/thréonine protéine kinase multifonctionnelle activée par le Ca2+/CaM. Il a été montré que la CaMKII est impliquée dans les voies de signalisation induite par le H2O2 dans les cellules endothéliales. Cependant, le rôle de la CaMKII dans la phosphorylation d’ERK1/2, de PKB et de la proline-rich tyrosine kinase 2 (Pyk2) induite par l’ET-1 et le H2O2, de même que son rôle dans l’effet hypertrophique et prolifératif de l’ET-1 dans les VSMCs demeure inexploré. Le monoxyde d’azote (NO) est une molécule vasoactive impliquée dans la régulation de plusieurs réponses hormonales. Le NO peut moduler la signalisation contrôlant la croissance cellulaire induite par plusieurs agonistes d’où son rôle protecteur dans le système vasculaire. Des études ont montré que le NO peut inhiber la voie de Ras/Raf/ERK1/2 et la voie de PKB induite par le facteur de croissance endothélial (EGF) et l’angiotensine II (Ang II). Beaucoup d’autres travaux ont mis en évidence un cross-talk entre les voies de signalisation activées par l’ET-1 et le NO. La capacité du NO à inhiber la signalisation intracellulaire induite par l’ET-1 dans les VSMCs demeure inconnue. Le travail présenté dans cette thèse vise à déterminer le rôle du système Ca2+-CaM-CaMKII dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 et le H2O2 ainsi que son rôle dans la croissance et la prolifération cellulaire induites par l’ET-1 dans les VSMCs. Nous avons également testé le rôle du NO dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 ainsi que la synthèse protéique induite par l’ET-1. Dans la première partie de notre étude, nous avons examiné le rôle de la CaMKII dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs en utilisant trois approches différentes i.e. l'usage d'inhibiteurs pharmacologiques, un peptide auto-inhibiteur de la CaMKII (CaMKII AIP) et la technique de siRNA. Nous avons démontré que la CaMKII est impliquée dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs. Des études précédentes ont montré à l’aide d’inhibiteurs pharmacologiques comme le KN-93 que l'Ang II et les agents induisant une augmentation de la concentration en Ca2+ intracellulaire comme l’ionomycine, provoquent la phosphorylation d’ERK1/2 via la CaM dans les VSMCs. Cependant, en utilisant différentes approches, nos études ont montré pour la première fois une implication de la CaMKII dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs. Nous avons également rapporté pour la première fois, un rôle crucial de la CaMKII dans la pathophysiologie vasculaire associée à l’ET-1 puisque l’activation de la CaMKII joue un rôle important dans l’hypertrophie et la croissance cellulaire. Dans la deuxième partie, à la lumière des études précédentes qui montraient que les ROS agissent comme médiateurs de la signalisation induite par l’ET-1 dans les VSMCs, nous avons examiné si la CaMKII est également impliquée dans l’activation des voies d’ERK1/2 et de PKB induite par le H2O2. En utilisant des approches pharmacologiques et moléculaires, nous avons montré, comme pour l’ET-1, que la CaMKII joue un rôle critique en amont de la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par le H2O2. Nous avons précédemment montré que la transactivation du récepteur de type I de l’insulin-like growth factor (IGF-1R) est nécessaire à l’activation de PKB induite par le H2O2. Pour cette raison, nous avons examiné l'effet de l'inhibition de la CaMKII par l’inhibiteur pharmacologique ou par le knock-down de la CaMKII sur la phosphorylation d’IGF-1R induite par le H2O2. Les résultats démontrent que la CaMKII joue un rôle critique en amont de la phosphorylation d’ERK1/2, de PKB et d’IGF-1R induite par le H2O2. Dans la troisième partie de notre étude, nous avons également examiné le mécanisme moléculaire par lequel le NO exerce ses effets anti-mitogéniques et anti-hypertrophiques dans la signalisation induite par l’ET-1. En testant l'effet de deux différents donneurs de NO (S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP)) et un inhibiteur de NO synthase, le N (G)-nitro-L-arginine methyl ester (L-NAME) dans la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1, nous avons observé que le NO a un effet inhibiteur sur la signalisation induite par l’ET-1 dans les VSMCs. Par ailleurs, le 8-Br-GMPc, un analogue du GMPc, a un effet similaire à celui des deux donneurs du NO, tandis que l’oxadiazole quinoxaline (ODQ), un inhibiteur de la guanylate cyclase soluble, inverse l'effet inhibiteur du NO. Nous concluons que le NO diminue la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 d’une manière dépendante du GMPc. Le NO inhibe aussi les effets hypertrophiques de l’ET-1 puisque le traitement avec le SNAP diminue la synthèse des protéines induite par l’ET-1. En résumé, les études présentées dans cette thèse démontrent que l’ET-1 et le H2O2 sont des activateurs de la phosphorylation d’ERK1/2, de PKB et de Pyk2 dans les VSMCs et que la CaMKII s’avère nécessaire pour ce processus, en agissant en amont de l’activation de IGF-1R induite par le H2O2 dans les VSMCs. Elles montrent également que le NO inhibe la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1. Enfin, nos travaux suggèrent aussi que l’activation de la CaMKII stimule la synthèse des protéines et de l’ADN induites par l’ET-1 alors que le NO inhibe la synthèse des protéines induite par ET-1. Mots clés: Endothéline ; Peroxyde d'hydrogène ; CaMKII ; Monoxyde d’azote ; Système vasculaire ; PKB; ERK1/2; IGF-1R; Hypertrophie. / Endothelin-1 has emerged as an extremely potent vasoactive peptide exhibiting potent mitogenic activity in vascular smooth muscle cells (VSMCs). A critical role of ET-1 in many cardiovascular diseases, such as atherosclerosis, hypertension, restenosis after angioplasty, heart failure and arrhythmia has been suggested. ET-1 exerts its effects through multiple signaling pathways which include Ca2+, mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinases 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB)/Akt pathways. Several studies have also demonstrated that reactive oxygen species (ROS) may play an important role in mediating the signals of several growth factors and peptides hormones linked to these pathways. We have previously reported that ET-1 generates ROS which mediates ET-1-induced signaling. H2O2, an important ROS molecule, activates both MAPKs and PKB signaling in VSMCs. In addition, we have also suggested that Ca2+ and CaM are essential to trigger H2O2-induced ERK1/2, p38 and PKB phosphorylation in A-10 VSMCs. Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase which is believed to transduce the downstream effects of Ca2+/CaM, and has been shown to be involved in H2O2-induced signaling in endothelial cells. However, a role of CaMKII in mediating ET-1 and H2O2-induced ERK1/2, PKB, Pyk2 phosphorylation, as well as its effect on hypertrophic and proliferative responses of ET-1 in VSMCs remains unexplored. Interestingly, a role of CaMKII in several cardiovascular diseases has been reported and studies showing that pharmacological inhibition of CaMKII, by using KN-93, prevent arrhythmic activity improved vascular dysfunction in diabetes or in Ang II-induced hypertension. Nitric oxide (NO) is also an important reactive species and vasoactive molecule involved in the regulation of several hormone-mediated responses. NO has been suggested to modify growth-promoting signaling events and thus may serve as a vascular protective agent. Studies have shown that NO can attenuate EGF and Ang II-induced Ras/Raf/ERK1/2 as well as increase in PKB phosphorylation signaling pathways. There is also evidence for a potential cross-talk between ET-1 and NO, however not much information on the ability of NO to modify ET-1-induced signaling in VSMCs is available. Therefore, the work presented in this thesis has investigated the role of CaMKII system in ET-1 and H2O2-induced ERK1/2, PKB and Pyk2 phosphorylation, as well as in cell growth and proliferation evoked by ET-1 in VSMCs. We also investigated the role of NO in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation as well as protein synthesis. In the first part of our studies, by using three different approaches, i.e. use of pharmacological inhibitors, a CaMKII AIP (autoinhibitor peptide) and siRNA techniques, we have investigated the involvement of CaMKII in ET-1-induced ERK1/2 and PKB phosphorylation in A-10 VSMC. We have demonstrated that CaMKII mediates the effect of ET-1 on ERK1/2 and PKB phosphorylation in A-10 VSMC. By using pharmacological inhibitor alone such as, KN-93, earlier studies have reported that AngII and Ca2+ elevating agents, such as ionomycin, exert their effects on ERK1/2 phosphorylation via CaM-dependent pathways in VSMC. However, by using multiple approaches, our studies, have provided the first evidence to suggest an involvement of CaMKII in mediating the effect of ET-1 on ERK1/2 and PKB phosphorylation in A-10 VSMC. We have also reported for the first time, a crucial role of CaMKII in vascular pathophysiology related to ET-1 by regulating the growth and hypertrophic events by using the technique of [3H]leucine and [3H]thymidine incorporation. In the second part, in view of earlier studies showing that ROS mediates ET-1-induced signaling events in VSMC, we have also investigated if CaMKII is also implicated in H2O2-induced activation of ERK1/2 and PKB pathways. By using both pharmacological and molecular approaches, we show that similar to ET-1, CaMKII serves as a critical upstream component in triggering H2O2-induced ERK1/2, PKB and Pyk2 phosphorylation in VSMC. Furthermore, since we have previously reported that IGF-1R transactivation is needed for H2O2-induced PKB activation, we have investigated the effect of CaMKII inhibition and knocking-down on IGF-1R phosphorylation evoked by H2O2. Taken together, these results demonstrate that CaMKII plays a critical upstream role in mediating the effect of H2O2 on ERK1/2, PKB and IGF-1R phosphorylation. In the third part of our studies, we have investigated the molecular mechanism by which NO exerts its anti-mitogenic and anti-hypertrophic effect on ET-1-induced signaling. By testing the effect of two different NO donors (SNAP and SNP) and L-NAME, an inhibitor of NO synthase, in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation, we observed that NO has an inhibitory effect in ET-1-induced signaling in VSMC. In addition, 8-Br-cGMP, an analogue of cGMP, exerted similar effect to that of NO donors whereas, oxadiazole quinoxalin (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), reversed the inhibitory effect of NO. We conclude that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB and Pyk2 and also antagonized the hypertrophic effects of ET-1, since SNAP treatment decreased the protein synthesis induced by ET-1. In summary, the studies presented in this thesis demonstrate that both ET-1 and H2O2 induce ERK1/2, PKB and Pyk2 phosphorylation in VSMC and CaMKII activation is required for these events. We have also shown that CaMKII phosphorylation is upstream of H2O2-induced IGF-1R transactivation in VSMC. We have also provided evidence that NO attenuates ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation. Finally, we have established that CaMKII activation stimulates ET-1-evoked protein and DNA synthesis, yet NO attenuates protein synthesis induced by ET-1. Keywords : Endothelin; Hydrogen peroxide; CaMKII; Nitric oxide; Vascular; Protein Kinase B; Extracellular Signal-Regulated Kinase1/2; IGF-1R; Growth.
120

L’amélioration de la performance et de la structure cardiaque par la moxonidine chez les SHR est accompagnée d’une diminution des cytokines, de la MAPK p38 et de l’Akt

Farah, Georges 12 1900 (has links)
L’hypertrophie du ventricule gauche (HVG) est un processus adaptif et compensatoire qui se développe conséquemment à l’hypertension artérielle pour s’opposer à l’élévation chronique de la pression artérielle. L’HVG est caractérisée par une hypertrophie des cardiomyocytes suite à l’augmentation de la synthèse d’ADN, une prolifération des fibroblastes, une augmentation du dépôt de collagène et une altération de la matrice extracellulaire (MEC). Ces changements génèrent des troubles de relaxation et mènent au dysfonctionnement diastolique, ce qui diminue la performance cardiaque. La suractivité du système nerveux sympathique (SNS) joue un rôle essentiel dans le développement de l’hypertension artérielle et de l’HVG à cause de la libération excessive des catécholamines et de leurs effets sur la sécrétion des cytokines pro-inflammatoires et sur les différentes voies de signalisation hypertrophiques et prolifératives. Le traitement antihypertenseur avec de la moxonidine, un composé sympatholytique d’action centrale, permet une régression de l’HVG suite à une réduction soutenue de la synthèse d'ADN et d’une stimulation transitoire de la fragmentation de l'ADN qui se produit au début du traitement. En raison de l’interaction entre l’HVG, les cytokines inflammatoires, le SNS et leurs effets sur les protéines de signalisation hypertrophiques, l’objectif de cette étude est de détecter dans un modèle animal d’hypertension artérielle et d’HVG, les différentes voies de signalisation associées à la régression de l’HVG et à la performance cardiaque. Des rats spontanément hypertendus (SHR, 12 semaines) ont reçu de la moxonidine à 0, 100 et 400 µg/kg/h, pour une période de 1 et 4 semaines, via des mini-pompes osmotiques implantées d’une façon sous-cutanée. Après 4 semaines de traitement, la performance cardiaque a été mesurée par écho-doppler. Les rats ont ensuite été euthanasiés, le sang a été recueilli pour mesurer les concentrations des cytokines plasmatiques et les cœurs ont été prélevés pour la détermination histologique du dépôt de collagène et de l'expression des protéines de signalisation dans le ventricule gauche. Le traitement de 4 semaines n’a eu aucun effet sur les paramètres systoliques mais a permis d’améliorer les paramètres diastoliques ainsi que la performance cardiaque globale. Par rapport au véhicule, la moxonidine (400 µg/kg/h) a permis d’augmenter transitoirement la concentration plasmatique de l’IL-1β après une semaine et de réduire la masse ventriculaire gauche. De même, on a observé une diminution du dépôt de collagène et des concentrations plasmatiques des cytokines IL-6 et TNF-α, ainsi qu’une diminution de la phosphorylation de p38 et d’Akt dans le ventricule gauche après 1 et 4 semaines de traitement, et cela avec une réduction de la pression artérielle et de la fréquence cardiaque. Fait intéressant, les effets anti-hypertrophiques, anti-fibrotiques et anti-inflammatoires de la moxonidine ont pu être observés avec la dose sous-hypotensive (100 µg/kg/h). Ces résultats suggèrent des effets cardiovasculaires bénéfiques de la moxonidine associés à une amélioration de la performance cardiaque, une régulation de l'inflammation en diminuant les niveaux plasmatiques des cytokines pro-inflammatoires ainsi qu’en inhibant la MAPK p38 et Akt, et nous permettent de suggérer que, outre l'inhibition du SNS, moxonidine peut agir sur des sites périphériques. / Left ventricular hypertrophy (LVH) is an adaptive and compensatory process that develops in hypertension to oppose the chronic elevation of blood pressure. LVH is characterized by hypertrophy of cardiomyocytes following the increase in DNA synthesis, proliferation of fibroblasts, increased collagen deposition and alteration of the extracellular matrix (ECM). These changes generate relaxation and diastolic dysfunction which reduced cardiac performance. The overactivity of the sympathetic nervous system plays an essential role in the development of hypertension and left ventricular hypertrophy pathogenesis due to the excessive release of catecholamines and norepinephrine spillover and their effects on the secretion of pro-inflammatory cytokines and hypertrophic signaling pathways. Antihypertensive treatment with moxonidine, a centrally acting sympatholytic imidazoline compound, results in prevention of left ventricular hypertrophy, resulting from a sustained reduction of DNA synthesis and transient stimulation of DNA fragmentation that occur early after treatment. Due to the interaction between LVH, inflammatory cytokines, the SNS and their effects on hypertrophic signaling proteins, the objective of this study is to detect in an animal model of hypertension and LVH, the different signaling pathways associated with regression of LVH and cardiac performance. Spontaneously hypertensive rats (SHR, 12 weeks old) received moxonidine at 0, 100 and 400 µg/kg/h, for 1 and 4 weeks, via subcutaneously implanted osmotic minipumps. After 4 weeks of treatment, cardiac performance was measured by echo-Doppler. Then the rats were euthanized, blood was collected for measurement of plasma cytokines and hearts for histologic determination of collagen deposition and for measurement of left ventricular expression of downstream signaling proteins. Treatment for 4 weeks had no effect on systolic parameters but improved diastolic parameters and global cardiac performance. Compared to vehicle, moxonidine (400 µg/kg/h) transiently increased plasma IL-1β after 1 week and reduced left ventricular mass. Similarly, there was a decrease in collagen deposition and plasma concentrations of IL-6 and TNF-α, and decreased phosphorylation of p38 and Akt in the left ventricle after 1 and 4 weeks treatment, in association with reduced blood pressure and heart rate. Interestingly, the anti-hypertrophic, anti-fibrotic, and anti-inflammatory effects of moxonidine were observed with a sub-hypotensive dose (100µg/kg/h). These results suggest the beneficial cardiovascular effects of moxonidine associated with improved cardiac performance, regulation of inflammation by decreasing pro-inflammatory plasma levels, inhibition of p38 MAPK and Akt, and allow us to suggest that besides inhibiting the SNS, moxonidine may act on peripheral sites.

Page generated in 0.0809 seconds