61 |
Evaluation of maize and soybean intercropping on soil quality and nitrogen transformations in the Argentine PampaRegehr, Alison January 2014 (has links)
Agricultural intensification to increase food, feed, and fibre production has also resulted in environmental degradation, including poorer soil quality and high emissions of greenhouse gases (GHGs) like nitrous oxide (N2O). Intercropping, an agroecosystem management practice where more than one crop is planted on the same plot of land at the same time, promotes the complementary use of soil nutrients, and may improve soil quality and increase the retention of inorganic nitrogen (N) in the soil, thereby reducing N2O emissions. An experiment was conducted in Balcarce, Argentina to determine the impact of intercropping maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), (either 1:2 or 2:3 rows of maize to soybean) on soil quality and soil N transformations after six cropping seasons. It was found that intercropping significantly improved soil quality over a six year period, as indicated by the soil organic carbon (SOC), soil total nitrogen (TN), soil light fraction organic matter (LF), and soil microbial biomass carbon (SMB-C). However, the soil quality also significantly improved in the sole crops over this time, and in 2012, only SMB-C was significantly (p<0.05) greater in the 2:3 intercrop than in the sole crops. Intercropping resulted in higher rates of gross nitrogen (N) mineralization than the sole crops, and the 2:3 intercrop resulted in higher rates of gross N immobilization than in the other treatments. However, the high rate of gross N mineralization resulted in a low relative NH4+ immobilization in both intercrops, signifying a lower potential for reducing soil NH4+ concentrations than in the sole crop treatments. Net N immobilization occurred in all treatment plots, which was desired at the end of the fallow period to reduce N losses from the soil. The 2:3 intercrop appeared to perform better than the 1:2 intercrop. However, further research needs to be conducted to determine the seasonal variations in N mineralization and immobilization, and to further examine the intercrop spatial arrangements to increase crop residue yield.
|
62 |
Imobilização e engenharia de proteínas de glucansucrasesGraebin, Natália Guilherme January 2018 (has links)
Glucansucrases são enzimas que atuam em reações de síntese de polissacarídeos e oligossacarídeos. Para que esses biocatalisadores sejam aplicados em escala industrial, é desejável ótimas estabilidades térmica e operacional, o que pode ser alcançado com a imobilização de enzimas. Como alternativa aos suportes sólidos amplamente estudados, está a quitosana, polímero que não apresenta toxicidade e possui alta biocompatibilidade e alta afinidade com proteínas. Outra possibilidade promissora na imobilização de enzimas, é a síntese dos agregados enzimáticos entrecruzados (CLEAs), os quais apresentam alta atividade catalítica e alta estabilidade. Contudo, uma peculiaridade das glucansucrases quando produzidas em meio contendo sacarose é a camada de polímero que as envolve, e que bloqueia o acesso aos grupos reativos na superfície da proteína. No caso da expressão heteróloga das glucansucrases em Escherichia coli essa dificuldade pode ser contornada. Além disso, o uso da mutagênese sítio-dirigida pode proporcionar modificações de aminoácidos na superfície da enzima, tais como os resíduos Lys, Cys, His, com o intuito de que melhorias na imobilização sejam alcançadas. Sendo assim, na primeira etapa desse trabalho, uma extensa discussão é apresentada em relação às metodologias de imobilização de dextransucrase encontradas na literatura. A seguir, estudos referentes à imobilização da dextransucrase de Leuconostoc mesenteroides B-512 F em esferas de quitosana ativadas com glutaraldeído foram realizados. Esse imobilizado apresentou alta atividade catalítica (197 U/g) quando utilizada a carga de proteína de 400 mg/g de suporte. Além disso, observou-se que a imobilização covalente e os açúcares maltose e glicose promoveram proteção à enzima em temperaturas de 40 ºC e 50 ºC. Na etapa seguinte, a produção e a caracterização de CLEAs de dextransucrase de L. mesenteroides B-512 F foram investigados. Demonstrou-se que o tratamento com a dextranase foi essencial para a imobilização da glucansucrase e que o isopropanol foi o melhor agente precipitante. Os CLEAs apresentaram pH e temperatura ótimos de 3,0 e 60 ºC, respectivamente, enquanto que a dextransucrase imobilizada nas esferas de quitosana funcionalizada com glutaraldeído apresentaram os valores de 4,5 e 20 ºC. Ambas formas imobilizadas apresentaram boa estabilidade operacional na síntese de oligossacarídeos uma vez que após 10 ciclos, 40 % de atividade residual foi observada. Por fim, estão apresentados estudos sobre a modelagem das estruturas tridimensionais e a mutagênese sítio-dirigida das glucansucrases DSR-S vardel Δ4N and ASR C-APY del. Os modelos preditos demonstraram boa qualidade e a mutagênese sítio-dirigida não promoveu perdas significativas na atividade enzimática dos mutantes. Somente o mutante DSR_S326C mostrouse inativo. Os resultados obtidos sugerem que a imobilização da dextransucrase foi satisfatória e que cada técnica possibilita diferentes características ao imobilizado. Além disso, os imobilizados foram adequados para síntese de dextrana e oligossacarídeos. / Glucansucrases are enzymes that catalyze the synthesis of polysaccharides and oligosaccharides. In order to assure continuous processing and reuse of the biocatalyst in industrial applications, enzyme immobilization techniques are required to promote good thermal and operational stabilities. Among the several solid supports for enzyme immobilization, chitosan shows interesting properties because it is non-toxic, it is biocompatible, and it has high protein affinity. Other possibility is the production of cross-linked enzyme aggregates (CLEAs), which presents high catalytic activity and good stability. However, glucansucrases have a particularity when produced in sucrose medium, since a polymer layer surrounds the protein, blocking the access to reactive groups on the enzyme surface. To overcome this problem, it is possible to make the heterologous production of glucansucrases in Escherichia coli. Likewise, the site-directed mutagenesis may promote changes in the amino acids located on the surface to improve immobilization parameters. Therefore, this work aimed to discuss the several techniques applied for dextransucrase immobilization, and to design new immobilized biocatalysts. In a first step, it is presented a review about the distinct immobilization methodologies for dextransucrase. In a second study, an investigation about dextransucrase from Leuconostoc mesenteroides B-512 F immobilized on glutaraldehyde-activated chitosan particles was carried out. The novel immobilized biocatalyst showed 197 U/g (400 mg/g dried support) of catalytic activity. The covalent immobilization promoted protection against enzyme damages at 40 ºC and 50 ºC, whereas maltose and glucose acted as stabilizers. Furthermore, it was studied the production and characterization of CLEAs dextransucrase from L. mesenteroides B-512 F. It was demonstrated that dextranase treatment was crucial for immobilization. Isopropanol was chosen as the best precipitant agent. CLEAs presented optimal pH and temperature of 3.0 and 60 ºC, respectively, whereas it was found values of 4.5 e 20 ºC for dextransucrase immobilized on glutaraldehyde-activated chitosan particles. Both immobilized biocatalysts showed good operational stability in the oligosaccharides synthesis, exhibiting 40 % of residual activity after 10 cycles. Finally, the study concerning the homology modeling and site-directed mutagenesis of glucansucrases DSR-S vardel Δ4N and ASR C-APY del is presented. The predicted models showed good quality and it has been demonstrated that the site-directed mutagenesis did not promote significant losses in the variant enzyme activities. Only one mutant (DSR_S326C) had shown no dextransucrase activity. The results obtained in this work suggest that the immobilization of dextransucrase was satisfactory, also showing that each technique promotes different characteristics to the immobilized biocatalyst. Besides, these immobilized enzymes were feasible for the synthesis of dextran and oligosaccharides.
|
63 |
Imobilização de β-D-frutofuranosídeo frutohidrolase em partículas de quitosana / Immobilization of β-D- fructofuranoside fructohydrolase on chitosan particlesValério, Sheila Garziera January 2012 (has links)
A enzima β-D- frutofuranosídeo frutohidrolase (E.C. 3.2.1.26), também conhecida como invertase, é uma hidrolase capaz de clivar o dissacarídeo sacarose, gerando mistura equimolar de glicose e frutose (‘açúcar invertido’). A aplicação deste, bem como a dos monossacarídeos de modo isolado é bastante comum na indústria alimentícia, por exemplo na manufatura de recheios de doces, além de outras aplicações, como na indústria farmacêutica. O objetivo deste trabalho foi avaliar diferentes suportes e métodos de imobilização de uma invertase de Saccharomyces cerevisiae. Os experimentos feitos com filmes de celulose, macroesferas de quitosana, e o suporte comercial Immobead não apresentaram resultados conclusivos. A imobilização covalente unipontual da invertase em mistura de nano e agregados de nanopartículas de quitosana possibilitou a obtenção dos seguintes resultados: além desse suporte ser de fácil preparação e ativação, oferecendo grande área superficial para a imobilização, o derivado imobilizado apresentou alta recuperação da atividade, sendo utilizado o protocolo que permitiu obter 74,3 % de rendimento e 61,6 % de eficiência de imobilização. A temperatura (55 ºC) e o pH ótimos de atividade (4,5), estabilidade térmica e ao armazenamento não foram modificados pós-imobilização. A afinidade da invertase pelo substrato decaiu cerca de 3 vezes, devido à reduzida acessibilidade da sacarose ao sítio ativo da enzima. Porém, o parâmetro Vmax manteve-se constante, indicando que não houve perda na máxima conversão da sacarose em seus monossacarídeos. Através da imobilização foi possível obter excelente estabilidade operacional: 59 reusos com 100 % da atividade catalítica da enzima (bateladas de 30 min, sob suave agitação, com solução de sacarose 8 %, a 55 ºC). / The enzyme β-D- fructofuranoside fructohydrolase (E.C. 3.2.1.26), also known as invertase, is one hydrolase able to cleave the sucrose disaccharide, generating an equimolar mixture of glucose and fructose (‘invert sugar’). The application of invert sugar, as well the isolated monosaccharides is very common in the food industry, for example in the manufacture of filling of sweets, besides other applications, as in the pharmaceutical industry. The objective of this work was to evaluate different supports and immobilization methods of an invertase from Saccharomyces cerevisiae. The experiments performed with cellulose films, chitosan macrospheres and the commercial support Immobead did not present conclusive results. The unipoint covalent immobilization of invertase in a mixture of chitosan nano and aggregated nanoparticles made possible to obtain the following results: besides the easy preparation and activation of this support, offering high superficial area for enzyme immobilization, the immobilized derivative presented high activity recovery, which allowed getting 74.3 % of immobilization yield and 61.6 % of immobilization efficiency. The optimal temperature (55 ºC) and pH (4.5) for activity, thermal and storage stabilities were not modified after immobilization. The enzyme affinity for its substrate decreased about 3 folds, mainly due to the reduced accessibility of sucrose to the catalytic site of the enzyme. However the parameter Vmax remained constant, indicating that there was not loss in the maximal conversion of sucrose in its monosaccharides. Through the immobilization was possible to obtain excellent operational stability: 59 reuses with 100 % of the catalytic enzyme activity (batches of 30 min, under genlte stirring, with sucrose solution 8 %, 55 ºC).
|
64 |
Imobilização de ciclodextrina glicosiltransferase para produção de ciclodextrinas: catálise em batelada e catálise contínua em reator de leito fixo / Immobilization of cyclodextrin glycosyltransferase for the production of cyclodextrins: catalysis in batch and continuous catalysis in fixed bed reactorSchöffer, Jessie da Natividade January 2013 (has links)
A ciclodextrina glicosiltransferase (CGTase, EC 2.4.1.19) faz parte da família das α-amilases e se destaca por ser a única enzima capaz de produzir ciclodextrinas (CDs). Esses oligossacarídeos cíclicos possuem a capacidade de formar complexos de inclusão com uma variedade de moléculas, alterando suas características como, por exemplo, solubilidade, volatilidade e estabilidade. Desta forma, CDs tem encontrado aplicação nas mais diversas áreas. Na indústria de alimentos, se destacam por serem potenciais estabilizantes naturais. Buscando alternativas viáveis para produção destas ciclodextrinas, neste trabalho, a enzima CGTase foi imobilizada covalentemente em esferas de quitosana e posteriormente utilizada em um reator enzimático para uso contínuo. O rendimento da imobilização foi de aproximadamente 100 %, com uma carga de 20 mg de enzima por grama de suporte seco. O processo de imobilização foi capaz de manter o comportamento da enzima frente à variação de pH e temperatura de reação, apresentando pH ótimo em 5,0 e a faixa de temperatura ótima de 70 a 95 ºC, para ambos. A estabilidade conferida ao catalisador imobilizado possibilitou sua reutilização, 61 % da sua atividade inicial foi mantida após 100 ciclos de reação. Durante utilização contínua, realizada em um reator de leito fixo, analisou-se a influência da taxa de fluxo e da concentração do substrato na geração de β-CD. A máxima produção (1,32 g / L) foi alcançada utilizando-se 4 % de amido solúvel em uma taxa de fluxo de 3 mL / min. Além disso, o biocatalisador apresentou uma ótima estabilidade operacional a 60 °C, mantendo 100 % da atividade inicial após 100 h de uso contínuo. Estes resultados demonstram que o desempenho do reator é diretamente afetado pelos parâmetros analisados e que a produção pode ser otimizada por regulação simples na velocidade de fluxo, ou pela concentração do substrato; e sugerem a possibilidade de utilizar este biocatalisador imobilizado na produção contínua de CDs. / Cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) is member of the family α-amylase and is known for being the only enzyme able to produce cyclodextrins (CDs). These cyclic oligosaccharides have the ability to form inclusion complexes with a variety of molecules, changing its characteristics, for example, solubility, volatility and stability. Therefore, CDs have found application in several fields. In the food industry stand out for being potential natural stabilizers. Seeking to alternatives for producing these cyclodextrins, in this work, the CGTase enzyme was immobilized covalently on chitosan beads and subsequently used in enzymatic reactor for continuous use. The immobilization yield was high, reaching about 100 %, representing a load of 20 mg enzyme per gram of dry support. The immobilization process was capable of maintaining the behavior of the enzyme to the variation of pH and temperature of reaction, with pH optimum at 5.0 and the optimal temperature range of 70 - 95 ° C, for both. The stability afforded to the immobilized catalyst made possible its reuse, maintaining 61 % of its initial activity after 100 cycles of reaction. During its continuous use, in a packed bed reactor, we analyzed the influence of flow rate and concentration of the substrate in the generation of β-CD. The maximum yield (1.32 g / L) was achieved using 4 % soluble starch at a flow rate of 3 mL / min. In addition, the biocatalyst showed a great operational stability at 60 ° C, maintaining 100 % of initial activity after 100 h of continuous use. These results demonstrate that the performance is directly affected by the parameters analyzed and that the production can be optimized by simple adjustment in flow rate through the reactor, or the substrate concentration used and suggests the possibility of using this biocatalyst immobilized to the continuous production of CDs.
|
65 |
Imobilização e engenharia de proteínas de glucansucrasesGraebin, Natália Guilherme January 2018 (has links)
Glucansucrases são enzimas que atuam em reações de síntese de polissacarídeos e oligossacarídeos. Para que esses biocatalisadores sejam aplicados em escala industrial, é desejável ótimas estabilidades térmica e operacional, o que pode ser alcançado com a imobilização de enzimas. Como alternativa aos suportes sólidos amplamente estudados, está a quitosana, polímero que não apresenta toxicidade e possui alta biocompatibilidade e alta afinidade com proteínas. Outra possibilidade promissora na imobilização de enzimas, é a síntese dos agregados enzimáticos entrecruzados (CLEAs), os quais apresentam alta atividade catalítica e alta estabilidade. Contudo, uma peculiaridade das glucansucrases quando produzidas em meio contendo sacarose é a camada de polímero que as envolve, e que bloqueia o acesso aos grupos reativos na superfície da proteína. No caso da expressão heteróloga das glucansucrases em Escherichia coli essa dificuldade pode ser contornada. Além disso, o uso da mutagênese sítio-dirigida pode proporcionar modificações de aminoácidos na superfície da enzima, tais como os resíduos Lys, Cys, His, com o intuito de que melhorias na imobilização sejam alcançadas. Sendo assim, na primeira etapa desse trabalho, uma extensa discussão é apresentada em relação às metodologias de imobilização de dextransucrase encontradas na literatura. A seguir, estudos referentes à imobilização da dextransucrase de Leuconostoc mesenteroides B-512 F em esferas de quitosana ativadas com glutaraldeído foram realizados. Esse imobilizado apresentou alta atividade catalítica (197 U/g) quando utilizada a carga de proteína de 400 mg/g de suporte. Além disso, observou-se que a imobilização covalente e os açúcares maltose e glicose promoveram proteção à enzima em temperaturas de 40 ºC e 50 ºC. Na etapa seguinte, a produção e a caracterização de CLEAs de dextransucrase de L. mesenteroides B-512 F foram investigados. Demonstrou-se que o tratamento com a dextranase foi essencial para a imobilização da glucansucrase e que o isopropanol foi o melhor agente precipitante. Os CLEAs apresentaram pH e temperatura ótimos de 3,0 e 60 ºC, respectivamente, enquanto que a dextransucrase imobilizada nas esferas de quitosana funcionalizada com glutaraldeído apresentaram os valores de 4,5 e 20 ºC. Ambas formas imobilizadas apresentaram boa estabilidade operacional na síntese de oligossacarídeos uma vez que após 10 ciclos, 40 % de atividade residual foi observada. Por fim, estão apresentados estudos sobre a modelagem das estruturas tridimensionais e a mutagênese sítio-dirigida das glucansucrases DSR-S vardel Δ4N and ASR C-APY del. Os modelos preditos demonstraram boa qualidade e a mutagênese sítio-dirigida não promoveu perdas significativas na atividade enzimática dos mutantes. Somente o mutante DSR_S326C mostrouse inativo. Os resultados obtidos sugerem que a imobilização da dextransucrase foi satisfatória e que cada técnica possibilita diferentes características ao imobilizado. Além disso, os imobilizados foram adequados para síntese de dextrana e oligossacarídeos. / Glucansucrases are enzymes that catalyze the synthesis of polysaccharides and oligosaccharides. In order to assure continuous processing and reuse of the biocatalyst in industrial applications, enzyme immobilization techniques are required to promote good thermal and operational stabilities. Among the several solid supports for enzyme immobilization, chitosan shows interesting properties because it is non-toxic, it is biocompatible, and it has high protein affinity. Other possibility is the production of cross-linked enzyme aggregates (CLEAs), which presents high catalytic activity and good stability. However, glucansucrases have a particularity when produced in sucrose medium, since a polymer layer surrounds the protein, blocking the access to reactive groups on the enzyme surface. To overcome this problem, it is possible to make the heterologous production of glucansucrases in Escherichia coli. Likewise, the site-directed mutagenesis may promote changes in the amino acids located on the surface to improve immobilization parameters. Therefore, this work aimed to discuss the several techniques applied for dextransucrase immobilization, and to design new immobilized biocatalysts. In a first step, it is presented a review about the distinct immobilization methodologies for dextransucrase. In a second study, an investigation about dextransucrase from Leuconostoc mesenteroides B-512 F immobilized on glutaraldehyde-activated chitosan particles was carried out. The novel immobilized biocatalyst showed 197 U/g (400 mg/g dried support) of catalytic activity. The covalent immobilization promoted protection against enzyme damages at 40 ºC and 50 ºC, whereas maltose and glucose acted as stabilizers. Furthermore, it was studied the production and characterization of CLEAs dextransucrase from L. mesenteroides B-512 F. It was demonstrated that dextranase treatment was crucial for immobilization. Isopropanol was chosen as the best precipitant agent. CLEAs presented optimal pH and temperature of 3.0 and 60 ºC, respectively, whereas it was found values of 4.5 e 20 ºC for dextransucrase immobilized on glutaraldehyde-activated chitosan particles. Both immobilized biocatalysts showed good operational stability in the oligosaccharides synthesis, exhibiting 40 % of residual activity after 10 cycles. Finally, the study concerning the homology modeling and site-directed mutagenesis of glucansucrases DSR-S vardel Δ4N and ASR C-APY del is presented. The predicted models showed good quality and it has been demonstrated that the site-directed mutagenesis did not promote significant losses in the variant enzyme activities. Only one mutant (DSR_S326C) had shown no dextransucrase activity. The results obtained in this work suggest that the immobilization of dextransucrase was satisfactory, also showing that each technique promotes different characteristics to the immobilized biocatalyst. Besides, these immobilized enzymes were feasible for the synthesis of dextran and oligosaccharides.
|
66 |
Imobilização de β-galactosidase para obtenção de produtos lácteos com baixo teor de lactose / Imobilization of β-galactosidase to obtain dairy products with low teor of lactoseKlein, Manuela Poletto January 2010 (has links)
A β-galactosidase (E.C 3.2.1.23) é uma das enzimas mais empregadas na indústria de alimentos sendo utilizada na hidrólise da lactose. Neste trabalho foram utilizadas duas metodologias para imobilização desta enzima. Na primeira delas foi empregado como suporte um material híbrido à base de sílica que possui um grupo orgânico catiônico covalentemente ligado. A adsorção da enzima a este material apresentou eficiência que variou de 74 a 53% com o aumento da quantidade de enzima aplicada ao suporte. A baixa estabilidade térmica da enzima imobilizada obtida e as prováveis fracas interações envolvidas na sua adsorção a este suporte podem explicar o decréscimo de atividade observada durante as sucessivas bateladas de hidrólise da lactose. Na primeira batelada o grau de hidrólise foi de 90,9% e no final da última batelada (4ª), a enzima foi capaz de converter apenas 13% do substrato. A segunda metodologia utilizada foi imobilização covalente da enzima em um filme de celulose/líquido iônico modificado com uma poliamina e ativado com glutaraldeído. A presença da poliamina foi confirmada por análises de infravermelho. Após a imobilização, a enzima reteve 60% de sua atividade inicial. Bons resultados de hidrólise da lactose em batelada foram obtidos tanto a 7ºC como a 35ºC e foi possível reutilizar a enzima imobilizada por 16 ciclos consecutivos, a 7ºC, sem mudanças significativas na atividade enzimática. O valor de Km para a enzima imobilizada no material híbrido à base de sílica foi de 9,17 mM e para a enzima imobilizada nos filmes de celulose foi de 11,22 mM, ambos apresentaram um acréscimo quando comparados ao Km enzima livre (1,25 mM), devido à dificuldade de acesso do substrato ao sítio ativo da enzima. Não houve mudança no pH e temperatura ótimos da enzima imobilizada em relação à enzima livre em nenhum dos métodos testados. / β-galactosidase (E.C 3.2.1.23) is the most widely used enzymes in the food industry and its employed in the lactose hydrolysis process. In this study, two methodologies were used to test their immobilization. In the first, the enzyme was immobilized by adsorption in one silica based hybrid material that contains a cationic organic group covalently linked. The efficiency of immobilization showed a decrease of 74 to 53% by increasing the protein load applied to the support. The low thermo stability of the immobilized enzyme and the probable weak interactions involved in their adsorption, could explain the decrease in enzyme activity observed in the successive batch hydrolysis of lactose. In the first run, the degree of lactose hydrolysis was 90.9% and, at the end of the last run (4th), the enzyme was able to convert only 13% of the substrate. The second methodology used was the covalent immobilization of the enzyme on a cellulose/ionic liquid film, modified with a polyamine and activated using glutaraldehyde. The presence of a polyamine was confirmed by infrared analysis. After immobilization, the enzyme retained 60% of its initial activity. Highly efficient lactose conversion was achieved in a batch process at 7ºC and 35ºC and was possible to reuse the immobilized enzyme in 16 repeated cycles, at 7ºC, without any drastic decrease in enzyme activity. Km value for the immobilized enzyme in silica based hybrid material was 9.17 mM and for the enzyme immobilized in the film of cellulose/ionic liquid was 11.22 mM, both showing an increase compared with the Km value for free enzyme (1.25 mM), due to the difficulty of access of the substrate to the active sites of the enzyme. The immobilized enzyme did not show any changes in the optimal pH and temperature when compared to the free enzyme in both methods tested.
|
67 |
Nanopartículas magnéticas como suporte para imobilização de lipases / Magnetic nanoparticles as support to immobilization of lipasesRocha, Caroline Oliveira da [UNESP] 14 March 2016 (has links)
Submitted by CAROLINE OLIVEIRA DA ROCHA null (carolnine@hotmail.com) on 2016-04-07T01:01:26Z
No. of bitstreams: 1
Dissertação CAROL _final.pdf: 2850056 bytes, checksum: faa1d75413b1d7af499fafe8cb5e9700 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-04-07T16:24:41Z (GMT) No. of bitstreams: 1
rocha_co_me_araiq.pdf: 2850056 bytes, checksum: faa1d75413b1d7af499fafe8cb5e9700 (MD5) / Made available in DSpace on 2016-04-07T16:24:41Z (GMT). No. of bitstreams: 1
rocha_co_me_araiq.pdf: 2850056 bytes, checksum: faa1d75413b1d7af499fafe8cb5e9700 (MD5)
Previous issue date: 2016-03-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As enzimas são catalisadores de alto custo, sendo necessário a imobilização para que haja a recuperação e a reutilização tornando o processo viável economicamente. Além disso, a utilização de enzimas imobilizadas permite simplificar o modelo de reatores e o controle da reação. Assim, a imobilização é geralmente um requisito para a utilização de enzimas como biocatalisadores industriais. A escolha do suporte para imobilização depende das propriedades da enzima a ser imobilizada. Suportes sólidos podem interagir com a enzima por diferentes vias: por adsorção, ligação covalente ou encapsulamento. Um importante fator para imobilizar a enzima é que o suporte deve ser inerte e biocompatível ao ambiente, ou seja, não deve interferir na estrutura nativa da proteína e nem comprometer sua atividade biológica. Dentre as principais enzimas, as lipases hidrolisam triglicerídeos (TAG) em glicerol e ácidos graxos e por este motivo estão na classe das hidrolases. Uma proposta de imobilização destas enzimas consiste na utilização de nanoestruturas magnéticas como biocatalisadores da reação de transesterificação para a produção de biodiesel, devido à facilidade e a rápida separação das enzimas imobilizadas, a partir da mistura reacional, usando um campo magnético externo. As vantagens das enzimas imobilizadas em relação às enzimas livres surgem da sua maior estabilidade e facilidade de separação, o que acarreta economia significativa no custo global do processo, desde que o procedimento de imobilização não seja muito caro, haja boa recuperação da atividade enzimática e que a estabilidade operacional da enzima imobilizada seja suficientemente longa. O uso de enzimas imobilizadas permite a retenção do biocatalisador no reator; elevada concentração de catalisador no reator permitindo intensificar o processo; controle do microambiente da enzima; facilidade de recuperação e reutilização do catalisador, o que reduz os custos das enzimas; possibilidade de ser utilizado em sistemas contínuos. Utilizando a técnica de difração de raios X foi possível confirmar a fase magnetita nas sínteses propostas: método de coprecipitação e em meio orgânico. A funcionalização da superfície da NP e SP com APTS, foi comprovado por espectroscopia na região de infravermelho, apresentando bandas de –NH2. A técnica de DLS comprovou a funcionalização, pelo aumento dos diâmetros hidrodinâmicos das amostras NP-APTS e SP-APTS comparada a NP e SP. O ponto isoelétrico das amostras SP e SP-APTS apresentou aumento de 2,33 para 6,44. O derivado imobilizado apresentou bandas típicas de amidas. As lipases imobilizadas apresentaram diâmetros hidrodinâmicos maiores que NP-APTS e SP-APTS. Os resultados da atividade hidrolítica das enzimas suportadas foram satisfatórios, sendo que SP-APTS-LPP apresentou maior atividade. Pela análise termogravimétrica comprovou-se rendimento de imobilização de 22,86%. Determinou-se o pH ótimo da lipase imobilizada que mostrou maior atividade em pH 8 enquanto a LPP livre em pH 6,5. As medidas de temperatura ótima demostrou que o derivado imobilizado possui maior atividade que a LPP livre a 50 °C, favorecendo a utilização deste suporte em processos industriais de biodiesel que opera em altas temperaturas. Neste contexto, a síntese de suportes magnéticos porosos e a imobilização de lipases com este suporte, apresentou excelentes resultados para a aplicação em biocatálise na reação de transesterificação para a síntese de biodiesel. / Enzymes are expensive catalysts, immobilization is necessary for recovery and reuse making the process economically viable. Furthermore, use of immobilized enzymes can simplify model reactor and control reaction. Thus, immobilization is generally a requirement for use of the enzyme as an industrial biocatalyst. The choice of support for biocatalysts immobilization depends on properties of enzyme to be immobilized. Solid supports can interact with enzyme in different ways: by adsorption, covalent bonding or encapsulation. An important factor to immobilize the enzyme is that support must be inert and biocompatible to environment; it should not interfere in native structure of protein and not compromising their biological activity. The main enzymes, lipases hydrolyze triglycerides (TAG) to glycerol and fatty acids and for this reason; they are in the class of hydrolases. These enzymes are carboxylesterases that catalyze hydrolysis in glycerides synthesis. A proposal for immobilization of these enzymes is use of magnetic nanostructures in biocatalysts transesterification reaction for producing biodiesel due to ease and rapid separation of immobilized enzyme, from a mixture reaction using an external magnetic field. The benefits of immobilized enzymes compared to free enzymes arise from their greater stability and ease of separation, which leads to significant savings in the overall cost of the process, provided that immobilization procedure is not very expensive, there is good recovery of enzyme activity, and operational stability of immobilized enzyme is sufficiently long. The use of immobilized enzymes allow retention of biocatalyst in reactor; high concentration of catalyst in reactor to intensify the process; control of microenvironment of enzyme; ease of recovery and reuse of catalyst, which reduces the costs of enzymes; possibility of being used in continuous systems. Using the technique of X-ray diffraction was confirmed magnetite phase in syntheses proposed: co-precipitation method and organic solvent. The functionalization of surface NP and SP with APTS confirmed by spectroscopy in infrared region, with bands of -NH2. The DLS technique proved the functionalization, the increase of hydrodynamic diameters NP-APTS samples and SP-APTS compared to NP and SP. The isoelectric point of SP and SP-APTS samples increased by 2.33 to 6.44. The immobilized derivative showed typical bands of amides. Immobilized lipases showed higher hydrodynamic diameters NP-APTS and SP-APTS. The results of hydrolytic activity of supported enzymes were satisfactory and SP-APTS-LPP showed higher activity. By thermogravimetric analysis, it was shown immobilization yield 22.86%. It was determined the pH optimum of immobilized lipase showed highest activity at pH 8 while the LPP free at pH 6.5. The optimum temperature measurements demonstrated that immobilized derivative is more active than free LPP at 50 ° C, favoring the use of support in industrial processes of biodiesel, which operates at high temperatures. In this context, the synthesis of porous magnetic support and immobilization of lipases showed excellent results for use in biocatalysis in transesterification reaction for biodiesel synthesis.
|
68 |
Imobilização de β-galactosidase para obtenção de produtos lácteos com baixo teor de lactose / Imobilization of β-galactosidase to obtain dairy products with low teor of lactoseKlein, Manuela Poletto January 2010 (has links)
A β-galactosidase (E.C 3.2.1.23) é uma das enzimas mais empregadas na indústria de alimentos sendo utilizada na hidrólise da lactose. Neste trabalho foram utilizadas duas metodologias para imobilização desta enzima. Na primeira delas foi empregado como suporte um material híbrido à base de sílica que possui um grupo orgânico catiônico covalentemente ligado. A adsorção da enzima a este material apresentou eficiência que variou de 74 a 53% com o aumento da quantidade de enzima aplicada ao suporte. A baixa estabilidade térmica da enzima imobilizada obtida e as prováveis fracas interações envolvidas na sua adsorção a este suporte podem explicar o decréscimo de atividade observada durante as sucessivas bateladas de hidrólise da lactose. Na primeira batelada o grau de hidrólise foi de 90,9% e no final da última batelada (4ª), a enzima foi capaz de converter apenas 13% do substrato. A segunda metodologia utilizada foi imobilização covalente da enzima em um filme de celulose/líquido iônico modificado com uma poliamina e ativado com glutaraldeído. A presença da poliamina foi confirmada por análises de infravermelho. Após a imobilização, a enzima reteve 60% de sua atividade inicial. Bons resultados de hidrólise da lactose em batelada foram obtidos tanto a 7ºC como a 35ºC e foi possível reutilizar a enzima imobilizada por 16 ciclos consecutivos, a 7ºC, sem mudanças significativas na atividade enzimática. O valor de Km para a enzima imobilizada no material híbrido à base de sílica foi de 9,17 mM e para a enzima imobilizada nos filmes de celulose foi de 11,22 mM, ambos apresentaram um acréscimo quando comparados ao Km enzima livre (1,25 mM), devido à dificuldade de acesso do substrato ao sítio ativo da enzima. Não houve mudança no pH e temperatura ótimos da enzima imobilizada em relação à enzima livre em nenhum dos métodos testados. / β-galactosidase (E.C 3.2.1.23) is the most widely used enzymes in the food industry and its employed in the lactose hydrolysis process. In this study, two methodologies were used to test their immobilization. In the first, the enzyme was immobilized by adsorption in one silica based hybrid material that contains a cationic organic group covalently linked. The efficiency of immobilization showed a decrease of 74 to 53% by increasing the protein load applied to the support. The low thermo stability of the immobilized enzyme and the probable weak interactions involved in their adsorption, could explain the decrease in enzyme activity observed in the successive batch hydrolysis of lactose. In the first run, the degree of lactose hydrolysis was 90.9% and, at the end of the last run (4th), the enzyme was able to convert only 13% of the substrate. The second methodology used was the covalent immobilization of the enzyme on a cellulose/ionic liquid film, modified with a polyamine and activated using glutaraldehyde. The presence of a polyamine was confirmed by infrared analysis. After immobilization, the enzyme retained 60% of its initial activity. Highly efficient lactose conversion was achieved in a batch process at 7ºC and 35ºC and was possible to reuse the immobilized enzyme in 16 repeated cycles, at 7ºC, without any drastic decrease in enzyme activity. Km value for the immobilized enzyme in silica based hybrid material was 9.17 mM and for the enzyme immobilized in the film of cellulose/ionic liquid was 11.22 mM, both showing an increase compared with the Km value for free enzyme (1.25 mM), due to the difficulty of access of the substrate to the active sites of the enzyme. The immobilized enzyme did not show any changes in the optimal pH and temperature when compared to the free enzyme in both methods tested.
|
69 |
Desenvolvimento de matrizes poliméricas de alginato e pectina para o cultivo de células imobilizadas de Desmodesmus subspicatus em vinhaça de cana-de-açúcar / Development of polymeric alginate and pectin matrices for the cultivation of immobilized cells of Desmodesmus subspicatus in sugarcane vinasseJesus, Geise Cristina de 28 February 2018 (has links)
Submitted by Geise Jesus (geise.crj@gmail.com) on 2018-04-17T00:23:24Z
No. of bitstreams: 2
Dissertação-Geise Cristina de Jesus.pdf: 1627240 bytes, checksum: cd3bd55063ba96f48854e00923ac8b0e (MD5)
Carta comprovante.pdf: 353788 bytes, checksum: 3b2d5be6eb455c3a33e7fb4ae9adcc11 (MD5) / Approved for entry into archive by Alini Demarchi (ri.bar@ufscar.br) on 2018-07-10T12:57:32Z (GMT) No. of bitstreams: 2
Dissertação-Geise Cristina de Jesus.pdf: 1627240 bytes, checksum: cd3bd55063ba96f48854e00923ac8b0e (MD5)
Carta comprovante.pdf: 353788 bytes, checksum: 3b2d5be6eb455c3a33e7fb4ae9adcc11 (MD5) / Approved for entry into archive by Alini Demarchi (ri.bar@ufscar.br) on 2018-07-10T12:58:21Z (GMT) No. of bitstreams: 2
Dissertação-Geise Cristina de Jesus.pdf: 1627240 bytes, checksum: cd3bd55063ba96f48854e00923ac8b0e (MD5)
Carta comprovante.pdf: 353788 bytes, checksum: 3b2d5be6eb455c3a33e7fb4ae9adcc11 (MD5) / Made available in DSpace on 2018-09-17T18:54:56Z (GMT). No. of bitstreams: 2
Dissertação-Geise Cristina de Jesus.pdf: 1627240 bytes, checksum: cd3bd55063ba96f48854e00923ac8b0e (MD5)
Carta comprovante.pdf: 353788 bytes, checksum: 3b2d5be6eb455c3a33e7fb4ae9adcc11 (MD5)
Previous issue date: 2018-02-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Among the main industrial wastewaters, sugarcane vinasse figures as an actual environmental concern, due to its polluting potential and large volumes available, about 10 liters per liter of ethanol. Considering the alternatives to vinasse disposal, fertirrigation is the most commonly used. However, it is currently being questioned due to its effects on the soil and on groundwaters, caused by nutrient lixiviation such as potassium. The application of immobilized microalgae for wastewater treatment with emphasis on the removal of nutrients has increased over the last years. The aim of this study was to develop uniform alginate and pectin beads for immobilization of Desmodesmus subspicatus and evaluate its growth and ability to carbon, nitrogen and potassium removal in vinasse. The process parameters of bead production, type and concentration of biopolymer (alginate 1, 2, and 3% w/v and pectin 5, 7 and 10% w/v) and crosslinking agent concentration (calcium chloride 2, 5 and 10% w/v), were varied in order to evaluate their influence on bead characteristics. Results indicated that stable alginate and pectin beads were produced and according to the preliminary particle characterization, concentrations of 2% alginate and 7% pectin were chosen for immobilization of D. subspicatus and growth in vinasse. Immobilized D. subspicatus showed cellular growth in vinasse, with maximum specific rates of 0.009 h-1 and 0.002 h-1 in alginate and pectin beads, respectively. In the tests performed with 2% alginate, the immobilized microalgae reached 42, 49 and 48% carbon; 34, 35 and 34% nitrogen and 22, 23 and 32% potassium removal; and for pectin 7%, the removals were 32, 39 and 41% for carbon; 11, 24 and 34% for nitrogen and 39, 36 and 35% for potassium, for 2, 5 and 10% of calcium chloride, respectively. The microalgae were able to grow and remove appreciable amounts of nutrients from the vinasse. Compared with the free microalgae cultivation, immobilized microalgae indicate good prospects for the use of nutrient removal from vinasse. / A vinhaça é considerada a principal água residuária do setor sucroalcooleiro, sendo obtida pela destilação alcoólica do vinho para a obtenção do etanol. Considerando as alternativas para sua disposição, a fertirrigação na cultura da cana-de-açúcar é a mais utilizada. No entanto, o seu uso deve ser cauteloso, uma vez que em excesso pode culminar na contaminação dos lençóis freáticos, acarretando problemas ambientais. A aplicação de microalgas imobilizadas no tratamento de águas residuárias com ênfase principalmente na remoção de nutrientes tem aumentado nos últimos anos. Quanto aos métodos de imobilização celular, o sistema de encapsulamento em matrizes de macromoléculas como alginato e pectina vem despertando interesse devido às suas características de biodegradabilidade, biocompatibilidade e não toxicidade. Neste contexto, o objetivo do trabalho foi o desenvolvimento de esferas de alginato e de pectina para a imobilização da microalga Desmodesmus subspicatus, assim como a avaliação do seu crescimento e habilidade na remoção de carbono, nitrogênio e potássio da vinhaça. Os parâmetros do processo de produção das esferas, tais como tipo e concentração de biopolímero (alginato 1, 2, e 3% m/v e pectina 5, 7 e 10% m/v) e concentração de reticulante (cloreto de cálcio 2, 5 e 10% m/v) foram estudados quanto a sua influência nas características das esferas. Os resultados indicaram a obtenção de esferas estáveis de alginato e de pectina e, de acordo com os testes, optou-se por utilizar alginato 2% e pectina 7% para imobilização da D. subspicatus e seu cultivo na vinhaça. A microalga D. subspicatus imobilizada apresentou crescimento celular em vinhaça, com velocidades específicas máximas de 0,009 h-1, e 0,002 h-1 em esferas de alginato e de pectina, respectivamente. Nos ensaios realizados com alginato 2%, a microalga imobilizada atingiu remoções de 42, 49 e 48% de carbono; 34, 35 e 34% de nitrogênio e 22, 23,2 e 31,6% de potássio; e para a pectina 7%, as remoções foram de 32, 39 e 41% para carbono; 11, 24 e 34% para nitrogênio e 39,2, 35,8 e 35,2% para potássio para 2, 5 e 10% de cloreto de cálcio, respectivamente. Os resultados demonstraram a viabilidade do cultivo desta microalga, assim como a capacidade de remoção de compostos da vinhaça.
|
70 |
Preparação e caracterização de biossensores baseado na eletrocodeposição de grafeno/polipirrol/acetilcolinesterase para determinação de pesticidas em amostras de frutas e vegetaisCamargo, João Pedro Corrêa January 2017 (has links)
Orientador: Ivana Cesarino / Abstract: A new biosensor was developed by a simple electrocodeposition of reduced graphene oxide (rGO), polypyrrole (PPy) and the enzyme acetylcholinesterase (AChE) on surface of platinum (Pt) electrode. In potential range of -0.2 to +0.5 V vs. Ag/AgCl/KCl (3.0 mol L-1), using differential pulse voltammetry (DPV), it was observed a process in + 0.1 V and this corresponds to the dimerization of electrochemical oxidation products of thiocholine, resulting in ditio-bis-choline. The biosensor developed was evaluated using DPV in the analysis of carbaryl, which inhibits the AChE enzyme action. The best results achieved were with the followings optimized conditions: 75 mV pulse amplitude, step potential of 4 mV, and a phosphate buffer solution (PBS) 0.2 mol L-1 and pH 6.0. Using these parameters was observed a linear response to carbaryl in a range of 0.1 to 0.5 µmol L-1, with a detection limit of 11.6 nmol L-1 (2.3 µg/kg), which is an appropriate limit for determination of carbaryl in the cultures which these pesticide is applied, considering the maximum reside limit allowed by Brazilian legislation. The biosensor proposed, Pt/rGO/PPy/AChE, was applied successfully in the determination of carbaryl in samples of cabbage and tomato. / Resumo: Um novo biossensor foi desenvolvido baseado na simples eletrocodeposição do óxido de grafeno reduzido (rGO), polipirrol (PPy) e da enzima acetilcolinesterase (AChE) na superfície do eletrodo de platina (Pt). No intervalo de potencial -0,2 a +0,5 V vs. Ag/AgCl/KCl (3,0 mol L-1), utilizando voltametria de pulso diferencial (DPV), observou-se um processo em +0,1 V e este corresponde a dimerização dos produtos de oxidação eletroquímica da tiolcolina, formando ditio-bis-colina. O biossensor desenvolvido foi avaliado utilizando DPV na análise do pesticida carbaril, o qual inibe a ação da enzima AChE. Os melhores resultados obtidos foram com as seguintes condições otimizadas: 75 mV amplitude de pulso, incremento de potencial de 4 mV, e uma solução tampão fosfato (PBS) 0,2 mol L-1 pH 6,0. Usando tais parâmetros observou-se uma resposta linear para o carbaril no intervalo de 0,1 a 0,5 mol L-1, com um limite de detecção de 11,6 nmolL-1 (2,3 µg/kg), que é um limite adequado para determinar carbaril nas culturas em que este pesticida é aplicado considerando o limite máximo de resíduo permitido pelas legislações brasileiras. O biossensor proposto, Pt/rGO/PPy/AChE, foi aplicado com sucesso na determinação de carbaril em amostras de tomate e repolho. / Mestre
|
Page generated in 0.125 seconds