• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 6
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 24
  • 21
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

TUNABLE ANTENNAS FOR CLOSED-LOOP SYSTEMS

Chowki, ManiChandana, Nagaiahgari, Shrutha Keerthi Reddy January 2023 (has links)
Tunable antennas have emerged as a promising technology to address the challenges of achieving optimal performance across a wide range of frequencies. This abstract presents a study focused on designing and implementing an ideal antenna system design within a closed-loop system. Background. Tunable antennas offer a solution for achieving efficient signal transmission and reception over a broad spectrum. Traditionally fixed-frequency antennas have limitations in terms of bandwidth and efficiency, making them unfit for applications requiring adaptability to varying frequencies. The integration of tunable components in antenna systems results in greater flexibility and improved performance. Objectives. The main objective of this research is to evaluate and determine the ideal antenna design for closed-loop antenna systems which achieves maximum frequency coverage and efficiency. This involves the design of an architecture that seamlessly integrates components. Methods. The experimental methodology involves designing an antenna system design. The selected components are interconnected in a closed loop, allowing continuous monitoring and adjustment of the antenna’s characteristics. The Micro Controlling Unit (MCU) is programmed using the Arduino Integrated Development Environment (IDE), serves as the controller for managing the antenna tuner’s settings based on real-time feedback from the directional coupler and power detector. The bi-directional logic level converter ensures proper voltage compatibility between the MCU and the antenna tuner. Results. The results of the study showed that the proposed antenna system architecture was able to achieve the desired goals. The implemented closed-loop system demonstrates significant enhancements in frequency coverage and efficiency of the selected antenna. The antenna system was also able to maintain its efficiency even when the environment changed. Conclusions. The experimental results show that in closed-loop systems the performance of an antenna is optimised. The integration of the components enables dynamic frequency tuning, by enhancing the antenna’s maximum frequency coverage and efficiency. The results underscore the potential of tunable antennas in revolutionizing wireless communication systems, showing the way for more adaptable and high-performance devices in various applications.
62

Design of Power-Scalable Gallium Nitride Class E Power Amplifiers

Connor, Mark Anthony 26 August 2014 (has links)
No description available.
63

Analysis and Design of High-Frequency Soft-Switching DC-DC Converter for Wireless Power Charging Applications

Danekar, Abhishek V. 09 May 2017 (has links)
No description available.
64

Ultra-Wideband Dual-Polarized Patch Antenna with Four Capacitively Coupled Feeds

Zhu, F., Gao, S., Ho, A.T.S., Abd-Alhameed, Raed, See, Chan H., Brown, T.W.C., Li, J., Wei, G., Xu, J. 28 February 2014 (has links)
Yes / A novel dual-polarized patch antenna for ultra-wideband (UWB) applications is presented. The antenna consists of a square patch and four capacitively coupled feeds to enhance the impedance bandwidth. Each feed is formed by a vertical isosceles trapezoidal patch and a horizontal isosceles triangular patch. The four feeds are connected to the microstrip lines that are printed on the bottom layer of the grounded FR4 substrate. Two tapered baluns are utilized to excite the antenna to achieve high isolation between the ports and reduce the cross-polarization levels. In order to increase the antenna gain and reduce the backward radiation, a compact surface mounted cavity is integrated with the antenna. The antenna prototype has achieved an impedance bandwidth of 112% at (|S11| ≤ -10 dB) whereas the coupling between the two ports is below -28 dB across the operating frequency range. The measured antenna gain varies from 3.91 to 10.2 dBi for port 1 and from 3.38 to 9.21 dBi for port 2, with a 3-dB gain bandwidth of 107%. / IEEE Antennas and Propagation Society
65

Dynamics of Multi-functional Acoustic Holograms in Contactless Ultrasonic Energy Transfer Systems

Bakhtiari Nejad, Marjan 28 August 2020 (has links)
Contactless ultrasonic power transfer (UPT), using piezoelectric transducers, is based on transferring energy using acoustic waves, in which the waves are generated by an acoustic source or transmitter and then transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver then converts the mechanical strain induced by the incident acoustic waves to electricity and delivers to an electrical load, in which the electrical power output of the system can be determined. The execution and efficiency of this technology can be significantly enhanced through patterning, focusing, and localization of the transmitted acoustic energy in space to simultaneously power pre-determined distributed sensors or devices. A passive 3D-printed acoustic hologram plate alongside a single transducer can generate arbitrary and pre-designed ultrasound fields in a particular distance from the hologram mounted on the transmitter, i.e., a target plane. This dissertation presents the use of these simple, cost-effective, and high-fidelity acoustic holograms in UPT systems to selectively enhance and pattern the electrical power output from the receivers. Different holograms are numerically designed to create single and multi-focal pressure patterns in a target plane where an array of receivers are placed. The incident sound wave from a transmitter, after passing through the hologram, is manipulated, hence, the output field is the desired pressure field, which excites the receivers located at the pre-determined focal points more significantly. Furthermore, multi-functional holograms are designed to generate multiple images at different target planes and driving frequencies, called, respectively, multi-image-plane and multi-frequency patterning holograms. The multiple desired pressure distributions are encoded on the single hologram plate and each is reconstructed by changing the axial distance and by switching the frequency. Several proof-of-concept experiments are performed to verify the functionality of the computationally designed holograms, which are fabricated using modern 3D-printers, i.e., the desired wavefronts are encoded in the hologram plates' thickness profile, being input to the 3D-printer. The experiments include measurement of output pressure fields in water using needle hydrophones and acquisition of receivers' voltage output in UPT systems. Another technique investigated in this dissertation is the implementation of acoustic impedance matching layers deposited on the front leading surface of the transmitter and receiver transducers. Current UPT systems suffer from significant acoustic losses through the transmission line from a piezoelectric transmitter to an acoustic medium and then to a piezoelectric receiver. This is due to the unfavorable acoustic impedance mismatch between the transducers and the medium, which causes a narrow transducer bandwidth and a considerable reflection of the acoustic pressure waves at the boundary layers. Using matching layers enhance the acoustic power transmission into the medium and then reinforce the input as an excitation into the receiver. Experiments are performed to identify the input acoustic pressure from a cylindrical transmitter to a receiver disk operating in the 33-mode of piezoelectricity. Significant enhancements are obtained in terms of the receiver's electrical power output when implementing a two-layer matching structure. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a high-intensity focused ultrasound (HIFU)-excited microbubble or stable acoustic cavitation, which includes the effects of acoustic nonlinearity, diffraction, and absorption of the medium, and entails the problem of several biomedical ultrasound applications. Finally, the design and use of acoustic holograms in microfluidic channels are addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems. / Doctor of Philosophy / This dissertation presents several techniques to enhance the wireless transfer of ultrasonic energy in which the sound wave is generated by an acoustic source or transmitter, transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver transducer then converts the vibrational energy into electricity and delivers to an electrical load in which the electrical power output from the system can be determined. The first enhancement technique presented in this dissertation is using a pre-designed and simple structured plate called an acoustic hologram in conjunction with a transmitter transducer to arbitrarily pattern and shape ultrasound fields at a particular distance from the hologram mounted on the transmitter. The desired wavefront such as single or multi-focal pressure fields or an arbitrary image such as a VT image pattern can simply be encoded in the thickness profile of this hologram plate by removing some of the hologram material based on the desired shape. When the sound wave from the transmitter passes this structured plate, it is locally delayed in proportion to the hologram thickness due to the different speed of sound in the hologram material compared to water. In this dissertation, various hologram types are designed numerically to implement in the ultrasonic power transfer (UPT) systems for powering receivers located at the predetermined focal points more significantly and finally, their functionality and performances are verified in several experiments. Current UPT systems suffer from significant acoustic losses through the transmission from a transmitter to an acoustic medium and then to a receiver due to the different acoustic impedance (defined as the product of density and sound speed) between the medium and transducers material, which reflects most of the incident pressure wave at the boundary layers. The second enhancement technology addressed in this dissertation is using intermediate materials, called acoustic impedance matching layers, bonded to the front side of the transmitter and receiver face to alleviate the acoustic impedance mismatch. Experiments are performed to identify the input acoustic pressure from a transmitter to a receiver. Using a two-layer matching structure, significant enhancements are observed in terms of the receiver's electrical power output. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a microbubble exposed to a high-intensity focused ultrasound (HIFU) field, which entails the problem of several biomedical ultrasound applications such as microbubble-mediated ultrasound therapy or targeted drug delivery. Finally, an enhancement technique involving the design and use of acoustic holograms in microfluidic channels is addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems.
66

Induction Heating of Aluminum Cookware

Amrhein, Andrew Aloysius 20 October 2015 (has links)
Induction heating has become a popular alternative to other heat sources for stovetop cooking applications due to performance, efficiency, control response, and safety. The main drawback is that extreme difficulty is encountered when trying to head low-resistivity, non-ferromagnetic metals such as aluminum and copper, which are commonly used for cookware in several societies. The lack of ferromagnetic properties, resulting in no hysteresis dissipation, and low resistivity of such metals results in an impractically low resistance reflected through the work coil. The resultant impedance complicates inverter design, as it is too low to be efficiently driven with conventional inverter topologies. The magnitudes of current involved in exciting this impedance also severely impact the efficiency of the coil and resonant components, requiring extreme care in coil design. This work explores various techniques that have been proposed and/or applied to efficiently heat low-resistivity cookware and the associated limitations. A transformer-coupled series-load-resonant topology driven by a full-bridge inverter is proposed as a means of efficiently heating aluminum cookware within practical design constraints. The experimental circuit is built and successfully tested at an output power of 1.66kW. The procedure of optimizing the work coil for improved efficiency is also presented along with the procedure of measuring coil efficiency. An improved circuit incorporating switch voltage detection to guarantee zero-voltage switching is then built in order to overcome limitations of this design. / Master of Science
67

Conception d'une tête radiofréquence auto adaptative au milieu de propagation pour les applications médicales

Chan Wai Po, Françis 23 July 2010 (has links) (PDF)
L'impédance d'entrée d'une antenne miniature est fortement affectée par des facteurs environnementaux à l'origine de pertes de puissance réduisant l'efficacité énergétique des têtes radiofréquences dans les applications RF, en particulier dans la télémétrie des implants cardiaques. Le but de mes études est de développer une unité de calibration d'impédance d'antenne très faible consommation capable d'adapter toute variation de l'impédance d'entrée de l'antenne à l'impédance de la source radiofréquence. La première partie de mon étude est axée sur la conception au niveau système d'une approche nouvelle de calibration automatique du système. Un réseau d'adaptation automatique d'impédance sans coupleur et fonctionnant de façon directe est étudié et permet d'optimiser la taille du dispositif, la vitesse de l'adaptation, la consommation d'énergie et les performances globales. Deuxièmement, une nouvelle méthode de synthèse du réseau d'adaptation variable est proposée pour réduire fortement la complexité globale de l'algorithme d'adaptation. La troisième partie de mon étude est axée sur la fabrication d'un démonstrateur hybride fonctionnant dans la bande médicale MICS afin de valider le concept auto adaptatif d'impédance. Un banc expérimental qui comprend une antenne immergée dans son milieu connectée au démonstrateur piloté par un microcontrôleur a été mis en place et a permis d'atteindre un coefficient de réflexion jusqu'à -30dB avec un temps de calibration inférieur à 1ms. La dernière partie de mon travail consiste à concevoir le circuit d'adaptation automatique d'impédance d'antenne très faible consommation fonctionnant dans la bande ISM 2.4GHz en utilisant la technologie CMOS 0.13um. Antenna input impedance is highly affected by environmental factors increasing the losses or reducing the power efficiency of the radiofrequency transceiver in many RF applications such as in implantable pacemaker device telemetry. The purpose of my study is to develop a low power fully integrated antenna-impedance tuning unit to match any variation of the antenna impedance to the source. The first part of my study is focused on the system-level design of a new approach to automatically match the system. A couplerless single step automatic matching network is investigated to optimize the die size, the speed, the power consumption and the overall performance. Second, a new method for synthesizing an automatic matching network is developed reducing strongly the overall complexity of the matching algorithm. The third part of my study is focused on the fabrication of a hybrid demonstrator operating at the Medical Implantable Communication Service (MICS) frequency band to validate the concept. An experimental set-up including the antenna tuning unit, a microcontroller and a pacemaker antenna connected to the demonstrator was done achieving a reflection coefficient up to -30dB, an overall tuning time less than 1ms. The last part of my work is to design the entire automatic matching network circuit in 0.13um CMOS technology including a front-end transceiver designed under ultra low power constraints and operating at 2.4GHz ISM frequency band. The additional items overall power consumption is less than 1.5mW under 1.2V supply voltage.
68

Systemization of RFID Tag Antenna Design Based on Optimization Techniques and Impedance Matching Charts

Butt, Munam 16 July 2012 (has links)
The performance of commercial Radio Frequency Identification (RFID) tags is primarily limited by present techniques used for tag antenna design. Currently, industry techniques rely on identifying the RFID tag application (books, clothing, etc.) and then building antenna prototypes of different configurations in order to satisfy minimum read range requirements. However, these techniques inherently lack an electromagnetic basis and are unable to provide a low cost solution to the tag antenna design process. RFID tag performance characteristics (read-range, chip-antenna impedance matching, surrounding environment) can be very complex, and a thorough understanding of the RFID tag antenna design may be gained through an electromagnetic approach in order to reduce the tag antenna size and the overall cost of the RFID system. The research presented in this thesis addresses RFID tag antenna design process for passive RFID tags. With the growing number of applications (inventory, supply-chain, pharmaceuticals, etc), the proposed RFID antenna design process demonstrates procedures to design tag antennas for such applications. Electrical/geometrical properties of the antennas designed were investigated with the help of computer electromagnetic simulations in order to achieve optimal tag performance criteria such as read range, chip-impedance matching, antenna efficiency, etc. Experimental results were performed on the proposed antenna designs to compliment computer simulations and analytical modelling.
69

Systemization of RFID Tag Antenna Design Based on Optimization Techniques and Impedance Matching Charts

Butt, Munam 16 July 2012 (has links)
The performance of commercial Radio Frequency Identification (RFID) tags is primarily limited by present techniques used for tag antenna design. Currently, industry techniques rely on identifying the RFID tag application (books, clothing, etc.) and then building antenna prototypes of different configurations in order to satisfy minimum read range requirements. However, these techniques inherently lack an electromagnetic basis and are unable to provide a low cost solution to the tag antenna design process. RFID tag performance characteristics (read-range, chip-antenna impedance matching, surrounding environment) can be very complex, and a thorough understanding of the RFID tag antenna design may be gained through an electromagnetic approach in order to reduce the tag antenna size and the overall cost of the RFID system. The research presented in this thesis addresses RFID tag antenna design process for passive RFID tags. With the growing number of applications (inventory, supply-chain, pharmaceuticals, etc), the proposed RFID antenna design process demonstrates procedures to design tag antennas for such applications. Electrical/geometrical properties of the antennas designed were investigated with the help of computer electromagnetic simulations in order to achieve optimal tag performance criteria such as read range, chip-impedance matching, antenna efficiency, etc. Experimental results were performed on the proposed antenna designs to compliment computer simulations and analytical modelling.
70

Design Of A Radio Frequency Identification (rfid) Antenna

Kalayci, Sefa 01 May 2009 (has links) (PDF)
Fundamental features of Radio Frequency Identification (RFID) systems used in different application areas will be reviewed. Techniques used in realizing RFID antenna systems will be studied and the procedure to realize a specific RFID antenna type possessing desired characteristics will be described. Electrical properties such as radiation pattern, impedance will be predicted using analytical and/or computer simulation techniques. Experimental investigations will be carried out to complement the theoretical work.

Page generated in 0.0573 seconds